Unraveling the Role of Proteinopathies in Parasitic Infections
Abstract
:1. Introduction
2. Protein Misfolding Induced by Parasites
2.1. Plasmodium Species
2.2. Toxoplasma gondii
2.3. Leishmania Species
3. Therapeutic Approaches and Opportunities
3.1. Autophagy Modulators and Proteasome Enhancers for Managing Proteostasis
3.2. Chaperones as Misfolded Protein Stabilizers
3.3. Targeting Parasite-Specific UPR Pathways to Impair Parasite Survival
3.4. Parasite-Specific UPR Pathways in Apicomplexa
3.5. Parasite-Specific UPR Pathways in Leishmania
4. Broader Implications of Parasite-Induced Proteinopathies
4.1. Plasmodium Species
4.2. Toxoplasma gondii
4.3. Leishmania Species
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Battistuzzi, F.U.; Schneider, K.A.; Spencer, M.K.; Fisher, D.; Chaudhry, S.; Escalante, A.A. Profiles of low complexity regions in Apicomplexa. BMC Evol. Biol. 2016, 16, 47. [Google Scholar] [CrossRef]
- Muralidharan, V.; Goldberg, D.E. Asparagine repeats in Plasmodium falciparum proteins: Good for nothing? PLoS Pathog. 2013, 9, e1003488. [Google Scholar] [CrossRef]
- Acharya, P.; Chaubey, S.; Grover, M.; Tatu, U. An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS ONE 2012, 7, e44605. [Google Scholar] [CrossRef]
- Kulzer, S.; Rug, M.; Brinkmann, K.; Cannon, P.; Cowman, A.; Lingelbach, K.; Blatch, G.L.; Maier, A.G.; Przyborski, J.M. Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol. 2010, 12, 1398–1420. [Google Scholar] [CrossRef]
- Pei, X.; Guo, X.; Coppel, R.; Bhattacharjee, S.; Haldar, K.; Gratzer, W.; Mohandas, N.; An, X. The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 2007, 110, 1036–1042. [Google Scholar] [CrossRef]
- Banumathy, G.; Singh, V.; Tatu, U. Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J. Biol. Chem. 2002, 277, 3902–3912. [Google Scholar] [CrossRef]
- Shonhai, A.; Maier, A.G.; Przyborski, J.M.; Blatch, G.L. Intracellular protozoan parasites of humans: The role of molecular chaperones in development and pathogenesis. Protein Pept. Lett. 2011, 18, 143–157. [Google Scholar] [CrossRef]
- Loureiro, J.; Ploegh, H.L. Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv. Immunol. 2006, 92, 225–305. [Google Scholar]
- Frénal, K.; Dubremetz, J.-F.; Lebrun, M.; Soldati-Favre, D. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 2017, 15, 645–660. [Google Scholar] [CrossRef]
- Dobbin, C.A.; Smith, N.C.; Johnson, A.M. Heat shock protein 70 is a potential virulence factor in murine Toxoplasma infection via immunomodulation of host NF-kB and nitric oxide. J. Immunol. 2002, 169, 958–965. [Google Scholar] [CrossRef]
- Miranda, K.; de Souza, W.; Plattner, H.; Hentschel, J.; Kawazoe, U.; Fang, J.; Moreno, S.N. Acidocalcisomes in Apicomplexan parasites. Exp. Parasitol. 2008, 118, 2–9. [Google Scholar] [CrossRef]
- Morales, M.A.; Watanabe, R.; Dacher, M.; Charley, P.; Forida, J.O.; Scott, D.A.; Beverley, S.M.; Ommen, G.; Clos, J.; Hem, S. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc. Natl. Acad. Sci. USA 2010, 107, 8381–8386. [Google Scholar] [CrossRef]
- Silverman, J.M.; Clos, J.; de’Oliveira, C.C.; Shirvani, O.; Fang, Y.; Wang, C.; Foster, L.J.; Reiner, N.E. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J. Cell Sci. 2010, 123, 842–852. [Google Scholar] [CrossRef]
- Requena, J.M.; Montalvo, A.M.; Fraga, J. Molecular chaperones of Leishmania: Central players in many stress-related and -unrelated physiological processes. Biomed. Res. Int. 2015, 2015, 301326. [Google Scholar] [CrossRef]
- Besteiro, S.; Williams, R.A.; Morrison, L.S.; Coombs, G.H.; Mottram, J.C. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J. Biol. Chem. 2006, 281, 11384–11396. [Google Scholar] [CrossRef]
- Li, F.-J.; He, C.Y. Acidocalcisome is required for autophagy in Trypanosoma brucei. Autophagy 2014, 10, 1978–1988. [Google Scholar] [CrossRef]
- Hammond, C.M.; Stromme, C.B.; Huang, H.; Patel, D.J.; Groth, A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 2017, 18, 141–158. [Google Scholar] [CrossRef]
- Hübel, A.; Krobitsch, S.; Höranf, A.; Clos, J. Leishmania major Hsp100 is required chiefly in the mammalian stage of the parasite. Mol. Cell Biol. 1997, 17, 5987–5995. [Google Scholar] [CrossRef]
- Kaur, P.; Garg, M.; Hombach-Barrigah, A.; Clos, J.; Goyal, N. MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Sci. Rep. 2017, 7, 10202. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.; Tse, E.; Castro, H.; Makepeace, K.A.; Meinen, B.A.; Borchers, C.H.; Poole, L.B.; Bardwell, J.C.; Tomás, A.M.; Southworth, D.R. Chaperone activation and client binding of a 2-cysteine peroxiredoxin. Nat. Commun. 2019, 10, 659. [Google Scholar] [CrossRef]
- Bridgford, J.L.; Xie, S.C.; Cobbold, S.A.; Pasaje CF, A.; Herrmann, S.; Yang, T.; Gillett, D.L.; Dick, L.R.; Ralph, S.A.; Dogovski, C.; et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun. 2018, 9, 3801. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.N.; Chan, G.T.; Zhu, M.; Comyn, S.A.; Persaud, A.; Deshaies, R.J.; Rotin, D.; Gsponer, J.; Mayor, T. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat. Cell Biol. 2014, 16, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Makumire, S.; Dongola, T.H.; Chakafana, G.; Tshikonwane, L.; Chauke, C.T.; Maharaj, T.; Zininga, T.; Shonhai, A. Mutation of GGMP Repeat Segments of Plasmodium falciparum Hsp70-1 Compromises Chaperone Function and Hop Co-Chaperone Binding. Int. J. Mol. Sci. 2021, 22, 2226. [Google Scholar] [CrossRef]
- Shonhai, A. The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. Adv. Exp. Med. Biol. 2021, 1340, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Voth, W.; Jakob, U. Stress-activated chaperones: A first line of defense. Trends Biochem. Sci. 2017, 42, 899–913. [Google Scholar] [CrossRef]
- Walczak, M.; Ganesan, S.M.; Niles, J.C.; Yeh, E. Atg8 is essential specifically for an autophagy-independent function in apicoplast biogenesis in blood-stage malaria parasites. MBio 2018, 9, e02021-17. [Google Scholar] [CrossRef]
- Walker, D.M.; Ogbumu, S.; Gupta, G.; McGuire, B.S.; Drew, M.E.; Satoskar, A.R. Mechanisms of cellular invasion by intracellular parasites. Cell Mol. Life Sci. 2014, 71, 1245–1263. [Google Scholar] [CrossRef]
- Walochnik, J.; Auer, H.; Joachim, A. Parasitic infections in humans and animals. In Comparative Medicine; Springer: Berlin/Heidelberg, Germany, 2017; pp. 177–189. [Google Scholar]
- Wang, T.; Bisson, W.H.; Mäser, P.; Scapozza, L.; Picard, D. Differences in conformational dynamics between Plasmodium falciparum and human Hsp90 orthologues enable the structure-based discovery of pathogen-selective inhibitors. J. Med. Chem. 2014, 57, 2524–2535. [Google Scholar] [CrossRef]
- WHO. A Global Brief on Vector-Borne Diseases; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Yebenes, H.; Mesa, P.; Munoz, I.G.; Montoya, G.; Valpuesta, J.M. Chaperonins: Two rings for folding. Trends Biochem. Sci. 2011, 36, 424–432. [Google Scholar] [CrossRef]
- Zininga, T.; Shonhai, A. Small molecule inhibitors targeting the heat shock protein system of human obligate protozoan parasites. Int. J. Mol. Sci. 2019, 20, 5930. [Google Scholar] [CrossRef]
- Gitau, G.W.; Mandal, P.; Blatch, G.L.; Przyborski, J.; Shonhai, A. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 2012, 17, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Batinovic, S.; McHugh, E.; Chisholm, S.A.; Matthews, K.; Liu, B.; Dumont, L.; Charnaud, S.C.; Schneider, M.P.; Gilson, P.R.; de Koning-Ward, T.F.; et al. An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes. Nat. Commun. 2017, 8, 16044. [Google Scholar] [CrossRef]
- Galluzzi, L.; Diotallevi, A.; Magnani, M. Endoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites. Future Sci. OA 2017, 3, FSO198. [Google Scholar] [CrossRef] [PubMed]
- Comyn, S.A.; Young, B.P.; Loewen, C.J.; Mayor, T. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility. PLoS Genet. 2016, 12, e1006184. [Google Scholar] [CrossRef]
- VerPlank JJ, S.; Gawron, J.; Silvestri, N.J.; Feltri, M.L.; Wrabetz, L.; Goldberg, A.L. Raising cGMP restores proteasome function and myelination in mice with a proteotoxic neuropathy. Brain J. Neurol. 2022, 145, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim. Biophys. Acta 2015, 1852, 188–194. [Google Scholar] [CrossRef]
- Jones, C.L.; Njomen, E.; Sjögren, B.; Dexheimer, T.S.; Tepe, J.J. Small Molecule Enhancement of 20S Proteasome Activity Targets Intrinsically Disordered Proteins. ACS Chem. Biol. 2017, 12, 2240–2247. [Google Scholar] [CrossRef]
- Njomen, E.; Tepe, J.J. Proteasome Activation as a New Therapeutic Approach to Target Proteotoxic Disorders. J. Med. Chem. 2019, 62, 6469–6481. [Google Scholar] [CrossRef]
- Tedesco, B.; Vendredy, L.; Adriaenssens, E.; Cozzi, M.; Asselbergh, B.; Crippa, V.; Cristofani, R.; Rusmini, P.; Ferrari, V.; Casarotto, E.; et al. HSPB8 frameshift mutant aggregates weaken chaperone-assisted selective autophagy in neuromyopathies. Autophagy 2023, 19, 2217–2239. [Google Scholar] [CrossRef]
- Angcajas, A.B.; Hirai, N.; Kaneshiro, K.; Karim, M.R.; Horii, Y.; Kubota, M.; Fujimura, S.; Kadowaki, M. Diversity of amino acid signaling pathways on autophagy regulation: A novel pathway for arginine. Biochem. Biophys. Res. Commun. 2014, 446, 8–14. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Selvaratnam, T.; Lee JC, T.; Chao, Y.X.; Tan, E.K. Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson’s disease. Transl. Neurodegener. 2019, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Charmpilas, N.; Kyriakakis, E.; Tavernarakis, N. Small heat shock proteins in ageing and age-related diseases. Cell Stress Chaperones 2017, 22, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Triandafillou, C.G.; Katanski, C.D.; Dinner, A.R.; Drummond, D.A. Transient intracellular acidification regulates the core transcriptional heat shock response. eLife 2020, 9, e54880. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. [Google Scholar] [CrossRef]
- Ryu, S.W.; Stewart, R.; Pectol, D.C.; Ender, N.A.; Wimalarathne, O.; Lee, J.H.; Zanini, C.P.; Harvey, A.; Huibregtse, J.M.; Mueller, P.; et al. Proteome-wide identification of HSP70/HSC70 chaperone clients in human cells. PLoS Biol. 2020, 18, e3000606. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Takahashi, T.; Xie, Y.; Minami, R.; Yanagi, Y.; Hayashishita, M.; Suzuki, R.; Yokota, N.; Shimada, M.; Mizushima, T.; et al. A conserved island of BAG6/Scythe is related to ubiquitin domains and participates in short hydrophobicity recognition. FEBS J. 2016, 283, 662–677. [Google Scholar] [CrossRef]
- Ganji, R.; Mukkavalli, S.; Somanji, F.; Raman, M. The VCP-UBXN1 Complex Mediates Triage of Ubiquitylated Cytosolic Proteins Bound to the BAG6 Complex. Mol. Cell. Biol. 2018, 38, e00154-18. [Google Scholar] [CrossRef]
- Gaur, D.; Singh, P.; Guleria, J.; Gupta, A.; Kaur, S.; Sharma, D. The Yeast Hsp70 Cochaperone Ydj1 Regulates Functional Distinction of Ssa Hsp70s in the Hsp90 Chaperoning Pathway. Genetics 2020, 215, 683–698. [Google Scholar] [CrossRef]
- Rodríguez-González, C.; Lin, S.; Arkan, S.; Hansen, C. Co-chaperones DNAJA1 and DNAJB6 are critical for regulation of polyglutamine aggregation. Sci. Rep. 2020, 10, 8130. [Google Scholar] [CrossRef]
- Ruan, L.; Zhou, C.; Jin, E.; Kucharavy, A.; Zhang, Y.; Wen, Z.; Florens, L.; Li, R. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 2017, 543, 443–446. [Google Scholar] [CrossRef]
- Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]
- Pareek, G.; Krishnamoorthy, V.; D’Silva, P. Molecular insights revealing interaction of Tim23 and channel subunits of presequence translocase. Mol. Cell. Biol. 2013, 33, 4641–4659. [Google Scholar] [CrossRef]
- Daniyan, M.O.; Przyborski, J.M.; Shonhai, A. Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence. Biomolecules 2019, 9, 295. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.C.; Gillett, D.L.; Spillman, N.J.; Tsu, C.; Luth, M.R.; Ottilie, S.; Duffy, S.; Gould, A.E.; Hales, P.; Seager, B.A.; et al. Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome. J. Med. Chem. 2018, 61, 10053–10066. [Google Scholar] [CrossRef] [PubMed]
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef]
- McCleese, J.K.; Bear, M.D.; Fossey, S.L.; Mihalek, R.M.; Foley, K.P.; Ying, W.; Barsoum, J.; London, C.A. The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. Int. J. Cancer 2009, 125, 2792–2801. [Google Scholar] [CrossRef]
- Jhaveri, K.; Taldone, T.; Modi, S.; Chiosis, G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 2012, 1823, 742–755. [Google Scholar] [CrossRef]
- Smith, D.M.; Chang, S.C.; Park, S.; Finley, D.; Cheng, Y.; Goldberg, A.L. Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27, 731–744. [Google Scholar] [CrossRef]
- Finley, D.; Chen, X.; Walters, K.J. Gates, Channels, and Switches: Elements of the Proteasome Machine. Trends Biochem. Sci. 2016, 41, 77–93. [Google Scholar] [CrossRef]
- Alberti, S.; Böhse, K.; Arndt, V.; Schmitz, A.; Höhfeld, J. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol. Biol. Cell 2004, 15, 4003–4010. [Google Scholar] [CrossRef]
- Esser, C.; Alberti, S.; Höhfeld, J. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta 2004, 1695, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Soda, M.; Hatakeyama, S.; Akagi, T.; Hashikawa, T.; Nakayama, K.I.; Takahashi, R. CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol. Cell 2002, 10, 55–67. [Google Scholar] [CrossRef]
- Nandi, D.; Tahiliani, P.; Kumar, A.; Chandu, D. The ubiquitin-proteasome system. J. Biosci. 2006, 31, 137–155. [Google Scholar] [CrossRef]
- Hamilton, M.J.; Lee, M.; Le Roch, K.G. The ubiquitin system: An essential component to unlocking the secrets of malaria parasite biology. Mol. Biosyst. 2014, 10, 715–723. [Google Scholar] [CrossRef]
- Harbut, M.B.; Patel, B.A.; Yeung, B.K.; McNamara, C.W.; Bright, A.T.; Ballard, J.; Supek, F.; Golde, T.E.; Winzeler, E.A.; Diagana, T.T.; et al. Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc. Natl. Acad. Sci. USA 2012, 109, 21486–21491. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.; Schach, T.; Przyborski, J.M. HSP70 and their co-chaperones in the human malaria parasite P. falciparum and their potential as drug targets. Front. Mol. Biosci. 2022, 9, 968248. [Google Scholar] [CrossRef]
- Akide-Ndunge, O.B.; Tambini, E.; Giribaldi, G.; McMillan, P.J.; Müller, S.; Arese, P.; Turrini, F. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar. J. 2009, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gallego-Delgado, J.; Fernandez-Arias, C.; Waters, N.C.; Rodriguez, A.; Tsuji, M.; Wek, R.C.; Nussenzweig, V.; Sullivan, W.J., Jr. Inhibiting the Plasmodium eIF2α Kinase PK4 Prevents Artemisinin-Induced Latency. Cell Host Microbe 2017, 22, 766–776.e4. [Google Scholar] [CrossRef]
- Bennink, S.; Pradel, G. The molecular machinery of translational control in malaria parasites. Mol. Microbiol. 2019, 112, 1658–1673. [Google Scholar] [CrossRef]
- Barenco PV, C.; Lourenço, E.V.; Cunha-Júnior, J.P.; Almeida, K.C.; Roque-Barreira, M.C.; Silva DA, O.; Araújo EC, B.; Coutinho, L.B.; Oliveira, M.C.; Mineo, T.W.P.; et al. Toxoplasma gondii 70 kDa heat shock protein: Systemic detection is associated with the death of the parasites by the immune response and its increased expression in the brain is associated with parasite replication. PLoS ONE 2014, 9, e96527. [Google Scholar] [CrossRef]
- Zhang, M.; Joyce, B.R.; Sullivan, W.J., Jr.; Nussenzweig, V. Translational control in Plasmodium and toxoplasma parasites. Eukaryot. Cell 2013, 12, 161–167. [Google Scholar] [CrossRef]
- Ponts, N.; Yang, J.; Chung, D.W.; Prudhomme, J.; Girke, T.; Horrocks, P.; Le Roch, K.G. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: A potential strategy to interfere with parasite virulence. PLoS ONE 2008, 3, e2386. [Google Scholar] [CrossRef] [PubMed]
- Ponder, E.L.; Bogyo, M. Ubiquitin-like modifiers and their deconjugating enzymes in medically important parasitic protozoa. Eukaryot. Cell 2007, 6, 1943–1952. [Google Scholar] [CrossRef]
- Augusto, L.; Martynowicz, J.; Amin, P.H.; Alakhras, N.S.; Kaplan, M.H.; Wek, R.C.; Sullivan, W.J., Jr. Toxoplasma gondii Co-opts the Unfolded Protein Response to Enhance Migration and Dissemination of Infected Host Cells. mBio 2020, 11, e00915-20. [Google Scholar] [CrossRef] [PubMed]
- Obed, C.; Wu, M.; Chen, Y.; An, R.; Cai, H.; Luo, Q.; Yu, L.; Wang, J.; Liu, F.; Shen, J.; et al. Toxoplasma gondii dense granule protein 3 promotes endoplasmic reticulum stress-induced apoptosis by activating the PERK pathway. Parasites Vectors 2022, 15, 276. [Google Scholar] [CrossRef]
- Dias-Teixeira, K.L.; Pereira, R.M.; Silva, J.S.; Fasel, N.; Aktas, B.H.; Lopes, U.G. Unveiling the Role of the Integrated Endoplasmic Reticulum Stress Response in Leishmania Infection—Future Perspectives. Front. Immunol. 2016, 7, 283. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Diotallevi, A.; De Santi, M.; Ceccarelli, M.; Vitale, F.; Brandi, G.; Magnani, M. Leishmania infantum Induces Mild Unfolded Protein Response in Infected Macrophages. PLoS ONE 2016, 11, e0168339. [Google Scholar] [CrossRef]
- Dias-Teixeira, K.L.; Calegari-Silva, T.C.; dos Santos, G.R.; Vitorino Dos Santos, J.; Lima, C.; Medina, J.M.; Aktas, B.H.; Lopes, U.G. The integrated endoplasmic reticulum stress response in Leishmania amazonensis macrophage infection: The role of X-box binding protein 1 transcription factor. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016, 30, 1557–1565. [Google Scholar] [CrossRef]
- Dias-Teixeira, K.L.; Calegari-Silva, T.C.; Medina, J.M.; Vivarini, Á.C.; Cavalcanti, Á.; Teteo, N.; Santana, A.K.M.; Real, F.; Gomes, C.M.; Pereira, R.M.S.; et al. Emerging Role for the PERK/eIF2α/ATF4 in Human Cutaneous Leishmaniasis. Sci. Rep. 2017, 7, 17074. [Google Scholar] [CrossRef]
- Vivarini, A.d.e.C.; Pereira, R.d.e.M.; Teixeira, K.L.; Calegari-Silva, T.C.; Bellio, M.; Laurenti, M.D.; Corbett, C.E.; Gomes, C.M.; Soares, R.P.; Silva, A.M.; et al. Human cutaneous leishmaniasis: Interferon-dependent expression of double-stranded RNA-dependent protein kinase (PKR) via TLR2. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011, 25, 4162–4173. [Google Scholar] [CrossRef]
- Abhishek, K.; Das, S.; Kumar, A.; Kumar, A.; Kumar, V.; Saini, S.; Mandal, A.; Verma, S.; Kumar, M.; Das, P. Leishmania donovani induced Unfolded Protein Response delays host cell apoptosis in PERK dependent manner. PLoS Negl. Trop. Dis. 2018, 12, e0006646. [Google Scholar] [CrossRef] [PubMed]
- Cabantous, S.; Doumbo, O.; Poudiougou, B.; Louis, L.; Barry, A.; Oumar, A.A.; Traore, A.; Marquet, S.; Desselin, A. Gene Expression Analysis Reveals Genes Common to Cerebral Malaria and Neurodegenerative Disorders. J. Infect. Dis. 2017, 216, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Pu, J. Alpha-synuclein in Parkinson’s disease: From pathogenetic dysfunction to potential clinical application. Park. Dis. 2016, 2016, 1720621. [Google Scholar] [CrossRef] [PubMed]
- Roodveldt, C.; Bertoncini, C.W.; Andersson, A.; van der Goot, F.A.; Dobson, C.M. Chaperone proteostasis in Parkinson’s disease: Stabilization of the Hsp70/alpha-synuclein complex by Hip. EMBO J. 2009, 28, 3758–3770. [Google Scholar] [CrossRef]
- Gadhave, K.; Bolshette, N.; Ahire, A.; Pardeshi, R.; Thakur, K.; Trandafir, C.; Istrate, A.; Ahmed, S.; Lahkar, M.; Muresanu, D.F. The ubiquitin proteasomal system: A potential target for the management of Alzheimer’s disease. J. Cell. Mol. Med. 2016, 20, 1392–1407. [Google Scholar] [CrossRef]
- Castellanos-Rubio, A.; Santin, I.; Trastorza, I.; Castano, L.; Carlos Vitoria, J.; Ramon Bilbao, J. A regulatory single nucleotide polymorphism in the ubiquitin D gene associated with celiac disease. Hum. Immunol. 2010, 71, 96–99. [Google Scholar] [CrossRef]
- Rejdak, K.; Kuhle, J.; Rüegg, S.; Lindberg, R.L.; Petzold, A.; Sulejczak, D. Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia 2012, 53, 922–927. [Google Scholar] [CrossRef]
- Yamagishi, J.; Natori, A.; Tolba, M.E.; Mongan, A.E.; Sugimoto, C.; Katayama, T.; Kawashima, S.; Makalowski, W.; Maeda, R.; Eshita, Y.; et al. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum. Genome Res. 2014, 24, 1433–1444. [Google Scholar] [CrossRef]
- Nakayama, K.; Qi, J.; Ronai, Z. The ubiquitin ligase Siah2 and the hypoxia response. Mol. Cancer Res. 2009, 7, 443–451. [Google Scholar] [CrossRef]
- Matsuda, S.; Kitagishi, Y.; Kobayashi, M. Function and characteristics of PINK1 in mitochondria. Oxid. Med. Cell. Longev. 2013, 2013, 601587. [Google Scholar] [CrossRef]
- Cunningham, C. Microglia and neurodegeneration: The role of systemic inflammation. Glia 2013, 61, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.; Allen, N.J.; Vázquez, L.E.; Howell, G.R.; Christopherson, K.S.; Nouri, N.; Micheva, K.D.; Mehalow, A.K.; Huberman, A.D.; Stafford, B.; et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007, 131, 1164–1178. [Google Scholar] [CrossRef]
- Evans, A.K.; Strassmann, P.S.; Lee, I.P.; Sapolsky, R.M. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats. Brain Behav. Immun. 2014, 37, 122–133. [Google Scholar] [CrossRef]
- Braver, T.S.; Barch, D.M.; Gray, J.R.; Molfese, D.L.; Snyder, A. Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cereb. Cortex 2001, 11, 825–836. [Google Scholar] [CrossRef]
- Stephan, A.H.; Barres, B.A.; Stevens, B. The complement system: An unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 2012, 35, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Michmizos, K.; Tommerdahl, M.; Ganesan, S.; Kitzbichler, M.G.; Zetino, M.; Garel, K.L.; Herbert, M.R.; Hämäläinen, M.S.; Kenet, T. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale. Brain 2015, 138, 1394–1409. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.K.; Jiang, Y.; Chen, S.; Xia, Y.; Maciejewski, D.; McNamara, R.K.; Streit, W.J.; Salafranca, M.N.; Adhikari, S.; Thompson, D.A.; et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA 1998, 95, 10896–10901. [Google Scholar] [CrossRef]
- Schmued, L.C.; Albertson, C.; Slikker, W., Jr. Fluoro-Jade: A novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997, 751, 37–46. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Gressitt, K.L.; He, H.; Kannan, G.; Schultz, T.L.; Sverchkova, N.; Carruthers, V.B.; Pletnikov, M.V.; Volken, R.H.; et al. Cerebral complement C1q activation in chronic Toxoplasma infection. Brain Behav. Immun. 2016, 58, 52–56. [Google Scholar] [CrossRef]
- David, C.N.; Frias, E.S.; Szu, J.J.; Vieira, P.A.; Hubbard, J.A.; Lovelace, J.; Michael, M.; Worth, D.; McGovern, K.E.; Ethell, I.M.; et al. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite Toxoplasma gondii. PLoS Pathog. 2016, 12, e1005643. [Google Scholar] [CrossRef]
- Brooks, J.M.; Carrillo, G.L.; Su, J.; Lindsay, D.S.; Fox, M.A.; Blader, I.J. Toxoplasma gondii infections alter GABAergic synapses and signaling in the central nervous system. mBio 2015, 6, e01428-15. [Google Scholar] [CrossRef]
- Bowie, D. Ionotropic glutamate receptors & CNS disorders. CNS Neurol. Disord. Drug Targets 2008, 7, 129–143. [Google Scholar]
- Hermes, G.; Ajioka, J.W.; Kelly, K.A.; Mui, E.; Roberts, F.; Kasza, K.; Mayr, T.; Kirisits, M.J.; Wollmann, R.; Ferguson, D.J.; et al. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J. Neuroinflam. 2008, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Baden, P.; Deleidi, M. Mitochondrial antigen presentation: A vacuolar path to autoimmunity in Parkinson’s Disease. Trends Immunol. 2016, 37, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Majcher, V.; Goode, A.; James, V.; Layfield, R. Autophagy receptor defects and ALS-FTLD. Mol. Cell Neurosci. 2015, 66, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A.; Kwon, Y.T. Protein quality control by molecular chaperones in neurodegeneration. Front. Neurosci. 2017, 11, 185. [Google Scholar] [CrossRef]
- Fava, V.M.; Manry, J.; Cobat, A.; Orlova, M.; Van Thuc, N.; Ba, N.N.; Thai, V.H.; Abel, L.; Alcaïs, A.; Schurr, E. A missense LRRK2 variant is a risk factor for excessive inflammatory responses in leprosy. PLoS Negl. Trop. Dis. 2016, 10, e0004412. [Google Scholar] [CrossRef]
- Olichney, J.M.; Chan, S.; Wong, L.M.; Schneider, A.; Seritan, A.; Niese, A.; Yang, J.-C.; Laird, K.; Teichholtz, S.; Khan, S.; et al. Mutant LRRK2 mediates peripheral and central immune responses leading to neurodegeneration in vivo. Brain 2018, 141, 1753–1769. [Google Scholar] [CrossRef]
- Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar]
- Zhong, Z.; Umemura, A.; Sanchez-Lopez, E.; Liang, S.; Shalapour, S.; Wong, J.; He, F.; Boassa, D.; Perkins, G.; Ali, S.R.; et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016, 164, 896–910. [Google Scholar] [CrossRef]
- Carneiro, F.R.O.; Lepelley, A.; Seeley, J.J.; Hayden, M.S.; Ghosh, S. An essential role for ECSTI in mitochondrial complex I assembly and mitophagy in macrophages. Cell Rep. 2018, 22, 654–666. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, J.; Ran, Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 2019, 16, 3–17. [Google Scholar] [CrossRef]
- Springer, W.; Kahle, P.J. Regulation of PINK1-parkin-mediated mitophagy. Autophagy 2011, 7, 266–278. [Google Scholar] [CrossRef]
- Vives-Bauza, C.; Przedborski, S. Mitophagy: The latest problem for Parkinson’s disease. Trends Mol. Med. 2011, 17, 158–165. [Google Scholar] [CrossRef]
- van Eden, W.; Hanema, M.; Ludwig, I.; van Kooten, P.; van der Zee, R.; Broere, F. The enigma of heat shock proteins in immune tolerance. Front. Immunol. 2017, 8, 1599. [Google Scholar] [CrossRef]
- Quintana, F.J.; Cohen, I.R. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J. Immunol. 2005, 175, 2777–2782. [Google Scholar] [CrossRef]
- Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 2017, 546, 656–661. [Google Scholar] [CrossRef]
- Garretti, F.; Agallin, D.; Lindestam Arlehamn, C.S.; Sette, A.; Sulzer, D. Autoimmunity in Parkinson’s Disease: The role of α-synuclein-specific T cells. Front. Immunol. 2019, 10, 303. [Google Scholar] [CrossRef]
- Bartos, A.; Fialová, L.; Švarcová, J. Lower serum antibodies against tau protein and heavy neurofilament in Alzheimer’s Disease. J. Alzheimers Dis. 2018, 64, 751–760. [Google Scholar] [CrossRef]
Parasite | Key Mechanisms of Protein Misfolding | Clinical Outcomes | Therapeutic Targets |
---|---|---|---|
Plasmodium spp. | - Export of virulence factors (e.g., PfEMP1) [21] - Induction of oxidative stress [22] - Disruption of calcium homeostasis [9,11] | Cerebral malaria, placental malaria | - HSP70 inhibitors - Proteasome enhancers - Autophagy modulators |
Toxoplasma gondii | - Secretion of dense granule proteins (GRAs) [9] - Manipulation of host UPR and autophagy [23,24] - Disruption of calcium homeostasis [9,11] | Neurodegeneration, chronic toxoplasmosis | - TgHSP70 inhibitors - PERK-like kinase inhibitors - Autophagy modulation |
Leishmania spp. | - Secretion of exosomes containing HSP70/90 [3] - Induction of oxidative stress [13] - Disruption of autophagy [15] | Cutaneous, mucocutaneous, visceral leishmaniasis | - HSP70 inhibitors - PERK/elF2α pathway inhibitors - Proteasome inhibitors |
Therapeutic Agent | Target | Mechanism of Action | Potential Applications |
---|---|---|---|
Violacein | HSP70/90 in Plasmodium | Disrupts parasite proteostasis, leading to protein aggregation and parasite death | Malaria [21,32,33] |
PK4 Inhibitors | PK4 kinase in Plasmodium | Inhibits parasite-specific UPR, reducing parasite survival under stress | Malaria [34] |
TgHSP70 Inhibitors | TgHSP70 in Toxoplasma | Disrupts protein folding and ERAD, impairing parasite replication | Toxoplasmosis [10,35] |
Proteasome Inhibitors | Leishmania-specific UPS components | Induces proteotoxic stress, leading to parasite death | Leishmaniasis [21,36] |
Autophagy Enhancers | Host autophagy pathways | Enhances clearance of misfolded proteins, reducing parasite burden | Multiple parasitic infections and neurodegenerative diseases [16,26,31] |
Biomarker | Role in Parasite Infections | Role in Neurodegenerative Diseases |
---|---|---|
α-Synuclein (SNCA) | Upregulated in cerebral malaria, contributing to neuronal damage [80] | Aggregates in Parkinson’s disease, leading to neuronal dysfunction [81] |
HSP70 (HSPA1A) | Overexpressed in response to protein misfolding in malaria and toxoplasmosis [10,58] | Protects against protein aggregation in Alzheimer’s and Parkinson’s [89] |
PINK1 | Upregulated in cerebral malaria, indicating mitochondrial stress [93] | Mutations linked to mitochondrial dysfunction in Parkinson’s disease [94] |
CX3CL1 (Fractalkine) | Overexpressed in Toxoplasma-induced neurodegeneration, mediating neuron-microglia communication [95] | Implicated in neuroinflammation in Alzheimer’s disease [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurła, M.; Pikor, D.; Banaszek-Hurła, N.; Drelichowska, A.; Dorszewska, J.; Kozubski, W.; Kacprzak, E.; Paul, M. Unraveling the Role of Proteinopathies in Parasitic Infections. Biomedicines 2025, 13, 610. https://doi.org/10.3390/biomedicines13030610
Hurła M, Pikor D, Banaszek-Hurła N, Drelichowska A, Dorszewska J, Kozubski W, Kacprzak E, Paul M. Unraveling the Role of Proteinopathies in Parasitic Infections. Biomedicines. 2025; 13(3):610. https://doi.org/10.3390/biomedicines13030610
Chicago/Turabian StyleHurła, Mikołaj, Damian Pikor, Natalia Banaszek-Hurła, Alicja Drelichowska, Jolanta Dorszewska, Wojciech Kozubski, Elżbieta Kacprzak, and Małgorzata Paul. 2025. "Unraveling the Role of Proteinopathies in Parasitic Infections" Biomedicines 13, no. 3: 610. https://doi.org/10.3390/biomedicines13030610
APA StyleHurła, M., Pikor, D., Banaszek-Hurła, N., Drelichowska, A., Dorszewska, J., Kozubski, W., Kacprzak, E., & Paul, M. (2025). Unraveling the Role of Proteinopathies in Parasitic Infections. Biomedicines, 13(3), 610. https://doi.org/10.3390/biomedicines13030610