Neutrophils, Fast and Strong 2.0: Heterogeneity of Neutrophil Parameters in Health and in Disease
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Conflicts of Interest
List of Contributions
- Pasqui, E.; de Donato, G.; Lazzeri, E.; Molino, C.; Galzerano, G.; Giubbolini, M.; Palasciano, G. High Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Are Associated with a Higher Risk of Hemodialysis Vascular Access Failure. Biomedicines 2022, 10, 2218. https://doi.org/10.3390/biomedicines10092218.
- Pleskova, S.N.; Erofeev, A.S.; Vaneev, A.N.; Gorelkin, P.V.; Bobyk, S.Z.; Kolmogorov, V.S.; Bezrukov, N.A.; Lazarenko, E.V. ROS Production by a Single Neutrophil Cell and Neutrophil Population upon Bacterial Stimulation. Biomedicines 2023, 11, 1361. https://doi.org/10.3390/biomedicines11051361.
- Scutca, A.-C.; Nicoară, D.-M.; Mang, N.; Jugănaru, I.; Brad, G.-F.; Mărginean, O. Correlation between Neutrophil-to-Lymphocyte Ratio and Cerebral Edema in Children with Severe Diabetic Ketoacidosis. Biomedicines 2023, 11, 2976. https://doi.org/10.3390/biomedicines11112976.
- Rutkowska, E.; Kwiecień, I.; Raniszewska, A.; Sokołowski, R.; Bednarek, J.; Jahnz-Różyk, K.; Chciałowski, A.; Rzepecki, P. New Neutrophil Parameters in Diseases with Various Inflammatory Processes. Biomedicines 2024, 12, 2016. https://doi.org/10.3390/biomedicines12092016.
- González-Jiménez, P.; Piqueras, M.; Latorre, A.; Tortosa-Carreres, J.; Mengot, N.; Alonso, R.; Reyes, S.; Amara-Elori, I.; Martínez-Dolz, L.; Moscardó, A.; Menéndez, R.; Méndez, R. Endothelial Biomarkers Are Superior to Classic Inflammatory Biomarkers in Community-Acquired Pneumonia. Biomedicines 2024, 12, 2413. https://doi.org/10.3390/biomedicines12102413.
- Watanabe, Y.; Obama, T.; Makiyama, T.; Itabe, H. Oxysterols Suppress Release of DNA from Granulocytes into Extracellular Space After Stimulation with Phorbol Myristate Acetate. Biomedicines 2024, 12, 2535. https://doi.org/10.3390/biomedicines12112535.
- Sounbuli, K.; Alekseeva, L.A.; Sen’kova, A.V.; Savin, I.A.; Zenkova, M.A.; Mironova, N.L. Tbp and Hprt1 Are Appropriate Reference Genes for Splenic Neutrophils Isolated from Healthy or Tumor-Bearing Mice. Biomedicines 2024, 12, 2571. https://doi.org/10.3390/biomedicines12112571.
References
- Gomez-Casado, G.; Jimenez-Gonzalez, A.; Rodriguez-Munoz, A.; Tinahones, F.J.; Gonzalez-Mesa, E.; Murri, M.; Ortega-Gomez, A. Neutrophils as indicators of obesity-associated inflammation: A systematic review and meta-analysis. Obes. Rev. 2024, 2024, e13868. [Google Scholar] [CrossRef]
- Sullivan, E.; Schulte, R.; Speaker, S.L.; Sabharwal, P.; Wang, M.; Rothberg, M.B. Relationship Between White Blood Cell Count and Bacteremia Using Interval Likelihood Ratios in Hospitalized Patients. J. Gen. Intern. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Flores, L.A.; De Vera, M.T.D.; Pilo, J.; Rego, A.; Gomez-Casado, G.; Arranz-Salas, I.; Martín, I.H.; Alcaide, J.; Torres, E.; Ortega-Gomez, A.; et al. Increased neutrophil counts are associated with poor overall survival in patients with colorectal cancer: A five-year retrospective analysis. Front. Immunol. 2024, 15, 1415804. [Google Scholar] [CrossRef]
- Fa, W.; Liang, X.; Liu, K.; Wang, N.; Liu, C.; Tian, N.; Zhu, M.; Ma, Y.; Song, L.; Tang, S.; et al. Associations of Blood Absolute Neutrophil Count and Cytokines with Cognitive Function in Dementia-Free Participants: A Population-Based Cohort Study. J. Gerontol. Ser. A 2024, 79, glad231. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, W.; Wei, H.; Liu, S.; Cui, S.; Chen, S. Neutrophil count and reduced risk of venous thromboembolism: A Mendelian randomization study. Hematology 2024, 29, 2428481. [Google Scholar] [CrossRef]
- Dabaghi, G.G.; Rad, M.R.; Mortaheb, M.; Darouei, B.; Amani-Beni, R.; Mazaheri-Tehrani, S.; Izadan, M.; Touhidi, A. The Neutrophil-to-Lymphocyte Ratio Predicts Cardiovascular Outcomes in Patients with Diabetes: A Systematic Review and Meta-Analysis. Cardiol. Rev. 2024. [Google Scholar] [CrossRef]
- Ripamonti, A.; Cavalca, F.; Montelisciani, L.; Antolini, L.; Gambacorti-Passerini, C.; Elli, E.M. Neutrophil-to-lymphocyte ratio (NLR) at diagnosis in essential thrombocythemia: A new promising predictor of thrombotic events. Cancer 2024, 131, e35638. [Google Scholar] [CrossRef]
- Joosse, H.J.; Huisman, A.; van Solinge, W.; Hietbrink, F.; Hoefer, I.; Haitjema, S. Describing Characteristics and Differences of Neutrophils in Sepsis, Trauma, and Control Patients in Routinely Measured Hematology Data. Biomedicines 2022, 10, 633. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Jena, P.K.; Panda, S.K. The diagnostic performance of mean neutrophil volume in neonatal sepsis: A systematic review and meta-analysis. Pediatr. Neonatol. 2024, 66, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.M.N.; Chen, Z.; Chen, W.; Tan, R.J.Y.; Cao, Q.; Chu, Y.; Ma, D.; Chen, L.; Yu, H.; Lam, K.H.; et al. Tumor-associated neutrophils attenuate the immunosensitivity of hepatocellular carcinoma. J. Exp. Med. 2025, 222, e20241442. [Google Scholar] [CrossRef]
- Cambier, S.; Beretta, F.; Nooyens, A.; Metzemaekers, M.; Portner, N.; Kaes, J.; de Carvalho, A.C.; Cortesi, E.E.; Beeckmans, H.; Hooft, C.; et al. Heterogeneous neutrophils in lung transplantation and proteolytic CXCL8 activation in COVID-19, influenza and lung transplant patient lungs. Cell. Mol. Life Sci. 2024, 81, 475. [Google Scholar] [CrossRef]
- Guo, R.; Xie, X.; Ren, Q.; Liew, P.X. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J. Leukoc. Biol. 2024, qiae220. [Google Scholar] [CrossRef]
- Sidawy, A.N.; Gray, R.; Besarab, A.; Henry, M.; Ascher, E.; Silva, M., Jr.; Miller, A.; Scher, L.; Trerotola, S.; Gregory, R.T.; et al. Recommended standards for reports dealing with arteriovenous hemodialysis accesses. J. Vasc. Surg. 2002, 35, 603–610. [Google Scholar] [CrossRef]
- Jeziorny, K.; Waszczykowska, A.; Baranska, D.; Szadkowska, A.; Mlynarski, W.; Zmyslowska, A. Can we effectively predict the occurrence of cerebral edema in children with ketoacidosis in the course of type 1 diabetes?—Case report and literature review. J. Pediatr. Endocrinol. Metab. 2020, 33, 319–322. [Google Scholar] [CrossRef]
- Woo, M.M.; Patterson, E.K.; Clarson, C.; Cepinskas, G.; Bani-Yaghoub, M.; Stanimirovic, D.B.; Fraser, D.D. Elevated Leukocyte Azurophilic Enzymes in Human Diabetic Ketoacidosis Plasma Degrade Cerebrovascular Endothelial Junctional Proteins. Crit. Care Med. 2016, 44, e846–e853. [Google Scholar] [CrossRef]
- Scutca, A.C.; Nicoara, D.M.; Marazan, M.; Brad, G.F.; Marginean, O. Neutrophil-to-Lymphocyte Ratio Adds Valuable Information Regarding the Presence of DKA in Children with New-Onset T1DM. J. Clin. Med. 2022, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Gu, J.; Seo, J.E.; Kim, J.W.; Kim, H.K. Diagnostic and Prognostic Values of Neutrophil Reactivity Intensity (NEUT-RI) in Pediatric Systemic Inflammatory Response Syndrome and Sepsis. Ann. Clin. Lab. Sci. 2023, 53, 173–180. [Google Scholar] [PubMed]
- Ekstedt, S.; Piersiala, K.; Kolev, A.; Farrajota Neves da Silva, P.; Margolin, G.; Kumlien Georen, S.; Cardell, L.O. Phenotypical differences of neutrophils patrolling tumour-draining lymph nodes in head and neck cancer. Br. J. Cancer 2024, 131, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Marki, A.; Esko, J.D.; Pries, A.R.; Ley, K. Role of the endothelial surface layer in neutrophil recruitment. J. Leukoc. Biol. 2015, 98, 503–515. [Google Scholar] [CrossRef]
- Filippi, M.D. Neutrophil transendothelial migration: Updates and new perspectives. Blood 2019, 133, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Stef, A.; Bodolea, C.; Bocsan, I.C.; Cainap, S.S.; Achim, A.; Serban, A.; Solomonean, A.G.; Tintiuc, N.; Buzoianu, A.D. The Value of Biomarkers in Major Cardiovascular Surgery Necessitating Cardiopulmonary Bypass. Rev. Cardiovasc. Med. 2024, 25, 355. [Google Scholar] [CrossRef]
- Liu, D.; Langston, J.C.; Prabhakarpandian, B.; Kiani, M.F.; Kilpatrick, L.E. The critical role of neutrophil-endothelial cell interactions in sepsis: New synergistic approaches employing organ-on-chip, omics, immune cell phenotyping and in silico modeling to identify new therapeutics. Front. Cell. Infect. Microbiol. 2023, 13, 1274842. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Galkina, S.I.; Fedorova, N.V.; Golenkina, E.A.; Stadnichuk, V.I.; Sud’ina, G.F. Cytonemes Versus Neutrophil Extracellular Traps in the Fight of Neutrophils with Microbes. Int. J. Mol. Sci. 2020, 21, 586. [Google Scholar] [CrossRef]
- Harithpriya, K.; Kaussikaa, S.; Kavyashree, S.; Geetha, A.; Ramkumar, K.M. Pathological insights into cell death pathways in diabetic wound healing. Pathol. Res. Pract. 2024, 264, 155715. [Google Scholar] [CrossRef]
- Kolaczkowska, E.; Jenne, C.N.; Surewaard, B.G.; Thanabalasuriar, A.; Lee, W.Y.; Sanz, M.J.; Mowen, K.; Opdenakker, G.; Kubes, P. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat. Commun. 2015, 6, 6673. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.A.; He, X.Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sud’ina, G.F. Neutrophils, Fast and Strong 2.0: Heterogeneity of Neutrophil Parameters in Health and in Disease. Biomedicines 2025, 13, 436. https://doi.org/10.3390/biomedicines13020436
Sud’ina GF. Neutrophils, Fast and Strong 2.0: Heterogeneity of Neutrophil Parameters in Health and in Disease. Biomedicines. 2025; 13(2):436. https://doi.org/10.3390/biomedicines13020436
Chicago/Turabian StyleSud’ina, Galina F. 2025. "Neutrophils, Fast and Strong 2.0: Heterogeneity of Neutrophil Parameters in Health and in Disease" Biomedicines 13, no. 2: 436. https://doi.org/10.3390/biomedicines13020436
APA StyleSud’ina, G. F. (2025). Neutrophils, Fast and Strong 2.0: Heterogeneity of Neutrophil Parameters in Health and in Disease. Biomedicines, 13(2), 436. https://doi.org/10.3390/biomedicines13020436