The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Red Orange By-Products
2.2. Preparation and Analysis of AL0042
2.3. Total Phenol Content Assay
2.4. Oxygen Radical Absorbance Capacity
2.5. In Vitro Investigations
2.5.1. Cell Culture and Treatments
2.5.2. Cell Viability (MTT Test)
2.5.3. Measurement of Cell Epithelial Integrity
2.5.4. Measurement of Inflammatory Parameters
2.6. In Vivo Model to Induce Hepatic Encephalopathy
2.7. Ethics Statement
2.8. Body Weight and Behavior Test
2.9. Biochemical Parameters Analysis
2.10. Liver Histological Evaluations
2.11. Immunohistochemical Analysis in Brain
2.12. Statistical Analysis
3. Results
3.1. Quantitative Analysis of AL0042 in Different Batches
3.2. Evaluation of the In Vitro Anti-Inflammatory and Permeability Activity of Spray-Dried Extract (AL0042)
3.3. Effect of AL0042 on Body Weight and Behaviour of Mice
3.4. Effect of AL0042 on the Biochemical Profile
3.5. Activity of AL0042 on Liver Morphology and Inflammation of TAA-Mice
3.6. Effect AL0042 on Brain Inflammation of TAA Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MHE | Minimal hepatic encephalopathy |
AL0042 | New phytocomplex extracted from red orange by-products |
TAA | Thioacetamide |
ACLF | Acute and chronic liver failure |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
SOD | Superoxide dismutase |
HC | Hydrodynamic cavitation |
DE | Degree of esterification |
ALE1 | First HC extraction run |
ALE2 | Second HC extraction run |
σ | Cavitation number |
PSD | Particle size distribution |
HPMC | Hydroxypropyl methylcellulose |
ORAC | Oxygen radical absorbance capacity |
AAPH | 2,2′-azobis(2-methylpropionamidine) dihydrochloride |
AUC | Area under the curve |
MTT | 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide |
TEER | Transepithelial electrical resistance |
FC | Fold Change |
AAALAC | Applicable assessment and accreditation of laboratory animal care |
IACUC | Institutional Animal Care and Use Committee |
TNF-α | Tumor necrosis factor-alpha |
PBF | Phosphate-buffered saline |
GFAP | Glial fibrillary acid protein |
CD68 | Macrophage/phagocytic activation |
IBA-1 | Ionized calcium-binding adapter molecule-1 |
TDS | Total dissolved solids |
TPC | Total phenolic content |
References
- López-Franco, Ó.; Morin, J.-P.; Cortés-Sol, A.; Molina-Jiménez, T.; Del Moral, D.I.; Flores-Muñoz, M.; Roldán-Roldán, G.; Juárez-Portilla, C.; Zepeda, R.C. Cognitive Impairment After Resolution of Hepatic Encephalopathy: A Systematic Review and Meta-Analysis. Front. Neurosci. 2021, 15, 579263. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.R. Pathophysiology of Cerebral Oedema in Acute Liver Failure. World J. Gastroenterol. 2013, 19, 9240. [Google Scholar] [CrossRef] [PubMed]
- Viramontes Hörner, D.; Avery, A.; Stow, R. The Effects of Probiotics and Symbiotics on Risk Factors for Hepatic Encephalopathy. J. Clin. Gastroenterol. 2017, 51, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Hadjihambi, A.; Arias, N.; Sheikh, M.; Jalan, R. Hepatic Encephalopathy: A Critical Current Review. Hepatol. Int. 2018, 12, 135–147. [Google Scholar] [CrossRef]
- Tranah, T.H.; Vijay, G.K.M.; Ryan, J.M.; Shawcross, D.L. Systemic Inflammation and Ammonia in Hepatic Encephalopathy. Metab. Brain Dis. 2013, 28, 1–5. [Google Scholar] [CrossRef]
- Dennis, C.V.; Sheahan, P.J.; Graeber, M.B.; Sheedy, D.L.; Kril, J.J.; Sutherland, G.T. Microglial Proliferation in the Brain of Chronic Alcoholics with Hepatic Encephalopathy. Metab. Brain Dis. 2014, 29, 1027–1039. [Google Scholar] [CrossRef]
- Thrane, V.R.; Thrane, A.S.; Wang, F.; Cotrina, M.L.; Smith, N.A.; Chen, M.; Xu, Q.; Kang, N.; Fujita, T.; Nagelhus, E.A.; et al. Ammonia Triggers Neuronal Disinhibition and Seizures by Impairing Astrocyte Potassium Buffering. Nat. Med. 2013, 19, 1643–1648. [Google Scholar] [CrossRef]
- Rangroo Thrane, V.; Thrane, A.S.; Chanag, J.; Alleluia, V.; Nagelhus, E.A.; Nedergaard, M. Real-Time Analysis of Microglial Activation and Motility in Hepatic and Hyperammonemic Encephalopathy. Neuroscience 2012, 220, 247–255. [Google Scholar] [CrossRef]
- Luo, M.; Xin, R.-J.; Hu, F.-R.; Yao, L.; Hu, S.-J.; Bai, F.-H. Role of Gut Microbiota in the Pathogenesis and Therapeutics of Minimal Hepatic Encephalopathy via the Gut-Liver-Brain Axis. World J. Gastroenterol. 2023, 29, 144–156. [Google Scholar] [CrossRef]
- Sharma, K.; Akre, S.; Chakole, S.; Wanjari, M.B. Hepatic Encephalopathy and Treatment Modalities: A Review Article. Cureus 2022, 14, 8. [Google Scholar] [CrossRef]
- Sepehrinezhad, A.; Shahbazi, A.; Sahab Negah, S.; Joghataei, M.T.; Larsen, F.S. Drug-Induced-Acute Liver Failure: A Critical Appraisal of the Thioacetamide Model for the Study of Hepatic Encephalopathy. Toxicol. Rep. 2021, 8, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; More, P.R.; Ladole, M.R.; Pegu, K.; Pandit, A.B. Non-Thermal, Energy Efficient Hydrodynamic Cavitation for Food Processing, Process Intensification and Extraction of Natural Bioactives: A Review. Ultrason. Sonochem. 2023, 98, 106504. [Google Scholar] [CrossRef] [PubMed]
- Meneguzzo, F.; Brunetti, C.; Fidalgo, A.; Ciriminna, R.; Delisi, R.; Albanese, L.; Zabini, F.; Gori, A.; dos Santos Nascimento, L.B.; De Carlo, A.; et al. Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation. Processes 2019, 7, 581. [Google Scholar] [CrossRef]
- Scurria, A.; Sciortino, M.; Garcia, A.R.; Pagliaro, M.; Avellone, G.; Fidalgo, A.; Albanese, L.; Meneguzzo, F.; Ciriminna, R.; Ilharco, L.M. Red Orange and Bitter Orange IntegroPectin: Structure and Main Functional Compounds. Molecules 2022, 27, 3243. [Google Scholar] [CrossRef]
- Scurria, A.; Sciortino, M.; Albanese, L.; Nuzzo, D.; Zabini, F.; Meneguzzo, F.; Alduina, R.; Presentato, A.; Pagliaro, M.; Avellone, G.; et al. Flavonoids in Lemon and Grapefruit IntegroPectin. ChemistryOpen 2021, 10, 1055–1058. [Google Scholar] [CrossRef]
- Flori, L.; Albanese, L.; Calderone, V.; Meneguzzo, F.; Pagliaro, M.; Ciriminna, R.; Zabini, F.; Testai, L. Cardioprotective Effects of Grapefruit IntegroPectin Extracted via Hydrodynamic Cavitation from By-Products of Citrus Fruits Industry: Role of Mitochondrial Potassium Channels. Foods 2022, 11, 2799. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.L.; Arigò, A.; Cacciola, F.; De Gara, L.; Dugo, P.; Mondello, L. Blood Orange (Citrus sinensis) as a Rich Source of Nutraceuticals: Investigation of Bioactive Compounds in Different Parts of the Fruit by HPLC-PDA/MS. Nat. Prod. Res. 2021, 35, 4606–4610. [Google Scholar] [CrossRef]
- Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-Inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem. 2017, 25, 4929–4945. [Google Scholar] [CrossRef]
- Morshedzadeh, N.; Ramezani Ahmadi, A.; Behrouz, V.; Mir, E. A Narrative Review on the Role of Hesperidin on Metabolic Parameters, Liver Enzymes, and Inflammatory Markers in Nonalcoholic Fatty Liver Disease. Food Sci. Nutr. 2023, 11, 7523–7533. [Google Scholar] [CrossRef]
- Bagal, M.V.; Gogate, P.R. Wastewater Treatment Using Hybrid Treatment Schemes Based on Cavitation and Fenton Chemistry: A Review. Ultrason. Sonochem. 2014, 21, 1–14. [Google Scholar] [CrossRef]
- Wu, Y.; Xiang, C.; Mou, J.; Qian, H.; Duan, Z.; Zhang, S.; Zhou, P. Numerical Study of Rotating Cavitation and Pressure Pulsations in a Centrifugal Pump Impeller. AIP Adv. 2024, 14, 105024. [Google Scholar] [CrossRef]
- ISO3727-1; Butter—Determination of Moisture, Non-Fat Solids and Fat Contents—Part 1: Determination of Moisture Content (Reference Method). ISO, IDF, AOAC: Geneva, Switzerland, 2001.
- ISO 14891:2002; Milk and Milk Products—Determination of Nitrogen Content—Routine Method Using Combustion According to the Dumas Principle. ISO, IDF, AOAC: Geneva, Switzerland, 2002.
- Cirlincione, F.; Venturella, G.; Gargano, M.L.; Ferraro, V.; Gaglio, R.; Francesca, N.; Rizzo, B.A.; Russo, G.; Moschetti, G.; Settanni, L.; et al. Functional Bread Supplemented with Pleurotus eryngii Powder: A Potential New Food for Human Health. Int. J. Gastron. Food Sci. 2022, 27, 100449. [Google Scholar] [CrossRef]
- Tobaruela, E.d.C.; Santos, A.d.O.; Almeida-Muradian, L.B.d.; Araujo, E.d.S.; Lajolo, F.M.; Menezes, E.W. Application of Dietary Fiber Method AOAC 2011.25 in Fruit and Comparison with AOAC 991.43 Method. Food Chem. 2018, 238, 87–93. [Google Scholar] [CrossRef] [PubMed]
- ISO 22184; Milk and Milk Products—Determination of the Sugar Contents—High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection Method (HPAEC-PAD). ISO, IDF: Geneva, Switzerland, 2021.
- Mccleary, B.V. Total Dietary Fiber (Codex Definition) in Foods and Food Ingredients by a Rapid Enzymatic-Gravimetric Method and Liquid Chromatography: Collaborative Study, First Action 2017.16. J. AOAC Int. 2019, 102, 196–207. [Google Scholar] [CrossRef]
- ISO 16958; Milk, Milk Products, Infant Formula and Adult Nutritionals—Determination of Fatty Acids Composition—Capillary Gas Chromatographic Method. ISO, IDF, AOAC: Geneva, Switzerland, 2015.
- Pozzoli, C.; Martinelli, G.; Fumagalli, M.; Di Lorenzo, C.; Maranta, N.; Colombo, L.; Piazza, S.; Dell’Agli, M.; Sangiovanni, E. Castanea sativa Mill. By-Products: Investigation of Potential Anti-Inflammatory Effects in Human Intestinal Epithelial Cells. Molecules 2024, 29, 3951. [Google Scholar] [CrossRef]
- Van De Walle, J.; Hendrickx, A.; Romier, B.; Larondelle, Y.; Schneider, Y.-J. Inflammatory Parameters in Caco-2 Cells: Effect of Stimuli Nature, Concentration, Combination and Cell Differentiation. Toxicol. Vitr. 2010, 24, 1441–1449. [Google Scholar] [CrossRef]
- Piazza, S.; Colombo, F.; Bani, C.; Fumagalli, M.; Vincentini, O.; Sangiovanni, E.; Martinelli, G.; Biella, S.; Silano, M.; Restani, P.; et al. Evaluation of the Potential Anti-Inflammatory Activity of Black Rice in the Framework of Celiac Disease. Foods 2023, 12, 63. [Google Scholar] [CrossRef]
- Martinelli, G.; Fumagalli, M.; Piazza, S.; Maranta, N.; Genova, F.; Sperandeo, P.; Sangiovanni, E.; Polissi, A.; Dell’Agli, M.; De Fabiani, E. Investigating the Molecular Mechanisms Underlying Early Response to Inflammation and Helicobacter Pylori Infection in Human Gastric Epithelial Cells. Int. J. Mol. Sci. 2023, 24, 15147. [Google Scholar] [CrossRef]
- Kang, H. Sample Size Determination and Power Analysis Using the G*Power Software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Chen, K.; Zheng, Y.; Wei, J.A.; Ouyang, H.; Huang, X.; Zhang, F.; Wan Lai, C.S.; Ren, C.; So, K.F.; Zhang, L. Exercise Training Improves Motor Skill Learning via Selective Activation of MTOR. Sci. Adv. 2019, 5, eaaw1888. [Google Scholar] [CrossRef]
- Brown, G.T.; Kleiner, D.E. Histopathology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Metabolism 2016, 65, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Abo El-Magd, N.F.; El-Kashef, D.H.; El-Sherbiny, M.; Eraky, S.M. Hepatoprotective and Cognitive-Enhancing Effects of Hesperidin against Thioacetamide-Induced Hepatic Encephalopathy in Rats. Life Sci. 2023, 313, 121280. [Google Scholar] [CrossRef] [PubMed]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Senent, F.; Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Structural and Antioxidant Properties of Hydroxytyrosol-Pectin Conjugates: Comparative Analysis of Adsorption and Free Radical Methods and Their Impact on In Vitro Gastrointestinal Process. Food Hydrocoll. 2025, 162, 110954. [Google Scholar] [CrossRef]
- Capocelli, M.; Musmarra, D.; Prisciandaro, M.; Lancia, A. Chemical Effect of Hydrodynamic Cavitation: Simulation and Experimental Comparison. AIChE J. 2014, 60, 2566–2572. [Google Scholar] [CrossRef]
- Ding, W.; Hong, F.; Ying, D.; Huang, Y.; Nawaz Khan, S.; Jia, J. A Comprehensive Study on the Effects of Annular Protrusion for Cavitation Intensification in Venturi Tubes. Chem. Eng. J. 2024, 498, 155306. [Google Scholar] [CrossRef]
- Felipo, V. Hepatic Encephalopathy: Effects of Liver Failure on Brain Function. Nat. Rev. Neurosci. 2013, 14, 851–858. [Google Scholar] [CrossRef]
- de Miranda, A.S.; Rodrigues, D.H.; Vieira, L.B.; Lima, C.X.; Rachid, M.A.; Vidigal, P.V.T.; Gomez, M.V.; dos Reis, H.J.; Guatimosim, C.; Teixeira, A.L. A Thioacetamide-Induced Hepatic Encephalopathy Model in C57BL/6 Mice: A Behavioral and Neurochemical Study. Arq. Neuropsiquiatr. 2010, 68, 597–602. [Google Scholar] [CrossRef]
- Butterworth, R.F. The Liver-Brain Axis in Liver Failure: Neuroinflammation and Encephalopathy. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 522–528. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Processes 2020, 8, 549. [Google Scholar] [CrossRef]
- Wei, D.D.; Wang, J.S.; Li, M.H.; Guo, P.P.; Dong, G.; Yang, M.H.; Kong, L.Y. A Pilot Study of the Onset of Hepatic Encephalopathy (OHE) in Mice Induced by Thioacetamide and the Protective Effect of Taurine by Holistic Metabolic Characterization. Metabolomics 2015, 11, 559–570. [Google Scholar] [CrossRef]
- Gomides, L.F.; Marques, P.E.; Pereira, R.V.; Amaral, S.S.; Lage, T.R.; Menezes, G.B.; Faleiros, B.E.; Martins, F.P.; Teixeira, A.L.; Resende, G.H.S.; et al. Murine Model to Study Brain, Behavior and Immunity during Hepatic Encephalopathy. World J. Hepatol. 2014, 6, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Madore, C.; Leyrolle, Q.; Lacabanne, C.; Benmamar-Badel, A.; Joffre, C.; Nadjar, A.; Layé, S. Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural. Plast. 2016, 2016, 3597209. [Google Scholar] [CrossRef]
- Di Filippo, M.; Sarchielli, P.; Picconi, B.; Calabresi, P. Neuroinflammation and Synaptic Plasticity: Theoretical Basis for a Novel, Immune-Centred, Therapeutic Approach to Neurological Disorders. Trends Pharmacol. Sci. 2008, 29, 402–412. [Google Scholar] [CrossRef]
- Hajialyani, M.; Farzaei, M.H.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Eduardo, S.S. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef]
- Park, H.; Yu, J. Hesperidin Enhances Intestinal Barrier Function in Caco-2 Cell Monolayers via AMPK-mediated Tight Junction-related Proteins. FEBS Open Bio 2023, 13, 532–544. [Google Scholar] [CrossRef]
Chemical Composition | Reference Method 1 | References |
---|---|---|
Moisture | MP 2290 rev 6 2023 (ISO3727-1) | [22] |
Proteins | MP 1457 rev 4 2022 (ISO14891:2002) | [23] |
Total fats | MP 2598 rev 0 2022 | [24] |
Dietary fiber | MP 2135 rev 6 2021 (AOAC 991.43 1994) | [25] |
Ash | MP 2271 rev 1 2022 | [24] |
Carbohydrates | MP 0297 rev 7 2021 | [24] |
Energy level | MP 0297 rev 7 2021 | [24] |
Organic acids | MP 0369 rev 4 2021 | [24] |
Sugars | MP 1114 rev 6 2016 (ISO22184) | [26] |
Pectin | IFU 26/1996 | [24] |
Essential oils | AR 2019/120/ACAP.1 | [24] |
Specific volatiles | % GC area 2 | [24] |
Dietary fiber | MP 2443 rev 3 2022 (AOAC 2017.16) | [27] |
Phenolic acids | MP 1337 rev 3 2014 | [24] |
Acidic composition | MP 2341 rev 1 2021 (ISO 16958) | [28] |
Flavonoids | MI_197_2014_Rev3 | [24] |
Lesion | Lesion Characteristics | Score Values |
---|---|---|
Congestion | None | 0 |
Minimal | 1 | |
Mild | 2 | |
Moderate | 3 | |
Severe | 4 | |
Vacuolization | None | 0 |
Minimal | 1 | |
Mild | 2 | |
Moderate | 3 | |
Severe | 4 | |
Inflammation | None | 0 |
Minimal | 1 | |
Mild | 2 | |
Moderate | 3 | |
Severe | 4 | |
Necrosis | None | 0 |
Minimal | 1 | |
Mild | 2 | |
Moderate | 3 | |
Severe | 4 |
Quantity | Level | Unit | |
---|---|---|---|
ALE1 (n = 6) | ALE2 (n = 6) (AL0042) | ||
Component substances | |||
Red orange byproducts | 74.97 ± 0.13 | 74.86 ± 0.04 | % |
Maltodextrin | 20.08 ± 0.11 | 20.10 ± 0.02 | % |
HPMC | 4.95 ± 0.12 | 5.05 ± 0.03 | % |
PSD 1 | |||
d10 | 2.42 ± 0.61 | 2.01 ± 0.30 | μm |
d50 | 5.58 ± 1.11 | 5.91 ± 0.93 | μm |
d90 | 10.65 ± 1.81 | 11.98 ± 1.85 | μm |
Span 2 | 1.49 ± 0.73 | 1.69 ± 0.63 | |
Spray drying recovery yield 3 | 86.97 ± 5.55 | 79.75 ± 3.62 | % |
Extraction yield 4 | 37.27 ± 1.62 | 37.93 ± 0.37 | % |
Chemical Composition | Quantity | Unit | |
---|---|---|---|
ALE1 (n = 6) | ALE2 (n = 6) (AL0042) | ||
Nutritional levels 1 | |||
Moisture | 10.36 ± 0.37 | g/100 g | |
Proteins | 3.98 ± 0.28 | g/100 g | |
Total fats | 0.74 ± 0.09 | g/100 g | |
Dietary fiber | 4.18 ± 0.67 | g/100 g | |
Ash | 2.55 ± 0.17 | g/100 g | |
Carbohydrates | 78.19 ± 0.84 | g/100 g | |
Energy level | 1438 ± 10 | kJ/100 g | |
Organic acids | |||
Citric acid | 1.50 ± 0.18 | 2.14 ± 0.26 | g/100 g |
Sugars | |||
Glucose | 19.90 ± 1.50 | 15.60 ± 1.20 | g/100 g |
Fructose | 20.60 ± 1.40 | 15.50 ± 1.00 | g/100 g |
Sucrose | 8.04 ± 0.78 | 9.92 ± 0.96 | g/100 g |
Maltose | 1.88 ± 0.28 | 1.59 ± 0.24 | g/100 g |
Total sugars | 50.42 ± 2.21 | 42.61 ± 1.85 | g/100 g |
Pectin | 1.78 ± 0.18 | 3.10 ± 0.31 | g/100 g Gala eq 2 |
Essential oils 3 | 0.90 ± 0.03 | 1.10 ± 0.20 | %v/w |
Limonene | 84.82 ± 0.03 | 95.76 ± 0.03 | % GC aread |
β-myrcene | 2.18 ± 0.02 | 1.82 ± 0.02 | % GC aread |
α-pinene | 0.82 ± 0.01 | 0.55 ± 0.01 | % GC aread |
Dietary fiber | |||
Soluble fiber | 1.06 ± 0.25 | 1.84 ± 0.44 | g/100 g |
Total fiber | 3.34 ± 0.60 | 9.54 ± 1.95 | g/100 g |
HMW fiber 4 | 2.28 ± 0.55 | 7.70 ± 1.90 | g/100 g |
Phenolic acids | |||
Chlorogenic acid | <0.01 | 0.07 ± 0.01 | g/100 g |
Caffeic acid | <0.01 | 0.02 ± 0.01 | g/100 g |
Ferulic acid | 0.03 ± 0.01 | 0.02 ± 0.01 | g/100 g |
Acidic composition 1 | |||
Saturated fatty acids | 0.19 ± 0.03 | g/100 g | |
Monounsaturated fatty acids | 0.15 ± 0.02 | g/100 g | |
Polyunsaturated fatty acids | 0.32 ± 0.05 | g/100 g | |
Flavonoids | |||
Hesperidin | 1.71 ± 0.20 | 2.42 ± 0.28 | g/100 g |
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | AIMP1 | BMP1 | C5 | CCL1 | CCL11 | CCL13 | CCL15 | CCL16 | CCL17 | CCL2 | CCL20 | CCL22 |
B | CCL23 | CCL24 | CCL26 | CCL3 | CCL4 | CCL5 | CCL7 | CCL8 | CCR1 | CCR2 | CCR3 | CCR4 |
C | CCR5 | CCR6 | CCR8 | CD40LG | CSF1 | CSF2 | CSF3 | CX3CL1 | CX3CR1 | CXCL1 | CXCL10 | CXCL11 |
D | CXCL12 | CXCL13 | CXCL2 | CXCL3 | CXCL5 | CXCL6 | CXCL9 | CXCR1 | CXCR2 | FASLG | IFNA2 | INFG |
E | IL10RA | IL10RB | IL13 | IL15 | IL16 | IL17A1 | IL17C | IL17F | IL1A | IL1B | IL1R1 | IL1RN |
F | IL21 | IL27 | IL3 | IL33 | IL5 | IL15RA | IL7 | CXCL8 | IL9 | IL9R | LTA | LTB |
G | MIF | NAMPT | OSM | SPP1 | TNF | TNFRSF11B | TNFSF10 | TNFSF11 | TNFSF13 | TNFSF13B | TNFSF4 | VEGFA |
Control | TAA | TAA + AL0042 | |
---|---|---|---|
Plasma ammonia | |||
NH3 (μmol/L) | 31 ± 2.5 **** | 87 ± 6.5 | 46.9 ± 2.0 ^^^*** |
Serum parameters | |||
ALT (U/L) | 39.6 ± 5.0 **** | 116.8 ± 13.4 | 72.3 ± 6.3 ^^^* |
AST (U/L) | 88.0 ± 3.6 **** | 200.9 ± 16.6 | 140 ± 13 ^^^* |
TNF-α (ng/mL) | 1.0 ± 0.2 *** | 46.8 ± 11.5 | 1.0 ± 0.3 ^^^ |
SOD activity (% inhibition rate) | 79.3 ± 0.5 ** | 72.9 ± 2.0 | 78.2 ± 1.3 * |
Corticosterone (ng/mL) | 52.8 ± 6.0 ** | 243 ± 75 | 87.8 ± 9.6 *^^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesci, L.; Martinelli, G.; Liu, Y.; Tagliavento, L.; Dell’Agli, M.; Wu, Y.; Soldi, S.; Sagheddu, V.; Piazza, S.; Sangiovanni, E.; et al. The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide. Biomedicines 2025, 13, 686. https://doi.org/10.3390/biomedicines13030686
Vesci L, Martinelli G, Liu Y, Tagliavento L, Dell’Agli M, Wu Y, Soldi S, Sagheddu V, Piazza S, Sangiovanni E, et al. The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide. Biomedicines. 2025; 13(3):686. https://doi.org/10.3390/biomedicines13030686
Chicago/Turabian StyleVesci, Loredana, Giulia Martinelli, Yongqiang Liu, Luca Tagliavento, Mario Dell’Agli, Yunfei Wu, Sara Soldi, Valeria Sagheddu, Stefano Piazza, Enrico Sangiovanni, and et al. 2025. "The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide" Biomedicines 13, no. 3: 686. https://doi.org/10.3390/biomedicines13030686
APA StyleVesci, L., Martinelli, G., Liu, Y., Tagliavento, L., Dell’Agli, M., Wu, Y., Soldi, S., Sagheddu, V., Piazza, S., Sangiovanni, E., & Meneguzzo, F. (2025). The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide. Biomedicines, 13(3), 686. https://doi.org/10.3390/biomedicines13030686