The Plasma Membrane P-Type ATPase CtpA Is Required for Mycobacterium tuberculosis Virulence in Copper-Activated Macrophages in a Mouse Model of Progressive Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. MH-S Cells Culture
2.3. Infection of MH-S Cells with Mtb Strains
2.4. Cytokine Production in Mtb-Infected MH-S Cells
2.5. Determination of the Nitric Oxide (NO) Concentration Produced by Infected MH-S
2.6. RNA Extraction and cDNA Synthesis from Mtb-Infected Cells
2.7. RT-qPCR in Mtb-Infected Macrophages
2.8. Quantification of Reactive Oxygen Species (ROS) Produced in Mtb-Infected Macrophages
2.9. Progressive Pulmonary TB Model of BALB/c Mice
2.10. Statistical Analysis
3. Results
3.1. The ctpA Deletion Does Not Alter the Mtb Growth Kinetics in Standard Culture Conditions
3.2. ctpA Is Required for Intracellular Proliferation of Mtb in Copper-Activated Alveolar Macrophages
3.3. Copper Modulates the Proinflammatory Response of MtbΔctpA-Infected MH-S Cells
3.4. MtbΔctpA Mutant Displays Impaired Ability to Control Reactive Oxygen Species (ROS) During Infection of MH-S Cells
3.5. MtbΔctpA Strain Attenuates Virulence in Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2024; World Health Organization: Geneva, Switzerland, 2024; Licence: CC BY-NC-SA 3.0 IGO; ISBN 978-92-4-010153-1. [Google Scholar]
- Rezaei, N.; Hosseini, N.-S.; Saghazadeh, A. Introduction to Tuberculosis: Integrated Studies for a Complex Disease. In Tuberculosis: Integrated Studies for a Complex Disease; Rezaei, N., Ed.; Springer: Cham, Switzerland, 2023; Volume 11, pp. 1–16. [Google Scholar]
- Pérez-Martínez, D.; Mejía-Ponce, P.; Licona-Cassani, C.; de Igartua, E.; Bermúdez, G.; Viveros, D.; Zenteno-Cuevas, R. Drug Resistance in Tuberculosis: Mechanisms, Diagnosis, New Responses, and the Need for an Integrated Approach. In Tuberculosis: Integrated Studies for a Complex Disease; Rezaei, N., Ed.; Springer: Cham, Switzerland, 2023; Volume 11, pp. 331–359. [Google Scholar]
- Kuan, R.; Muskat, K.; Peters, B.; Lindestam Arlehamn, C.S. BCG Vaccine Efficacy, Immune Correlates of Protection and antigen-Specific T Cell Responses. J. Intern. Med. 2020, 288, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Aaby, P.; Behr, M.A.; Donald, P.R.; Kaufmann, S.H.E.; Netea, M.G.; Mandalakas, A.M. 100 Years of Mycobacterium Bovis Bacille Calmette-Guérin. Lancet Infect. Dis. 2021, 22, e2–e12. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhan, L.; Qin, C. The Double-Sided Effects of Mycobacterium Bovis Bacillus Calmette–Guérin Vaccine. NPJ Vaccines 2021, 6, 14. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Fang, R.; Li, X.; Xing, J.; Li, Z.; Song, N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines 2024, 12, 38. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, D. Recent Advance in the Development of Tuberculosis Vaccines in Clinical Trials and Virus-like Particle-Based Vaccine Candidates. Front. Immunol. 2023, 14, 1238649. [Google Scholar] [CrossRef]
- Zhuang, L.; Ye, Z.; Li, L.; Yang, L.; Gong, W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines 2023, 11, 1304. [Google Scholar] [CrossRef]
- Hernández-Pando, R.; Shin, S.J.; Clark, S.; Casonato, S.; Becerril-Zambrano, M.; Kim, H.; Boldrin, F.; Mata-Espinoza, D.; Provvedi, R.; Arbues, A.; et al. Construction and Characterization of the Mycobacterium Tuberculosis SigE FadD26 Unmarked Double Mutant as a Vaccine Candidate. Infect. Immun. 2020, 88, e00496-19. [Google Scholar] [CrossRef]
- Maya-Hoyos, M.; Mata-Espinosa, D.; López-Torres, M.O.; Tovar-Vázquez, B.; Barrios-Payán, J.; León-Contreras, J.C.; Ocampo, M.; Hernández-Pando, R.; Soto, C.Y. The CtpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium Tuberculosis. Int. J. Mol. Sci. 2022, 23, 6015. [Google Scholar] [CrossRef]
- Chandra, P.; Grigsby, S.J.; Philips, J.A. Immune Evasion and Provocation by Mycobacterium Tuberculosis. Nat. Rev. Microbiol. 2022, 20, 750–766. [Google Scholar] [CrossRef]
- Yatime, L.; Buch-pedersen, M.J.; Musgaard, M.; Morth, J.P.; Winther, A.-M.L.; Pedersen, B.P.; Olesen, C.; Peter, J.A.; Vilsen, B.; Schiøtt, B.; et al. P-Type ATPases as Drug Targets: Tools for Medicine and Science. Biochim. Biophys. Acta 2009, 1787, 207–220. [Google Scholar] [CrossRef]
- León-Torres, A.; Novoa-Aponte, L.; Soto, C.Y. CtpA, a Putative Mycobacterium Tuberculosis P-Type ATPase, Is Stimulated by Copper (I) in the Mycobacterial Plasma Membrane. BioMetals 2015, 28, 713–724. [Google Scholar] [CrossRef] [PubMed]
- León-Torres, A.; Arango, E.; Castillo, E.; Soto, C.Y. CtpB Is a Plasma Membrane Copper (I) Transporting P-Type ATPase of Mycobacterium Tuberculosis. Biol. Res. 2020, 53, 1–13. [Google Scholar] [CrossRef] [PubMed]
- López-R, M.; Maya-Hoyos, M.; León-Torres, A.; Cruz-Cacais, A.; Castillo, E.; Soto, C.Y. The Copper P-Type ATPase CtpA Is Involved in the Response of Mycobacterium Tuberculosis to Redox Stress. Biochimie 2024, 221, 137–146. [Google Scholar] [CrossRef]
- López, M.; Quitian, L.-V.; Calderón, M.-N.; Soto, C.-Y. The P-Type ATPase CtpG Preferentially Transports Cd2+ across the Mycobacterium Tuberculosis Plasma Membrane. Arch. Microbiol. 2018, 200, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Maya-Hoyos, M.; Rosales, C.; Novoa-Aponte, L.; Castillo, E.; Soto, C.Y. The P-Type ATPase CtpF Is a Plasma Membrane Transporter Mediating Calcium Efflux in Mycobacterium Tuberculosis Cells. Heliyon 2019, 5, e02852. [Google Scholar] [CrossRef] [PubMed]
- Novoa-Aponte, L.; Soto Ospina, C.Y. Mycobacterium Tuberculosis P-Type ATPases: Possible Targets for Drug or Vaccine Development. Biomed. Res. Int. 2014, 2014, 296986. [Google Scholar] [CrossRef]
- Raimunda, D.; Long, J.E.; Padilla-Benavides, T.; Sassetti, C.M.; Argüello, J.M. Differential Roles for the Co2+/Ni2+ Transporting ATPases, CtpD and CtpJ, in Mycobacterium Tuberculosis Virulence. Mol. Microbiol. 2014, 91, 185–197. [Google Scholar] [CrossRef]
- Torres, A.F.L. Respuesta de Las ATPasas Tipo P 1B a las Condiciones de Estrés en Mycobacterium Tuberculosis. Ph.D. Thesis, Ciencias-Bioquímica, Universidad Nacional de Colombia, Bogotá, Colombia, 2018. [Google Scholar]
- Novoa-Aponte, L.; León-Torres, A.; Patiño-Ruiz, M.; Cuesta-Bernal, J.; Salazar, L.M.; Landsman, D.; Mariño-Ramírez, L.; Soto, C.Y. In Silico Identification and Characterization of the Ion Transport Specificity for P-Type ATPases in the Mycobacterium Tuberculosis Complex. BMC Struct. Biol. 2012, 12, 25. [Google Scholar] [CrossRef]
- Novoa-Aponte, L.; Argüello, J.M. Unique Underlying Principles Shaping Copper Homeostasis Networks. J. Biol. Inorg. Chem. 2022, 27, 509–528. [Google Scholar] [CrossRef]
- Shi, X.; Darwin, K.H. Copper Homeostasis in Mycobacterium Tuberculosis. Metallomics 2015, 7, 929–934. [Google Scholar] [CrossRef]
- Soldati, T.; Neyrolles, O. Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)! Traffic 2012, 13, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Stafford, S.L.; Bokil, N.J.; Achard, M.E.S.; Kapetanovic, R.; Schembri, M.A.; Mcewan, A.G.; Sweet, M.J. Metal Ions in Macrophage Antimicrobial Pathways: Emerging Roles for Zinc and Copper. Biosci. Rep. 2013, 33, 541–554. [Google Scholar] [CrossRef]
- González-Guerrero, M.; Raimunda, D.; Cheng, X.; Argüello, J.M. Distinct Functional Roles of Homologous Cu+ Efflux ATPases in Pseudomonas Aeruginosa. Mol. Microbiol. 2010, 78, 1246–1258. [Google Scholar] [CrossRef]
- Padilla-Benavides, T.; Long, J.E.; Raimunda, D.; Sassetti, C.M.; Argüello, J.M. A Novel P1B-Type Mn2+-Transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria. J. Biol. Chem. 2013, 288, 11334–11347. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Padilla-Benavides, T.; Collins, J.M.; Argüello, J.M. Functional Diversity of Five Homologous Cu+-ATPases Present in Sinorhizobium Meliloti. Microbiology 2014, 160, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.K.; Hoye, E.A.; Talaat, A.M. The Global Responses of Mycobacterium Tuberculosis to Physiological Levels of Copper. J. Bacteriol. 2008, 190, 2939–2946. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.K.; Abomoelak, B.; Hoye, E.A.; Steinberg, H.; Talaat, A.M. CtpV: A Putative Copper Exporter Required for Full Virulence of Mycobacterium Tuberculosis. Mol. Microbiol. 2010, 77, 1096–1110. [Google Scholar] [CrossRef]
- Kumar, M.; Khan, F.G.; Sharma, S.; Kumar, R.; Faujdar, J.; Sharma, R.; Chauhan, D.S.; Singh, R.; Magotra, S.K.; Khan, I.A. Identification of Mycobacterium Tuberculosis Genes Preferentially Expressed during Human Infection. Microb. Pathog. 2011, 50, 31–38. [Google Scholar] [CrossRef]
- Rowland, J.L.; Niederweis, M. A Multicopper Oxidase Is Required for Copper Resistance in Mycobacterium Tuberculosis. J. Bacteriol. 2013, 195, 3724–3733. [Google Scholar] [CrossRef]
- Kinkar, E.; Kinkar, A.; Saleh, M. The Multicopper Oxidase of Mycobacterium tuberculosis (MmcO) Exhibits Ferroxidase Activity and Scavenges Reactive Oxygen Species in Activated THP-1 Cells. Int. J. Med. Microbiol. 2019, 309, 151324. [Google Scholar] [CrossRef]
- van Kessel, J.C.; Hatfull, G.F. Recombineering in Mycobacterium Tuberculosis. Nat. Methods 2007, 4, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef]
- Dai, X.; Mao, C.; Lan, X.; Chen, H.; Li, M.; Bai, J.; Deng, J.; Liang, Q.; Zhang, J.; Zhong, X.; et al. Acute Penicillium Marneffei Infection Stimulates Host M1/M2a Macrophages Polarization in BALB/C Mice. BMC Microbiol. 2017, 17, 177. [Google Scholar] [CrossRef] [PubMed]
- Helfinger, V.; Palfi, K.; Weigert, A.; Schröder, K. The NADPH Oxidase Nox4 Controls Macrophage Polarization in an NFκB-Dependent Manner. Oxid. Med. Cell Longev. 2019, 2019, 3264858. [Google Scholar] [CrossRef]
- Hernández-Pando, R.; Aguilar, L.D.; Smith, I.; Manganelli, R. Immunogenicity and Protection Induced by a Mycobacterium tuberculosis SigE Mutant in a BALB/c Mouse Model of Progressive Pulmonary Tuberculosis. Infect. Immun. 2010, 78, 3168–3176. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001, 29, 2002–2007. [Google Scholar] [CrossRef]
- Sim Choi, H.; Woo Kim, J.; Cha, Y.-N.; Kim, C. A Quantitative Nitroblue Tetrazolium Assay for Determining Intracellular Superoxide Anion Production in Phagocytic Cells. J. Immunoass. Immunochem. 2006, 27, 31–44. [Google Scholar] [CrossRef]
- Rook, G.A.W.; Steele, J.; Umar, S.; Dockrell, H.M. A Simple Method for the Solubilization of Reduced NBT, and Its Use as a Colorimetric Assay for Activation of Human Macrophages by y-Interferon. J. Immunol. Methods 1985, 82, 161–167. [Google Scholar] [CrossRef]
- Hernández-Pando, R.; Orozco, H.; Arriaga, E.K.; Sampieri, A.; Larriva-Sahd, J.; Madrid-Marina, V. Analysis of the Local Kinetics and Localization of Interleukin-1α, Tumour Necrosis Factor-α and Transforming Growth Factor-β, during the Course of Experimental Pulmonary Tuberculosis. Immunology 1997, 90, 607–617. [Google Scholar] [CrossRef]
- Bonilla, D.L.; Bhattacharya, A.; Sha, Y.; Xu, Y.; Xiang, Q.; Kan, A.; Jagannath, C.; Komatsu, M.; Eissa, N.T. Autophagy Regulates Phagocytosis by Modulating the Expression of Scavenger Receptors. Immunity 2013, 39, 537–547. [Google Scholar] [CrossRef]
- Wagner, D.; Maser, J.; Lai, B.; Cai, Z.; Barry III, C.E.; Höner zu Bentrup, K.; Russell, D.G.; Bermudez, L.E. Elemental Analysis of Mycobacterium Avium-, Mycobacterium tuberculosis-, and Mycobacterium Smegmatis-Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell’s Endosomal System. J. Immunol. 2005, 174, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Achard, M.E.S.; Stafford, S.L.; Bokil, N.J.; Chartres, J.; Bernhardt, P.V.; Schembri, M.A.; Sweet, M.J.; McEwan, A.G. Copper Redistribution in Murine Macrophages in Response to Salmonella Infection. Biochem. J. 2012, 444, 51–57. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Lee, J.; Kambe, T.; Fritsche, K.; Petris, M.J. A Role for the ATP7A Copper-Transporting ATPase in Macrophage Bactericidal Activity. J. Biol. Chem. 2009, 284, 33949–33956. [Google Scholar] [CrossRef]
- Hernández-Pando, R.; Aguilar, L.D.; Infante, E.; Cataldi, A.; Bigi, F.; Martin, C.; Gicquel, B. The Use of Mutant Mycobacteria as New Vaccines to Prevent Tuberculosis. Tuberculosis 2006, 86, 203–210. [Google Scholar] [CrossRef]
- Fontán, P.A.; Aris, V.; Alvarez, M.E.; Ghanny, S.; Cheng, J.; Soteropoulos, P.; Trevani, A.; Pine, R.; Smith, I. Mycobacterium tuberculosis Sigma Factor E Regulon Modulates the Host Inflammatory Response. J. Infect. Dis. 2008, 198, 877–885. [Google Scholar] [CrossRef]
- Infante, E.; Aguilar, L.D.; Gicquel, B.; Hernandez Pando, R. Immunogenicity and Protective Efficacy of the Mycobacterium Tuberculosis FadD26 Mutant. Clin. Exp. Immunol. 2005, 141, 21–28. [Google Scholar] [CrossRef]
- Olsen, A.; Chen, Y.; Ji, Q.; Zhu, G.; De Silva, A.D.; Vilchèze, C.; Weisbrod, T.; Li, W.; Xu, J.; Larsen, M.; et al. Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. mBio 2016, 7, e01023-15. [Google Scholar] [CrossRef]
- Rousseau, C.; Winter, N.; Pivert, E.; Bordat, Y.; Neyrolles, O.; Avé, P.; Huerre, M.; Gicquel, B.; Jackson, M. Production of Phthiocerol Dimycocerosates Protects Mycobacterium Tuberculosis from the Cidal Activity of Reactive Nitrogen Intermediates Produced by Macrophages and Modulates the Early Immune Response to Infection. Cell Microbiol. 2004, 6, 277–287. [Google Scholar] [CrossRef]
- Díez-Tercero, L.; Delgado, L.M.; Bosch-Rué, E.; Perez, R.A. Evaluation of the Immunomodulatory Effects of Cobalt, Copper and Magnesium Ions in a pro Inflammatory Environment. Sci. Rep. 2021, 11, 11707. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Macmicking, J.; Xie, Q.-W.; Hathan, C. Nitric Oxide and Macrophage Function. Annu. Rev. Immunol. 1997, 15, 323–350. [Google Scholar] [CrossRef] [PubMed]
- Ravesloot-Chávez, M.M.; Van Dis, E.; Stanley, S.A. The Innate Immune Response to Mycobacterium Tuberculosis Infection. Annu. Rev. Immunol. 2021, 39, 611–637. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.D.; Jain, N.C. Phagocytic and Nitroblue Tetrazolium Reductive Properties of Bovine Neutrophils for Mammary Pathogens. J. Dairy. Sci. 1988, 71, 1625–1631. [Google Scholar] [CrossRef]
- Hernández-Pando, R.; Orozcoe, H.; Sampieri, A.; Pavon, L.; Velasquillo, C.; Larriva-Sahd, J.; Alcocer, J.M.; Madrid, M. V Correlation between the Kinetics of Th1/Th2 Cells and Pathology in a Murine Model of Experimental Pulmonary Tuberculosis. Immunology 1996, 89, 26–33. [Google Scholar]
- Botella, H.; Peyron, P.; Levillain, F.; Poincloux, R.; Poquet, Y.; Brandli, I.; Wang, C.; Tailleux, L.; Tilleul, S.; Charrire, G.M.; et al. Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host Microbe 2011, 10, 248–259. [Google Scholar] [CrossRef]
- Raimunda, D.; González-Guerrero, M.; Leeber, B.W.; Argüello, J.M. The Transport Mechanism of Bacterial Cu+-ATPases: Distinct Efflux Rates Adapted to Different Function. BioMetals 2011, 24, 467–475. [Google Scholar] [CrossRef]
- Roca, F.J.; Whitworth, L.J.; Redmond, S.; Jones, A.A.; Ramakrishnan, L. TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell 2019, 178, 1344–1361. [Google Scholar] [CrossRef]
- Silvério, D.; Gonçalves, R.; Appelberg, R.; Saraiva, M. Advances on the Role and Applications of Interleukin-1 in Tuberculosis. mBio 2021, 12, e03134-21. [Google Scholar] [CrossRef]
- Roca, F.J.; Whitworth, L.J.; Prag, H.A.; Murphy, M.P.; Ramakrishnan, L. Tumor Necrosis Factor Induces Pathogenic Mitochondrial ROS in Tuberculosis through Reverse Electron Transport. Science 2022, 376, eabh2841. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Li, S.; Yuan, J.; Pang, Y. Maintenance and Recall of Memory T Cell Populations against Tuberculosis: Implications for Vaccine Design. Front. Immunol. 2023, 14, 1100741. [Google Scholar] [CrossRef] [PubMed]
- Padwal, P.; Bandyopadhyaya, R.; Mehra, S. Biocompatible Citric Acid-Coated Iron Oxide Nanoparticles to Enhance the Activity of First-Line Anti-TB Drugs in Mycobacterium Smegmatis. J. Chem. Technol. Biotechnol. 2015, 90, 1773–1781. [Google Scholar] [CrossRef]
- Flores-Valdez, M.A.; Segura-Cerda, C.A.; Gaona-Bernal, J. Modulation of Autophagy as a Strategy for Development of New Vaccine Candidates against Tuberculosis. Mol. Immunol. 2018, 97, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Köster, S.; Upadhyay, S.; Chandra, P.; Papavinasasundaram, K.; Yang, G.; Hassan, A.; Grigsby, S.J.; Mittal, E.; Park, H.S.; Jones, V.; et al. Mycobacterium Tuberculosis Is Protected from NADPH Oxidase and LC3-Associated Phagocytosis by the LCP Protein CpsA. Proc. Natl. Acad. Sci. USA 2017, 114, E8711–E8720. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Mittal, E.; Philips, J.A. Tuberculosis and the Art of Macrophage Manipulation. Pathog. Dis. 2018, 76, fty037. [Google Scholar] [CrossRef]
- Srivastava, S.; Battu, M.B.; Khan, M.Z.; Nandicoori, V.K.; Mukhopadhyay, S. Mycobacterium Tuberculosis PPE2 Protein Interacts with P67phox and Inhibits Reactive Oxygen Species Production. J. Immunol. 2019, 203, 1218–1229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Ruíz, M.; Barrios-Payán, J.; Maya-Hoyos, M.; Hernández-Pando, R.; Ocampo, M.; Soto, C.Y.; Mata-Espinosa, D. The Plasma Membrane P-Type ATPase CtpA Is Required for Mycobacterium tuberculosis Virulence in Copper-Activated Macrophages in a Mouse Model of Progressive Tuberculosis. Biomedicines 2025, 13, 439. https://doi.org/10.3390/biomedicines13020439
López-Ruíz M, Barrios-Payán J, Maya-Hoyos M, Hernández-Pando R, Ocampo M, Soto CY, Mata-Espinosa D. The Plasma Membrane P-Type ATPase CtpA Is Required for Mycobacterium tuberculosis Virulence in Copper-Activated Macrophages in a Mouse Model of Progressive Tuberculosis. Biomedicines. 2025; 13(2):439. https://doi.org/10.3390/biomedicines13020439
Chicago/Turabian StyleLópez-Ruíz, Marcela, Jorge Barrios-Payán, Milena Maya-Hoyos, Rogelio Hernández-Pando, Marisol Ocampo, Carlos Y. Soto, and Dulce Mata-Espinosa. 2025. "The Plasma Membrane P-Type ATPase CtpA Is Required for Mycobacterium tuberculosis Virulence in Copper-Activated Macrophages in a Mouse Model of Progressive Tuberculosis" Biomedicines 13, no. 2: 439. https://doi.org/10.3390/biomedicines13020439
APA StyleLópez-Ruíz, M., Barrios-Payán, J., Maya-Hoyos, M., Hernández-Pando, R., Ocampo, M., Soto, C. Y., & Mata-Espinosa, D. (2025). The Plasma Membrane P-Type ATPase CtpA Is Required for Mycobacterium tuberculosis Virulence in Copper-Activated Macrophages in a Mouse Model of Progressive Tuberculosis. Biomedicines, 13(2), 439. https://doi.org/10.3390/biomedicines13020439