Copeptin and Mid-Regional Proadrenomedullin Are Not Useful Biomarkers of Cardiometabolic Disease in Patients with Acromegaly—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Examinations
2.2. Statistical Analysis
3. Results
3.1. Copeptin and Mid-Regional Proadrenomedullin
3.2. Comorbidities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolanowski, M.; Ruchała, M.; Zgliczyński, W.; Kos-Kudła, B.; Hubalewska-Dydejczyk, A.; Lewiński, A. Diagnostics and treatment of acromegaly—Updated recommendations of the Polish Society of Endocrinology. Endokrynol. Pol. 2019, 70, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, A.; Melmed, S. Acromegaly. Endocrinol. Metab. Clin. N. Am. 2008, 37, 101–122. [Google Scholar] [CrossRef]
- Chanson, P.; Salenave, S. Acromegaly. Orphanet J. Rare Dis. 2008, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Mizera, Ł.; Elbaum, M.; Daroszewski, J.; Bolanowski, M. Cardiovascular Complications of Acromegaly. Acta Endocrinol. 2018, 14, 365–374. [Google Scholar] [CrossRef]
- Rolla, M.; Jawiarczyk-Przybyłowska, A.; Halupczok-Żyła, J.; Kałużny, M.; Konopka, B.M.; Błoniecka, I.; Zieliński, G.; Bolanowski, M. Complications and Comorbidities of Acromegaly—Retrospective Study in Polish Center. Front. Endocrinol. 2021, 12, 642131. [Google Scholar] [CrossRef] [PubMed]
- Tseng, F.Y.; Huang, T.S.; Lin, J.D.; Chen, S.T.; Wang, P.W.; Chen, J.F.; Huey-Herng Sheu, W.; Chang, T.C. A registry of acromegaly patients and one year following up in Taiwan. J. Formos. Med. Assoc. 2019, 118, 1430–1437. [Google Scholar] [CrossRef]
- Colao, A.; Grasso, L.F.S.; Di Cera, M.; Thompson-Leduc, P.; Cheng, W.Y.; Cheung, H.C.; Duh, M.S.; Neary, M.P.; Pedroncelli, A.M.; Maamari, R.; et al. Association between biochemical control and comorbidities in patients with acromegaly: An Italian longitudinal retrospective chart review study. J. Endocrinol. Investig. 2020, 43, 529–538. [Google Scholar] [CrossRef]
- Cuevas-Ramos, D.; Carmichael, J.D.; Cooper, O.; Bonert, V.S.; Gertych, A.; Mamelak, A.N.; Melmed, S. A Structural and Functional Acromegaly Classification. J. Clin. Endocrinol. Metab. 2015, 100, 122–131. [Google Scholar] [CrossRef]
- Wolters, T.L.C.; Netea, M.G.; Riksen, N.P.; Hermus, A.R.M.M.; Netea-Maier, R.T. Acromegaly, inflammation and cardiovascular disease: A review. Rev. Endocr. Metab. Disord. 2020, 21, 547–568. [Google Scholar] [CrossRef]
- Powlson, A.S.; Gurnell, M. Cardiovascular Disease and Sleep-Disordered Breathing in Acromegaly. Neuroendocrinology 2016, 103, 75–85. [Google Scholar] [CrossRef]
- Sharma, M.D.; Nguyen, A.V.; Brown, S.; Robbins, R.J. Cardiovascular Disease in Acromegaly. Methodist Debakey Cardiovasc. J. 2017, 13, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Ronchi, C.; Corbetta, S.; Cappiello, V.; Morpurgo, P.; Giavoli, C.; Beck-Peccoz, P.; Arosio, M.; Spada, A. Circulating adiponectin levels and cardiovascular risk factors in acromegalic patients. Eur. J. Endocrinol. 2004, 150, 663–669. [Google Scholar] [CrossRef]
- Kirilov, G.; Zacharieva, S.; Alexandrov, A.S.; Lozanov, V.; Mitev, V. Increased plasma endothelin level as an endothelial marker of cardiovascular risk in patients with active acromegaly: A comparison with plasma homocysteine. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 457–461. [Google Scholar] [CrossRef]
- Rolla, M.; Jawiarczyk-Przybyłowska, A.; Kolačkov, K.; Zembska, A.; Bolanowski, M. Is H19 RNA a Useful Marker of Acromegaly and Its Complications? A Preliminary Study. Biomedicines 2023, 11, 1211. [Google Scholar] [CrossRef] [PubMed]
- Franczak, A.; Kolačkov, K.; Jawiarczyk-Przybyłowska, A.; Bolanowski, M. Association between FTO gene polymorphisms and HDL cholesterol concentration may cause higher risk of cardiovascular disease in patients with acromegaly. Pituitary 2018, 21, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Ragonese, M.; Di Bella, G.; Spagnolo, F.; Grasso, L.; Alibrandi, A.; Giuffrida, G.; Moleti, M.; Ferraù, F.; Cannavò, S. Serum NT-pro-BNP Levels Predict Cardiovascular Events in Acromegaly Patients. Exp. Clin. Endocrinol. Diabetes 2022, 130, 229–236. [Google Scholar] [CrossRef]
- Katan, M.; Christ-Crain, M. The stress hormone copeptin: A new prognostic biomarker in acute illness. Swiss. Med. Wkly. 2010, 140, w13101. [Google Scholar] [CrossRef]
- Morgenthaler, N.G. Copeptin: A biomarker of cardiovascular and renal function. Congest. Heart Fail. 2010, 16, S37–S44. [Google Scholar] [CrossRef]
- Schill, F.; Timpka, S.; Nilsson, P.M.; Melander, O.; Enhörning, S. Copeptin as a predictive marker of incident heart failure. ESC Heart Fail. 2021, 8, 3180–3188. [Google Scholar] [CrossRef]
- Velho, G.; Ragot, S.; El Boustany, R.; Saulnier, P.J.; Fraty, M.; Mohammedi, K.; Fumeron, F.; Potier, L.; Marre, M.; Hadjadj, S.; et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 2018, 17, 110. [Google Scholar] [CrossRef]
- Christ-Crain, M. Diabetes Insipidus: New Concepts for Diagnosis. Neuroendocrinology 2020, 110, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Tasevska, I.; Enhörning, S.; Persson, M.; Nilsson, P.M.; Melander, O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 2016, 102, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Pietraszko, P.; Zorawski, M.; Bielecka, E.; Sielatycki, P.; Zbroch, E. Mid-Regional Proadrenomedullin in COVID-19—May It Act as a Predictor of Prolonged Cardiovascular Complications? Int. J. Mol. Sci. 2023, 24, 16821. [Google Scholar] [CrossRef]
- Czajkowska, K.; Zbroch, E.; Bielach-Bazyluk, A.; Mitrosz, K.; Bujno, E.; Kakareko, K.; Rydzewska-Rosolowska, A.; Hryszko, T. Mid-Regional Proadrenomedullin as a New Biomarker of Kidney and Cardiovascular Diseases—Is It the Future? J. Clin. Med. 2021, 10, 524. [Google Scholar] [CrossRef]
- Wong, H.K.; Cheung, T.T.; Cheung, B.M. Adrenomedullin and cardiovascular diseases. JRSM Cardiovasc. Dis. 2012, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tan, G.J.; Han, L.N.; Bai, Y.Y.; He, M.; Liu, H.B. Novel biomarkers for cardiovascular risk prediction. J. Geriatr. Cardiol. 2017, 14, 135–150. [Google Scholar] [CrossRef]
- von Haehling, S.; Filippatos, G.S.; Papassotiriou, J.; Cicoira, M.; Jankowska, E.A.; Doehner, W.; Rozentryt, P.; Vassanelli, C.; Struck, J.; Banasiak, W.; et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur. J. Heart. Fail. 2010, 12, 484–491. [Google Scholar] [CrossRef]
- Fenske, W.K.; Christ-Crain, M.; Hörning, A.; Simet, J.; Szinnai, G.; Fassnacht, M.; Rutishauser, J.; Bichet, D.G.; Störk, S.; Allolio, B. A Copeptin-Based Classification of the Osmoregulatory Defects in the Syndrome of Inappropriate Antidiuresis. J. Am. Soc. Nephrol. 2014, 25, 2376–2383. [Google Scholar] [CrossRef]
- Nickel, C.H.; Bingisser, R.; Morgenthaler, N.G. The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med. 2012, 10, 7. [Google Scholar] [CrossRef]
- Koyama, T.; Kuriyama, N.; Suzuki, Y.; Saito, S.; Tanaka, R.; Iwao, M.; Tanaka, M.; Maki, T.; Itoh, H.; Ihara, M.; et al. Mid-regional pro-adrenomedullin is a novel biomarker for arterial stiffness as the criterion for vascular failure in a cross-sectional study. Sci. Rep. 2021, 11, 305. [Google Scholar] [CrossRef]
- Kita, T.; Kitamura, K. Translational studies of adrenomedullin and related peptides regarding cardiovascular diseases. Hypertens. Res. 2022, 45, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Katznelson, L.; Laws, E.R.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A.H. Acromegaly: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef] [PubMed]
- Szymański, F.M.; Barylski, M.; Cybulska, B.; Wożakowska-Kapłon, B.; Krasiński, Z.; Mamcarz, A.; Widecka, K.; Płatek, A.E.; Dudek, D.; Mickiewicz, A.; et al. Recommendation for the management of dyslipidemia in Poland—Third Declaration of Sopot. Interdisciplinary Expert Position Statement endorsed by the Polish Cardiac Society Working Group on Cardiovascular Pharmacotherapy. Cardiol. J. 2018, 25, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Isgaard, J.; Arcopinto, M.; Karason, K.; Cittadini, A. GH and the cardiovascular system: An update on a topic at heart. Endocrine 2015, 48, 25–35. [Google Scholar] [CrossRef]
- Le Roith, D. The insulin-like growth factor system. Exp. Diabesity Res. 2003, 4, 205–212. [Google Scholar] [CrossRef]
- Petretta, M.; Colao, A.; Sardu, C.; Scopacasa, F.; Marzullo, P.; Pivonello, R.; Fontanella, L.; de Caterina, M.; de Simone, A.; Bonaduce, D. NT-proBNP, IGF-I and survival in patients with chronic heart failure. Growth Horm. IGF Res. 2007, 17, 288–296. [Google Scholar] [CrossRef]
- Fröhlich, A.K.; Porthun, J.; Talha, K.M.; Lena, A.; Hadzibegovic, S.; Wilkenshoff, U.; Sonntag, F.; Nikolski, A.; Ramer, L.V.; Zeller, T.; et al. Association of an impaired GH-IGF-I axis with cardiac wasting in patients with advanced cancer. Clin. Res. Cardiol. 2024, 1–15. [Google Scholar] [CrossRef]
- Theodorakis, N.; Kreouzi, M.; Hitas, C.; Anagnostou, D.; Nikolaou, M. Growth Hormone and Heart Failure: Implications for Patient Stratification, Prognosis, and Precision Medicine. Diagnostics 2024, 14, 2831. [Google Scholar] [CrossRef]
- Harsha, M.M.; Tewari, S.; Gupta, S.K.; Khanna, R.; Kumar, S.; Garg, N.; Kapoor, A.; Goel, P.K. Acromegaly: Cardiovascular risk factors, cardiovascular manifestations and early vascular alterations in relation to disease activity. Indian Heart J. 2021, 73, 499–502. [Google Scholar] [CrossRef]
- Yang, H.; Tan, H.; Huang, H.; Li, J. Advances in Research on the Cardiovascular Complications of Acromegaly. Front. Oncol. 2021, 11, 640999. [Google Scholar] [CrossRef]
- Ramos-Leví, A.M.; Marazuela, M. Bringing Cardiovascular Comorbidities in Acromegaly to an Update. How Should We Diagnose and Manage Them? Front. Endocrinol. 2019, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a Diagnostic and Prognostic Biomarker in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef]
- Yilman, M.; Erenler, A.K.; Baydin, A. Copeptin: A diagnostic factor for critical patients. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3030–3036. [Google Scholar]
- Schill, F.; Persson, M.; Engström, G.; Melander, O.; Enhörning, S. Copeptin as a marker of atherosclerosis and arteriosclerosis. Atherosclerosis 2021, 338, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Moodley, N. Copeptin analysis in endocrine disorders. Front. Endocrinol. 2023, 14, 1230045. [Google Scholar] [CrossRef]
- Fenske, W.; Refardt, J.; Chifu, I.; Schnyder, I.; Winzeler, B.; Drummond, J.; Ribeiro-Oliveira, A.; Drescher, T.; Bilz, S.; Vogt, D.R.; et al. A Copeptin-Based Approach in the Diagnosis of Diabetes Insipidus. N. Engl. J. Med. 2018, 379, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Jalleh, R.; Torpy, D.J. The Emerging Role of Copeptin. Clin. Biochem. Rev. 2021, 42, 17–25. [Google Scholar] [CrossRef]
- Koch, A.; Yagmur, E.; Hoss, A.; Buendgens, L.; Herbers, U.; Weiskirchen, R.; Koek, G.H.; Trautwein, C.; Tacke, F. Clinical relevance of copeptin plasma levels as a biomarker of disease severity and mortality in critically ill patients. J. Clin. Lab. Anal. 2018, 32, e22614. [Google Scholar] [CrossRef]
- Enhörning, S.; Wang, T.J.; Nilsson, P.M.; Almgren, P.; Hedblad, B.; Berglund, G.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Lindholm, E.; et al. Plasma Copeptin and the Risk of Diabetes Mellitus. Circulation 2010, 121, 2102–2108. [Google Scholar] [CrossRef]
- Dobsa, L.; Cullen Edozien, K. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem. Med. 2013, 23, 172–190. [Google Scholar] [CrossRef]
- Szmygin, H.; Szydełko, J.; Matyjaszek-Matuszek, B. Copeptin as a novel biomarker of cardiometabolic syndrome. Endokrynol. Pol. 2021, 72, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.C.; Lewiński, A.; Skowrońska-Jóźwiak, E.; Malicka, K.; Horzelski, W.; Brabant, G. Copeptin as a marker of an altered CRH axis in pituitary disease. Endocrine 2017, 57, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Kacheva, S.; Kolk, K.; Morgenthaler, N.G.; Brabant, G.; Karges, W. Gender-specific co-activation of arginine vasopressin and the hypothalamic–pituitary–adrenal axis during stress. Clin. Endocrinol. 2015, 82, 570–576. [Google Scholar] [CrossRef]
- Lewandowski, K.C.; Lewiński, A.; Skowrońska-Jóźwiak, E.; Stasiak, M.; Horzelski, W.; Brabant, G. Copeptin under glucagon stimulation. Endocrine 2016, 52, 344–351. [Google Scholar] [CrossRef]
- Sjöström, A.; Chisalita, S.I.; Höybye, C. Copeptin in Growth Hormone-Treated Patients. J. Clin. Med. 2022, 11, 5510. [Google Scholar] [CrossRef] [PubMed]
- Saleem, U.; Khaleghi, M.; Morgenthaler, N.G.; Bergmann, A.; Struck, J.; Mosley, T.H.; Kullo, I.J. Plasma Carboxy-Terminal Provasopressin (Copeptin): A Novel Marker of Insulin Resistance and Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 2558–2564. [Google Scholar] [CrossRef]
- Ihara, M.; Washida, K.; Yoshimoto, T.; Saito, S. Adrenomedullin: A vasoactive agent for sporadic and hereditary vascular cognitive impairment. Cereb. Circ. Cogn. Behav. 2021, 2, 100007. [Google Scholar] [CrossRef]
- Montrucchio, G.; Sales, G.; Rumbolo, F.; Palmesino, F.; Fanelli, V.; Urbino, R.; Filippini, C.; Mengozzi, G.; Brazzi, L. Effectiveness of mid-regional pro-adrenomedullin (MR-proADM) as prognostic marker in COVID-19 critically ill patients: An observational prospective study. PLoS ONE 2021, 16, e0246771. [Google Scholar] [CrossRef]
- Fialek, B.; De Roquetaillade, C.; Pruc, M.; Navolokina, A.; Chirico, F.; Ladny, J.R.; Peacock, F.W.; Szarpak, L. Systematic review with meta-analysis of mid-regional pro-adrenomedullin (MR-proadm) as a prognostic marker in COVID-19-hospitalized patients. Ann. Med. 2023, 55, 379–387. [Google Scholar] [CrossRef]
- Peacock, W.F. Novel biomarkers in acute heart failure: MR-pro-adrenomedullin. Clin. Chem. Lab. Med. 2014, 52, 1433–1435. [Google Scholar] [CrossRef]
- Solé-Ribalta, A.; Bobillo-Pérez, S.; Jordan-García, I. A Review of Adrenomedullin in Pediatric Patients: A Useful Biomarker. Children 2022, 9, 1181. [Google Scholar] [CrossRef] [PubMed]
- Casula, M.; Colpani, O.; Xie, S.; Catapano, A.L.; Baragetti, A. HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells 2021, 10, 1869. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells 2023, 12, 1293. [Google Scholar] [CrossRef]
- Neumann, J.T.; Tzikas, S.; Funke-Kaiser, A.; Wilde, S.; Appelbaum, S.; Keller, T.; Ojeda-Echevarria, F.; Zeller, T.; Zwiener, I.; Sinning, C.R.; et al. Association of MR-proadrenomedullin with cardiovascular risk factors and subclinical cardiovascular disease. Atherosclerosis 2013, 228, 451–459. [Google Scholar] [CrossRef]
- Gar, C.; Thorand, B.; Herder, C.; Sujana, C.; Heier, M.; Meisinger, C.; Peters, A.; Koenig, W.; Rathmann, W.; Roden, M.; et al. Association of circulating MR-proADM with a-cause and cardiovascular mortality in the general population: Results from the KORA F4 cohort study. PLoS ONE 2022, 17, e0262330. [Google Scholar] [CrossRef]
- Sujana, C.; Seissler, J.; Jordan, J.; Rathmann, W.; Koenig, W.; Roden, M.; Mansmann, U.; Herder, C.; Peters, A.; Thorand, B.; et al. Associations of cardiac stress biomarkers with incident type 2 diabetes and changes in glucose metabolism: KORA F4/FF4 study. Cardiovasc. Diabetol. 2020, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Vila, G.; Luger, A.; van der Lely, A.J.; Neggers, S.J.C.M.M.; Webb, S.M.; Biller, B.M.K.; Valluri, S.; Hey-Hadavi, J. Hypertension in Acromegaly in Relationship to Biochemical Control and Mortality: Global ACROSTUDY Outcomes. Front. Endocrinol. 2020, 11, 577173. [Google Scholar] [CrossRef]
- Colao, A. The GH–IGF-I axis and the cardiovascular system: Clinical implications. Clin. Endocrinol. 2008, 69, 347–358. [Google Scholar] [CrossRef]
- Can, M.; Kocabaş, M.; Çordan, İ.; Çalişkan Burgucu, H.; Karaköse, M.; Kulaksizoğlu, M.; Karakurt, F. Prevalence of comorbidities and associated factors in acromegaly patients in the Turkish population. Turk. J. Med. Sci. 2021, 51, 1146–1152. [Google Scholar] [CrossRef]
- Matsubayashi, K.; Kawakami, K. Prevalence, incidence, comorbidities, and treatment patterns among Japanese patients with acromegaly: A descriptive study using a nationwide claims database. Endocr. J. 2020, 67, 997–1006. [Google Scholar] [CrossRef]
- Freda, P.U. The acromegaly lipodystrophy. Front. Endocrinol. 2022, 13, 933039. [Google Scholar] [CrossRef] [PubMed]
- Eroğlu, İ.; Iremli, B.G.; Idilman, I.S.; Yuce, D.; Lay, I.; Akata, D.; Erbas, T. Nonalcoholic Fatty Liver Disease, Liver Fibrosis, and Utility of Noninvasive Scores in Patients with Acromegaly. J. Clin. Endocrinol. Metab. 2023, 109, e119–e129. [Google Scholar] [CrossRef]
- Carmichael, J.D.; Broder, M.S.; Cherepanov, D.; Chang, E.; Mamelak, A.; Said, Q.; Neary, M.P.; Bonert, V. The association between biochemical control and cardiovascular risk factors in acromegaly. BMC Endocr. Disord. 2017, 17, 15. [Google Scholar] [CrossRef]
- Reid, T.J.; Jin, Z.; Shen, W.; Reyes-Vidal, C.M.; Fernandez, J.C.; Bruce, J.N.; Kostadinov, J.; Post, K.D.; Freda, P.U. IGF-1 levels across the spectrum of normal to elevated in acromegaly: Relationship to insulin sensitivity, markers of cardiovascular risk and body composition. Pituitary 2015, 18, 808–819. [Google Scholar] [CrossRef]
- Yen, Y.S.; Chen, H.S. Changes in cardiovascular risk factors in patients with acromegaly after trans-sphenoidal adenomectomy. Endocr. J. 2020, 67, 1169–1177. [Google Scholar] [CrossRef]
- Reyes-Vidal, C.; Fernandez, J.C.; Bruce, J.N.; Crisman, C.; Conwell, I.M.; Kostadinov, J.; Geer, E.B.; Post, K.D.; Freda, P.U. Prospective Study of Surgical Treatment of Acromegaly: Effects on Ghrelin, Weight, Adiposity, and Markers of CV Risk. J. Clin. Endocrinol. Metab. 2014, 99, 4124–4132. [Google Scholar] [CrossRef] [PubMed]
- Heidarpour, M.; Shafie, D.; Aminorroaya, A.; Sarrafzadegan, N.; Farajzadegan, Z.; Nouri, R.; Najimi, A.; Dimopolou, C.; Stalla, G. Effects of somatostatin analog treatment on cardiovascular parameters in patients with acromegaly: A systematic review. J. Res. Med. Sci. 2019, 24, 29. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Ferone, D.; Marzullo, P.; Lombardi, G. Systemic Complications of Acromegaly: Epidemiology, Pathogenesis, and Management. Endocr. Rev. 2004, 25, 102–152. [Google Scholar] [CrossRef]
- Pivonello, R.; Galderisi, M.; Auriemma, R.S.; De Martino, M.C.; Galdiero, M.; Ciccarelli, A.; D’Errico, A.; Kourides, I.; Burman, P.; Lombardi, G.; et al. Treatment with Growth Hormone Receptor Antagonist in Acromegaly: Effect on Cardiac Structure and Performance. J. Clin. Endocrinol. Metab. 2007, 92, 476–482. [Google Scholar] [CrossRef]
- Dimopoulou, C.; Sievers, C.; Wittchen, H.U.; Pieper, L.; Klotsche, J.; Roemmler, J.; Schopohl, J.; Schneider, H.J.; Stalla, G.K. Adverse anthropometric risk profile in biochemically controlled acromegalic patients: Comparison with an age- and gender-matched primary care population. Pituitary 2010, 13, 207–214. [Google Scholar] [CrossRef]
- Lin, E.; Wexler, T.L.; Nachtigall, L.; Tritos, N.; Swearingen, B.; Hemphill, L.; Loeffler, J.; Biller, B.M.K.; Klibanski, A.; Miller, K.K. Effects of growth hormone deficiency on body composition and biomarkers of cardiovascular risk after definitive therapy for acromegaly. Clin. Endocrinol. 2012, 77, 430–438. [Google Scholar] [CrossRef]
- Kasuki, L.; Rocha, P.d.S.; Lamback, E.B.; Gadelha, M.R. Determinants of morbidities and mortality in acromegaly. Arch. Endocrinol. Metab. 2020, 63, 630–637. [Google Scholar] [CrossRef]
- Sardu, C.; Paolisso, G.; Marfella, R. Inflammatory Related Cardiovascular Diseases: From Molecular Mechanisms to Therapeutic Targets. Curr. Pharm. Des. 2020, 26, 2565–2573. [Google Scholar] [CrossRef] [PubMed]
- Efremova, I.; Maslennikov, R.; Poluektova, E.; Vasilieva, E.; Zharikov, Y.; Suslov, A.; Letyagina, Y.; Kozlov, E.; Levshina, A.; Ivashkin, V. Epidemiology of small intestinal bacterial overgrowth. World J. Gastroenterol. 2023, 29, 3400–3421. [Google Scholar] [CrossRef]
- Resmini, E.; Parodi, A.; Savarino, V.; Greco, A.; Rebora, A.; Minuto, F.; Ferone, D. Evidence of prolonged orocecal transit time and small intestinal bacterial overgrowth in acromegalic patients. J. Clin. Endocrinol. Metab. 2007, 92, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Balinisteanu, I.; Caba, L.; Florea, A.; Popescu, R.; Florea, L.; Ungureanu, M.C.; Leustean, L.; Gorduza, E.V.; Preda, C. Unlocking the Genetic Secrets of Acromegaly: Exploring the Role of Genetics in a Rare Disorder. Curr. Issues Mol. Biol. 2024, 46, 9093–9121. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Takahashi, Y. Genetic and Epigenetic Pathogenesis of Acromegaly. Cancers 2022, 14, 3861. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Kasuki, L.; Korbonits, M. The genetic background of acromegaly. Pituitary 2017, 20, 10–21. [Google Scholar] [CrossRef]
- Bogusławska, A.; Korbonits, M. Genetics of Acromegaly and Gigantism. J. Clin. Med. 2021, 10, 1377. [Google Scholar] [CrossRef]
Parameters ( ± SD/Me (Q1-Q3)/ %) | Acromegaly Group | Control Group | Test Name | df | Test Value | p |
---|---|---|---|---|---|---|
Sex (F %/M %) | 56.60/43.40 | 69.23/30.77 | χZ2 | 1.00 | 1.17 | 0.280 |
Age (years) | 56.00 (43.00–67.00) | 60.00 (50.00–70.00) | W | 63.67 | 2.84 | 0.006 |
Height (cm) | 170.35 ± 9.80 | 165.00 ± 6.22 | Z | - | −1.25 | 0.211 |
Weight (kg) | 86.50 (75.00–100.50) | 68.00 (60.00–82.50) | Z | - | 3.12 | 0.002 |
BMI (kg/m2) | 29.75 (26.50–32.92) | 24.80 (23.34–31.80) | Z | - | 2.30 | 0.021 |
Systolic pressure (mm/Hg) | 129.70 (120.0–135.00) | 124.80 (120.00–140.00) | Z | - | −0.63 | 0.530 |
Diastolic pressure (mm/Hg) | 81.04 (70.00–85.00) | 80.00 (80.00–86.00) | Z | - | 0.47 | 0.568 |
CPP (pg/mL) | 65.11 (52.09–87.01) | 60.80 (44.76–78.41) | Z | - | 1.28 | 0.201 |
MR-proADM (ng/L) | 96.67 (68.00–149.13) | 86.01 (72.38–183.06) | Z | - | −0.01 | 0.996 |
GH (ng/mL) | 0.97 (0.45–2.53) | 0.27 (0.15–2.55) | Z | - | −1.99 | 0.047 |
IGF-I × ULN | 0.69 (0.59–1.06) | 0.49 (0.37–0.66) | Z | - | −2.61 | 0.009 |
Glucose (mg/dL) | 95.00 (87.00–106.00) | 89.00 (84.00–96.00) | Z | - | 2.08 | 0.037 |
Glucose at 120 min OGTT (mg/dL) | 96.00 (72.00–119.00) | 89.00 (84.00–96.00) | t | 49.00 | 0.95 | 0.348 |
Insulin (µIU/mL) | 6.52 (2.86–11.80) | 3.22 (6.37–14.70) | Z | - | −2.02 | 0.043 |
HOMA-IR | 0.36 (0.33–0.41) | 2.10 (1.56–3.13) | Z | - | −1.92 | 0.054 |
QUICKI | 0.36 (0.33–0.41) | 0.34 (0.32–0.36) | Z | - | 1.82 | 0.069 |
Total cholesterol (mg/dL) | 189.94 ± 41.82 | 189.08 ± 42.87 | t | 75.00 | 0.83 | 0.934 |
LDL cholesterol (mg/dL) | 115.47 ± 36.24 | 108.00 ± 38.70 | t | 77.00 | 0.15 | 0.879 |
HDL cholesterol (mg/dL) | 48.00 (46.00–60.00) | 54.50 (41.50–60.50) | Z | - | −0.62 | 0.540 |
TG (mg/dL) | 119.00 (85.00–129.00) | 122.00 (84.00–146.00) | Z | - | −1.00 | 0.320 |
Castelli 1 | 3.61 (3.08–4.21) | 3.42 (2.75–4.48) | Z | - | 0.81 | 0.420 |
Castelli 2 | 2.12 (1.78–2.64) | 1.89 (1.51–2.78) | Z | - | 0.89 | 0.380 |
API | 0.37 (0.16–0.46) | 0.35 (0.16–0.53) | Z | - | 0.05 | 0.950 |
AC | 2.16 (2.08–3.21) | 2.42 (1.75–3.48) | Z | - | 0.81 | 0.420 |
Variable | N | t(N-2) | ρ | p |
---|---|---|---|---|
Hormones vs. CPP | ||||
IGF-I × ULN vs. CPP (pg/mL) | 53 | −0.44 | −0.06 | 0.662 |
GH (ng/mL) vs. CPP (pg/mL) | 51 | 1.93 | 0.27 | 0.060 |
Hormones vs. MR-proADM | ||||
IGF-I × ULN vs. MR-proADM (ng/L) | 53 | −1.13 | −0.16 | 0.265 |
GH (ng/mL) vs. MR-proADM (ng/L) | 51 | −0.42 | −0.06 | 0.675 |
Variable | N | tau-c/ρ | Z/t(N-2) | p |
---|---|---|---|---|
Acromegaly group | ||||
Carbohydrate metabolism parameters vs. CPP | ||||
Glucose (mg/dL) vs. CPP (pg/mL) | 49 | tau-c = −0.11 | Z = −0.14 | 0.025 |
Glucose at 120 min OGTT (mg/dL) vs. CPP (pg/mL) | 37 | R = −0.05 | t(N-2) = −0.17 | 0.869 |
Insulin (μlU/mL) vs. CPP (pg/mL) | 45 | R = 0.04 | t(N-2) = 0.20 | 0.846 |
HOMA-IR vs. CPP (pg/mL) | 43 | R = −0.09 | t(N-2) = −0.41 | 0.687 |
QUICKI vs. CPP (pg/mL) | 42 | R = 0.10 | t(N-2) = 0.41 | 0.687 |
Lipid metabolism parameters vs. CPP | ||||
Total cholesterol (mg/dL) vs. CPP (pg/mL) | 53 | R = 0.27 | t(N-2) = 1.33 | 0.196 |
LDL cholesterol (mg/dL) vs. CPP (pg/mL) | 53 | tau-c = −0.10 | Z = −1.05 | 0.295 |
HDL cholesterol (mg/dL) vs. CPP (pg/mL) | 53 | tau-c = −0.10 | Z = −1.03 | 0.301 |
TG (mg/dL) vs. CPP (pg/mL) | 53 | tau-c = 0.09 | Z = 0.90 | 0.368 |
Castelli 1 vs. CPP (pg/mL) | 53 | R = 0.09 | t(N-2) = 0.44 | 0.665 |
Castelli 2 vs. CPP (pg/mL) | 53 | R = 0.06 | t(N-2) = 0.27 | 0.790 |
API vs. CPP (pg/mL) | 53 | R = 0.01 | t(N-2) = 0.04 | 0.968 |
AC vs. CPP (pg/mL) | 53 | R = 0.09 | t(N-2) = 0.44 | 0.665 |
Control group | ||||
Carbohydrate metabolism parameters vs. CPP | ||||
Glucose (mg/dL) vs. CPP (pg/mL) | 23 | tau-c = 0.12 | Z = 0.83 | 0.409 |
Glucose at 120 min OGTT (mg/dL) vs. CPP (pg/mL) | 14 | tau-c = −0.01 | Z = −0.06 | 0.956 |
Insulin (mg/dL) vs. CPP (pg/mL) | 22 | R = 0.04 | t(N-2) = 0.20 | 0.846 |
HOMA-IR vs. CPP (pg/mL) | 21 | R = −0.10 | t(N-2) = −0.41 | 0.687 |
QUICKI vs. CPP (pg/mL) | 21 | R = 0.09 | t(N-2) = 0.41 | 0.687 |
Lipid metabolism parameters vs. CPP | ||||
Total cholesterol (mg/dL) vs. CPP (pg/mL) | 24 | R = 0.27 | t(N-2) = 1.33 | 0.196 |
LDL cholesterol (mg/dL) vs. CPP (pg/mL) | 26 | R = 0.25 | t(N-2) = 1.26 | 0.221 |
HDL cholesterol (mg/dL) vs. CPP (pg/mL) | 24 | tau-c = 0.11 | Z = 0.73 | 0.468 |
TG (mg/dL) vs. CPP (pg/mL) | 25 | R = 0.07 | t(N-2) = 0.33 | 0.743 |
Castelli 1 vs. CPP (pg/mL) | 24 | R = 0.09 | t(N-2) = 0.44 | 0.665 |
Castelli 2 vs. CPP (pg/mL) | 24 | R = 0.06 | t(N-2) = 0.27 | 0.790 |
API vs. CPP (pg/mL) | 24 | R = 0.10 | t(N-2) = 0.47 | 0.642 |
AC vs. CPP (pg/mL) | 24 | R = 0.09 | t(N-2) = 0.44 | 0.665 |
Variable | N | tau-c/ρ | Z/t(N-2) | p |
---|---|---|---|---|
Acromegaly group | ||||
Carbohydrate metabolism parameters vs. MR-proADM | ||||
Glucose (mg/dL) vs. MR-proADM (ng/L) | 49 | tau-c = −0.01 | Z = −0.05 | 0.958 |
Glucose at 120 min OGTT (mg/dL) vs. MR-proADM (ng/L) | 37 | R = 0.35 | t(N-2) = 1.30 | 0.220 |
Insulin (μlU/mL) vs. MR-proADM (ng/L) | 45 | R = −0.16 | t(N-2) = −0.72 | 0.482 |
HOMA-IR vs. MR-proADM (ng/L) | 43 | R = −0.10 | t(N-2) = −0.43 | 0.674 |
QUICKI vs. MR-proADM (ng/L) | 42 | R = 0.10 | t(N-2) = 0.43 | 0.674 |
Lipid metabolism parameters vs. MR-proADM | ||||
Total cholesterol (mg/dL) vs. MR-proADM (ng/L) | 53 | R = −0.01 | t(N-2) = 0.01 | 0.998 |
LDL cholesterol (mg/dL) vs. MR-proADM (ng/L) | 53 | tau-c = 0.24 | Z = 2.56 | 0.010 |
HDL cholesterol (mg/dL) vs. MR-proADM (ng/L) | 53 | tau-c = 0.23 | Z = 2.40 | 0.017 |
TG (mg/dL) vs. MR-proADM (ng/L) | 53 | tau-c = −0.05 | Z = −0.55 | 0.579 |
Castelli 1 vs. MR-proADM (ng/L) | 53 | R = −0.01 | t(N-2) = −0.03 | 0.974 |
Castelli 2 vs. MR-proADM (ng/L) | 53 | R = −0.03 | t(N-2) = −0.14 | 0.891 |
API vs. MR-proADM (ng/L) | 53 | R = 0.10 | t(N-2) = 0.47 | 0.642 |
AC vs. MR-proADM (ng/L) | 53 | R = −0.01 | t(N-2) = −0.03 | 0.974 |
Control group | ||||
Carbohydrate metabolism parameters vs. MR-proADM | ||||
Glucose (mg/dL) vs. MR-proADM (ng/L) | 23 | tau-c = −0.04 | Z = −0.24 | 0.811 |
Glucose at 120 min OGTT (mg/dL) vs. MR-proADM (ng/L) | 14 | tau-c = 0.28 | Z = 1.38 | 0.166 |
Insulin (mg/dL) vs. MR-proADM (ng/L) | 22 | R = −0.16 | t(N-2) = −0.72 | 0.482 |
HOMA-IR vs. MR-proADM (ng/L) | 21 | R = −0.08 | t(N-2) = −0.41 | 0.687 |
QUICKI vs. MR-proADM (ng/L) | 21 | R = 0.10 | t(N-2) = 0.43 | 0.674 |
Lipid metabolism parameters vs. MR-proADM | ||||
Total cholesterol (mg/dL) vs. MR-proADM (ng/L) | 24 | R = 0.01 | t(N-2) = 0.01 | 0.998 |
LDL cholesterol (mg/dL) vs. MR-proADM (ng/L) | 26 | R = −0.08 | t(N-2) = −0.41 | 0.684 |
HDL cholesterol (mg/dL) vs. MR-proADM (ng/L) | 24 | tau-c = −0.09 | Z = −0.63 | 0.531 |
TG (mg/dL) vs. MR-proADM (ng/L) | 25 | R = 0.07 | t(N-2) = 0.33 | 0.743 |
Castelli 1 vs. MR-proADM (ng/L) | 24 | R = −0.01 | t(N-2) = −0.03 | 0.974 |
Castelli 2 vs. MR-proADM (ng/L) | 24 | R = −0.03 | t(N-2) = −0.14 | 0.891 |
API vs. MR-proADM (ng/L) | 24 | R = 0.10 | t(N-2) = 0.47 | 0.642 |
AC vs. MR-proADM (ng/L) | 24 | R = −0.01 | t(N-2) = −0.03 | 0.974 |
A (n = 53) (N/%) | CG (n = 26) (N/%) | Test Name | df | Test Value | p | |
---|---|---|---|---|---|---|
Cardiovascular complications | ||||||
Hypertension | 28 (52.83%) | 15 (65.22%) | χZ2 | 1.00 | 1.00 | 0.317 |
Arrhythmia | 8 (15.09%) | 4 (20.00%) | Fe | - | - | 0.725 |
Changes in echocardiograms | 15 (28.30%) | 3 (15.00%) | Fe | - | - | 0.363 |
Heart failure | 2 (3.77%) | 0 (0.00%) | Fe | - | - | 1.000 |
Coronary artery disease | 1 (1.89%) | 3 (15.00%) | Fe | - | - | 0.060 |
Arterial and capillary disease | 10 (18.87%) | 3 (15.00%) | Fe | - | - | 1.000 |
History of embolism | 1 (1.89%) | 0 (0.00%) | Fe | - | - | 1.000 |
History of stroke | 3 (5.66%) | 0 (0.00%) | Fe | - | - | 0.557 |
Metabolic complications | ||||||
Hyperlipidemia | 36 (67.92%) | 18 (81.82%) | χZ2 | 1.00 | 1.49 | 0.222 |
Prediabetes | 14 (26.42%) | 4 (20.00%) | Fe | - | - | 0.763 |
Diabetes | 15 (28.30%) | 5 (23.81%) | χZ2 | 1.00 | 0.15 | 0.695 |
Insulin resistance | 15 (34.88%) | 10 (47.62%) | χZ2 | 1.00 | 0.96 | 0.327 |
Atherogenic dyslipidemia | 15 (28.30%) | 8 (33.33%) | χZ2 | 1.00 | 0.20 | 0.655 |
Comorbidity | Test Name | p | |||
---|---|---|---|---|---|
Lipid Metabolism Disorders | |||||
Acromegaly activity and lipid metabolism disorders | |||||
Acromegaly activity and atherogenic dyslipidemia | F | 0.046 | |||
Acromegaly activity | Atherogenic dyslipidemia | Absence of atherogenic dyslipidemia | Total | ||
AA | 6 (40.00%) | 5 (13.16%) | 11 | ||
CoA | 4 (26.67%) | 23 (60.53%) | 27 | ||
CuA | 5 (33.33%) | 10 (26.32%) | 15 | ||
15 | 38 | 53 | |||
Pituitary tumor size and lipid metabolism disorders | |||||
Pituitary tumor size and atherogenic dyslipidemia | Fe | 0.046 | |||
Pituitary tumor size | Atherogenic dyslipidemia | Absence of atherogenic dyslipidemia | Total | ||
Microadenoma | 0 (0.00%) | 10 (26.32%) | 10 | ||
Macroadenoma | 15 (100.00%) | 28 (73.68%) | 43 | ||
15 | 38 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzelec, M.; Kubicka, E.; Kuliczkowska-Płaksej, J.; Kolačkov, K.; Janek, Ł.; Bolanowski, M.; Jawiarczyk-Przybyłowska, A. Copeptin and Mid-Regional Proadrenomedullin Are Not Useful Biomarkers of Cardiometabolic Disease in Patients with Acromegaly—A Preliminary Study. Biomedicines 2025, 13, 666. https://doi.org/10.3390/biomedicines13030666
Strzelec M, Kubicka E, Kuliczkowska-Płaksej J, Kolačkov K, Janek Ł, Bolanowski M, Jawiarczyk-Przybyłowska A. Copeptin and Mid-Regional Proadrenomedullin Are Not Useful Biomarkers of Cardiometabolic Disease in Patients with Acromegaly—A Preliminary Study. Biomedicines. 2025; 13(3):666. https://doi.org/10.3390/biomedicines13030666
Chicago/Turabian StyleStrzelec, Martyna, Eliza Kubicka, Justyna Kuliczkowska-Płaksej, Katarzyna Kolačkov, Łucja Janek, Marek Bolanowski, and Aleksandra Jawiarczyk-Przybyłowska. 2025. "Copeptin and Mid-Regional Proadrenomedullin Are Not Useful Biomarkers of Cardiometabolic Disease in Patients with Acromegaly—A Preliminary Study" Biomedicines 13, no. 3: 666. https://doi.org/10.3390/biomedicines13030666
APA StyleStrzelec, M., Kubicka, E., Kuliczkowska-Płaksej, J., Kolačkov, K., Janek, Ł., Bolanowski, M., & Jawiarczyk-Przybyłowska, A. (2025). Copeptin and Mid-Regional Proadrenomedullin Are Not Useful Biomarkers of Cardiometabolic Disease in Patients with Acromegaly—A Preliminary Study. Biomedicines, 13(3), 666. https://doi.org/10.3390/biomedicines13030666