Deep Brain Stimulation and Brain–Spine Interface for Functional Restoration in Spinal Cord Injury
Abstract
:1. Introduction
2. Methodology
3. Findings
3.1. Deep Brain Stimulation for Functional Restoration Following SCI
3.2. Deep Brain Stimulation for Functional Restoration Following SCI in Animal Studies
3.3. Deep Brain Stimulation for Functional Restoration Following SCI in Human Studies
3.4. Deep Brain Stimulation and Spinal Cord Stimulation
3.5. Brain–Spine Interface and Spinal Cord Stimulation for Functional Restoration
4. Discussion
4.1. Shortcomings of DBS and Combined Systems
4.2. Complications of DBS and Combined Systems
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SCI | spinal cord injury |
DBS | deep brain stimulation |
SCS | spinal cord stimulation |
BSI | brain–spine interface |
EES | Epidural Electrical Stimulation |
NRM | nucleus raphe magnus |
PAG | periaqueductal gray |
MLR | midbrain locomotor region |
CnF | cuneiform nucleus |
PPN | pedunculopontine nucleus |
PNS | peripheral nerve stimulation |
DBSLH | deep brain stimulation of the lateral hypothalamus |
AEs | adverse effects |
References
- Armour, B.S.; Courtney-Long, E.A.; Fox, M.H.; Fredine, H.; Cahill, A. Prevalence and Causes of Paralysis-United States, 2013. Am. J. Public Health 2016, 106, 1855–1857. [Google Scholar] [CrossRef]
- Stone, J.; Aybek, S. Functional limb weakness and paralysis. Handb. Clin. Neurol. 2016, 139, 213–228. [Google Scholar]
- Abd-Elsayed, A.; Robinson, C.L.; Shehata, P.; Koh, Y.; Patel, M.; Fiala, K.J. Neuromodulation’s Role in Functional Restoration in Paraplegic and Quadriplegic Patients. Biomedicines 2024, 12, 720. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.; Mellers, J.D.C. Psychologic treatment of functional neurologic disorders. Handb. Clin. Neurol. 2016, 139, 571–583. [Google Scholar]
- Herrington, T.M.; Cheng, J.J.; Eskandar, E.N. Mechanisms of deep brain stimulation. J. Neurophysiol. 2016, 115, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Coffey, R.J. Deep brain stimulation devices: A brief technical history and review. Artif. Organs 2009, 33, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Pycroft, L.; Stein, J.; Aziz, T. Deep brain stimulation: An overview of the history, methods, and future developments. Brain Neurosci. Adv. 2018, 2, 2398212818816017. [Google Scholar] [CrossRef]
- Miocinovic, S.; Somayajula, S.; Chitnis, S.; Vitek, J.L. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013, 70, 163–171. [Google Scholar] [CrossRef]
- Li, W.-Y.; Qu, W.-R.; Li, Y.; Wang, S.-Y.; Liu, D.-M.; Deng, L.-X.; Wang, Y. DBS in the restoration of motor functional recovery following spinal cord injury. Front. Neurol. 2024, 15, 1442281. [Google Scholar] [CrossRef]
- Hentall, I.D.; Gonzalez, M.M.C. Promotion of recovery from thoracic spinal cord contusion in rats by stimulation of medullary raphe or its midbrain input. Neurorehabilit. Neural Repair. 2011, 26, 374–384. [Google Scholar] [CrossRef]
- Bachmann, L.C.; Matis, A.; Lindau, N.T.; Felder, P.; Gullo, M.; Schwab, M.E. Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Sci. Transl. Med. 2013, 5, 208ra146. [Google Scholar] [CrossRef] [PubMed]
- Noga, B.R.; Guest, J.D. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury. Curr. Opin. Neurol. 2021, 34, 804–811. [Google Scholar] [CrossRef]
- Wang, M.; Jia, L.; Wu, X.; Sun, Z.; Xu, Z.; Kong, C.; Ma, L.; Zhao, R.; Lu, S. Deep Brain Stimulation Improves Motor Function in Rats with Spinal Cord Injury by Increasing Synaptic Plasticity. World Neurosurg. 2020, 140, e294–e303. [Google Scholar] [CrossRef]
- Hofer, A.S.; Scheuber, M.I.; Sartori, A.M.; Good, N.; Stalder, S.A.; Hammer, N.; Fricke, K.; Schalbetter, S.M.; Engmann, A.K.; Weber, R.Z.; et al. Stimulation of the cuneiform nucleus enables training and boosts recovery after spinal cord injury. Brain 2022, 145, 3681–3697. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Squair, J.W.; Aureli, V.; James, N.D.; Bole-Feysot, L.; Dewany, I.; Hankov, N.; Baud, L.; Leonhartsberger, A.; Sveistyte, K.; et al. Hypothalamic deep brain stimulation augments walking after spinal cord injury. Nat. Med. 2024, 30, 3676–3686. [Google Scholar] [CrossRef] [PubMed]
- Stieglitz, L.H.; Hofer, A.S.; Bolliger, M.; Oertel, M.F.; Filli, L.; Willi, R.; Cathomen, A.; Meyer, C.; Schubert, M.; Hubli, M.; et al. Deep brain stimulation for locomotion in incomplete human spinal cord injury (DBS-SCI): Protocol of a prospective one-armed multi-center study. BMJ Open 2021, 11, e047670. [Google Scholar] [CrossRef]
- Cukiert, A.; Cukiert, C.M.; Burattini, J.A.; Guimaraes, R.B. Combined Neuromodulation (Vagus Nerve Stimulation and Deep Brain Stimulation) in Patients With Refractory Generalized Epilepsy: An Observational Study. Neuromodulation 2023, 26, 1742–1746. [Google Scholar] [CrossRef]
- Angelin, L.G.; Carreño, M.N.P.; Otoch, J.P.; de Resende, J.C.F.; Arévalo, A.; Motta-Teixeira, L.C.; Seelaender, M.C.L.; Lepski, G. Regeneration and Plasticity Induced by Epidural Stimulation in a Rodent Model of Spinal Cord Injury. Int. J. Mol. Sci. 2024, 25, 9043. [Google Scholar] [CrossRef]
- Rowald, A.; Komi, S.; Demesmaeker, R.; Baaklini, E.; Hernandez-Charpak, S.D.; Paoles, E.; Montanaro, H.; Cassara, A.; Becce, F.; Lloyd, B.; et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 2022, 28, 260–271. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Trainer, R.; Sutor, T.W.; Goldsmith, J.A.; Alazzam, A.; Goetz, L.L.; Lester, D.; Lavis, T.D. A case study of percutaneous epidural stimulation to enable motor control in two men after spinal cord injury. Nat. Commun. 2023, 14, 2064. [Google Scholar] [CrossRef]
- Bonizzato, M.; James, N.D.; Pidpruzhnykova, G.; Pavlova, N.; Shkorbatova, P.; Baud, L.; Martinez-Gonzalez, C.; Squair, J.W.; DiGiovanna, J.; Barraud, Q.; et al. Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury. Nat. Commun. 2021, 12, 1925. [Google Scholar] [CrossRef] [PubMed]
- Levett, J.J.; Elkaim, L.M.; Niazi, F.; Weber, M.H.; Iorio-Morin, C.; Bonizzato, M.; Weil, A.G. Invasive Brain Computer Interface for Motor Restoration in Spinal Cord Injury: A Systematic Review. Neuromodulation 2024, 27, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Lorach, H.; Galvez, A.; Spagnolo, V.; Martel, F.; Karakas, S.; Intering, N.; Vat, M.; Faivre, O.; Harte, C.; Komi, S.; et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 2023, 618, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Bonizzato, M.; Pidpruzhnykova, G.; DiGiovanna, J.; Shkorbatova, P.; Pavlova, N.; Micera, S.; Courtine, G. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat. Commun. 2018, 9, 3015. [Google Scholar] [CrossRef]
- Capogrosso, M.; Milekovic, T.; Borton, D.; Wagner, F.; Moraud, E.M.; Mignardot, J.-B.; Buse, N.; Gandar, J.; Barraud, Q.; Xing, D.; et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 2016, 539, 284–288. [Google Scholar] [CrossRef]
- Samejima, S.; Khorasani, A.; Ranganathan, V.; Nakahara, J.; Tolley, N.M.; Boissenin, A.; Shalchyan, V.; Daliri, M.R.; Smith, J.R.; Moritz, C.T. Brain-Computer-Spinal Interface Restores Upper Limb Function After Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, S.G.; Hunyara, J.L.; Hamilton, N.R.; Kolodkin, A.L.; Huberman, A.D. Central nervous system regeneration. Cell 2022, 185, 77–94. [Google Scholar] [CrossRef]
- Jin, M.Y.; Weaver, T.E.; Farris, A.; Gupta, M.; Abd-Elsayed, A. Neuromodulation for Peripheral Nerve Regeneration: Systematic Review of Mechanisms and In Vivo Highlights. Biomedicines 2023, 11, 1145. [Google Scholar] [CrossRef]
- Appleby, B.S.; Duggan, P.S.; Regenberg, A.; Rabins, P.V. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years’ experience. Mov. Disord. 2007, 22, 1722–1728. [Google Scholar] [CrossRef]
- Buhmann, C.; Huckhagel, T.; Engel, K.; Gulberti, A.; Hidding, U.; Poetter-Nerger, M.; Goerendt, I.; Ludewig, P.; Braass, H.; Choe, C.-U.; et al. Adverse events in deep brain stimulation: A retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS ONE 2017, 12, e0178984. [Google Scholar] [CrossRef]
- Patel, D.M.; Walker, H.C.; Brooks, R.; Omar, N.; Ditty, B.; Guthrie, B.L. Adverse events associated with deep brain stimulation for movement disorders: Analysis of 510 consecutive cases. Neurosurgery 2015, 11 (Suppl. S2), 190–199. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, M.Z.; Domitrz, I. Stimulation-induced side effects after deep brain stimulation—A systematic review. Acta Neuropsychiatr. 2020, 32, 57–64. [Google Scholar] [CrossRef] [PubMed]
Study | Study Population | Level of Injury | Stimulation Target | Stimulation Details |
---|---|---|---|---|
DBS only | ||||
Hentall and Gonzalez 2011 [10] | Rats | T8 | Nucleus raphe magnus or periaqueductal gray | Monopolar leads Settings: 8 Hz, 1 ms, 30 µA Treatment length: 12 h daily, 5 min on/5 min off Mean of 3.4 days (range: 1–7, n = 13) 14 days (n = 19) Mean of 5.6 days (range: 4–7, n = 10) |
Bachmann et al., 2013 [11] | Rats | T9 | Mesencephalic locomotor region | Unipolar leads Settings: 50 Hz, 0.5 ms, 103.3 ± 71.0 μA Treatment length: Single stimulation session, duration NR |
Wang et al., 2020 [13] | Rats | T10 | Mesencephalic locomotor region | Unipolar leads Settings: 100 Hz, 0.5 ms, current NR Treatment length: 30 min daily for 4 weeks |
Cho et al., 2024 [15] | Humans | T1 (n = 1) C5 (n = 1) | Lateral hypothalamus | Lead type NR Settings: 20 Hz, 60 µs, 2 mA (T1 patient), 40 Hz, 60 µs, 9–10 mA (C5 patient) Treatment length: 3 h per day (DBS “on” time NR), 3 times a week for 3 weeks in a rehabilitation program + 3 months independent use (DBS “on” time NR) |
DBS + SCS | ||||
Bonizzato et al., 2021 [21] | Rats | T8/T9 | DBS: pedunculopontine nucleus (of the mesencephalic locomotor region) EES: L2 and S1 (dorsal column) | DBS: Monopolar leads Settings: 40 Hz, 200 µs, 50–250 μA EES: Monopolar leads Settings: 40 Hz, 0.2 ms, 50–350 µA Treatment length for both: 5 days per week, 30 min per day (totals weeks NR) |
BSI + SCS | ||||
Lorach et al., 2023 [23] | Human | C5/C6 | Sensorimotor cortex; T11-L1 | Settings: 40 Hz, 300 µs, 14–16 mA Treatment length: 40 sessions (1–3 h each) for 15 weeks in rehabilitation, currently in 3 year independent use phase |
Bonizzato et al., 2018 [24] | Rats | T9–T10 | Leg area of right motor cortex; L2 and S1 | Settings: 40 Hz, 0.2 ms, 100–400 µA Treatment length: 5 days per week, 30 min per day |
Capogrosso et al., 2016 [25] | Rhesus monkeys | T7–T8 | Leg area of left motor cortex; T13–L1 | Settings: 30–80 Hz, 1.5–3.9 V (other settings NR) Treatment length: 2 weeks (session details NR) |
Samejima et al., 2021 [26] | Rats | C4 | Rostral and caudal forelimb area of sensorimotor cortex; C5–C6 | Settings: 50–100 Hz, 400 μs, 300 μA–1 mA Treatment length: 5 days per week, 5–25 min per day for 3–4 weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiferaw, B.T.; Jin, M.Y.; Patel, M.; Henjum, L.J.; Abd-Elsayed, A. Deep Brain Stimulation and Brain–Spine Interface for Functional Restoration in Spinal Cord Injury. Biomedicines 2025, 13, 631. https://doi.org/10.3390/biomedicines13030631
Shiferaw BT, Jin MY, Patel M, Henjum LJ, Abd-Elsayed A. Deep Brain Stimulation and Brain–Spine Interface for Functional Restoration in Spinal Cord Injury. Biomedicines. 2025; 13(3):631. https://doi.org/10.3390/biomedicines13030631
Chicago/Turabian StyleShiferaw, Barnabas T., Max Y. Jin, Milan Patel, Lukas J. Henjum, and Alaa Abd-Elsayed. 2025. "Deep Brain Stimulation and Brain–Spine Interface for Functional Restoration in Spinal Cord Injury" Biomedicines 13, no. 3: 631. https://doi.org/10.3390/biomedicines13030631
APA StyleShiferaw, B. T., Jin, M. Y., Patel, M., Henjum, L. J., & Abd-Elsayed, A. (2025). Deep Brain Stimulation and Brain–Spine Interface for Functional Restoration in Spinal Cord Injury. Biomedicines, 13(3), 631. https://doi.org/10.3390/biomedicines13030631