Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review
Abstract
:1. Introduction
2. Microbial Opsins
2.1. Microbial Depolarizing Opsins
2.1.1. ChR2 (Channelrhodopsin-2)
2.1.2. CatCh (Calcium-Translocating Channelrhodopsin)
2.1.3. PsCatCh2.0 (Platymonas Subcordiformis Channelrhodopsin 2.0)
2.1.4. VChR1 (Volvox Channelrhodopsin-1)
2.1.5. ReaChR (Red-Activatable Channelrhodopsin)
2.1.6. bReaChES
2.1.7. mVChR1 (Modified VChR1)
2.1.8. ComV1 (ex3mV1)
2.1.9. CoChR (Chloromonas Oogama Channelrhodopsin)
2.1.10. Chronos (ShChR, Stigeoclonium Helveticum Channelrhodopsin)
2.1.11. ChrimsonR (CrimsonR, CnChR1, Chlamydomonas Noctigama Channelrhodopsin 1)
2.1.12. ChRmine
2.1.13. White-Opsin
2.1.14. MCO1 (Multi-Characteristic Opsin 1)
2.2. Microbial Hyperpolarizing Opsins
2.2.1. NpHR (Natronomonas Halorhodopsin)
2.2.2. Jaws
3. Animal Opsins
3.1. OPN4 (Melanopsin)
3.2. Opto-mGluR6
3.3. LiGluR (Light-Gated Ionotropic Glutamate Receptor)
3.4. Rho (Human Rod Opsin)
3.5. SNAG-mGluR2
3.6. MW-Opsin (Medium-Wavelength Cone Opsin)
3.7. GHCR (Gleobacter–Human Chimeric Rhodopsin)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wert, K.J.; Lin, J.H.; Tsang, S.H. General Pathophysiology in Retinal Degeneration. Dev. Ophthalmol. 2014, 53, 33–43. [Google Scholar] [CrossRef]
- RetNet. Available online: https://retnet.org/summaries#a-genes (accessed on 16 January 2025).
- Talib, M.; Boon, C.J.F. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia-Pac. J. Ophthalmol. 2020, 9, 159–179. [Google Scholar] [CrossRef]
- Ziccardi, L.; Cordeddu, V.; Gaddini, L.; Matteucci, A.; Parravano, M.; Malchiodi-Albedi, F.; Varano, M. Gene Therapy in Retinal Dystrophies. Int. J. Mol. Sci. 2019, 20, 5722. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.S.; Olmos de Koo, L.C. Vision Restoration in Outer Retinal Degenerations: Current Approaches and Future Directions. Int. Ophthalmol. Clin. 2019, 59, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Parnami, K.; Bhattacharyya, A. Current Approaches to Vision Restoration Using Optogenetic Therapy. Front. Cell. Neurosci. 2023, 17, 1236826. [Google Scholar] [CrossRef] [PubMed]
- Milam, A.H.; Li, Z.Y.; Fariss, R.N. Histopathology of the human retina in retinitis pigmentosa. Prog. Retin. Eye Res. 1998, 17, 175–205. [Google Scholar] [CrossRef]
- Santos, A.; Humayun, M.S.; de Juan, E., Jr.; Greenburg, R.J.; Marsh, M.J.; Klock, I.B.; Milam, A.H. Preservation of the Inner Retina in Retinitis Pigmentosa. Arch. Ophthalmol. 1997, 115, 511. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.S.; Prince, M.; de Juan, E.; Barron, Y.; Moskowitz, M.; Klock, I.B.; Milam, A.H. Morphometric Analysis of the Extramacular Retina from Postmortem Eyes with Retinitis Pigmentosa. PubMed 1999, 40, 143–148. [Google Scholar]
- Olshevskaya, E.V.; Calvert, P.D.; Woodruff, M.L.; Peshenko, I.V.; Savchenko, A.B.; Makino, C.L.; Ho, Y.S.; Fain, G.L.; Dizhoor, A.M. The Y99C Mutation in Guanylyl Cyclase-Activating Protein 1 Increases Intracellular Ca2+ and Causes Photoreceptor Degeneration in Transgenic Mice. J. Neurosci. 2004, 24, 6078–6085. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Nusinowitz, S.; Heckenlively, J.R. Retinal Degeneration Mutants in the Mouse. Vis. Res. 2002, 42, 517–525. [Google Scholar] [CrossRef]
- Boyle, P.M.; Karathanos, T.V.; Trayanova, N.A. Cardiac Optogenetics: 2018. JACC Clin. Electrophysiol. 2018, 4, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Bentley, J.N.; Chestek, C.; Stacey, W.C.; Patil, P.G. Optogenetics in Epilepsy. Neurosurg. Focus 2013, 34, E4. [Google Scholar] [CrossRef]
- Axelsen, T.M.; Woldbye, D.P.D. Gene Therapy for Parkinson’s Disease, an Update. J. Parkinson’s Dis. 2018, 8, 195–215. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fu, Y.; Ma, L.; Yao, Y.; Ge, S.; Yang, Z.; Fan, X. AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. Research 2023, 6, 0291. [Google Scholar] [CrossRef] [PubMed]
- Sakai, D.; Tomita, H.; Maeda, A. Optogenetic Therapy for Visual Restoration. Int. J. Mol. Sci. 2022, 23, 15041. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Gilhooley, M.J.; Hughes, S.; Hankins, M.W. Optogenetics for Visual Restoration: From Proof of Principle to Translational Challenges. Prog. Retin. Eye Res. 2022, 91, 101089. [Google Scholar] [CrossRef]
- Simon, C.-J.; Sahel, J.-A.; Duebel, J.; Herlitze, S.; Dalkara, D. Opsins for Vision Restoration. Biochem. Biophys. Res. Commun. 2020, 527, 325–330. [Google Scholar] [CrossRef]
- Pan, Z.-H.; Lu, Q.; Bi, A.; Dizhoor, A.M.; Abrams, G.W. Optogenetic Approaches to Restoring Vision. Annu. Rev. Vision. Sci. 2015, 1, 185–210. [Google Scholar] [CrossRef] [PubMed]
- Provansal, M.; Marazova, K.; Sahel, J.A.; Picaud, S. Vision Restoration by Optogenetic Therapy and Developments toward Sonogenetic Therapy. Transl. Vision. Sci. Technol. 2022, 11, 18. [Google Scholar] [CrossRef]
- Wang, T.; Liu, S.; Huang, Y.; Zhou, Y. Red-Shifted Optogenetics Comes to the Spotlight. Clin. Transl. Med. 2022, 12, e807. [Google Scholar] [CrossRef] [PubMed]
- Chemi, G.; Brindisi, M.; Brogi, S.; Relitti, N.; Butini, S.; Gemma, S.; Campiani, G. A Light in the Dark: State of the Art and Perspectives in Optogenetics and Optopharmacology for Restoring Vision. Future Med. Chem. 2019, 11, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Hillebrandt, S.; Keum, C.; Deng, Y.; Chavas, J.; Galle, C.; Hardin, T.; Galluppi, F.; Gather, M.C. High Brightness, Highly Directional Organic Light-Emitting Diodes as Light Sources for Future Light-Amplifying Prosthetics in the Optogenetic Management of Vision Loss. Adv. Opt. Mater. 2023, 11, 2200877. [Google Scholar] [CrossRef]
- Yan, B.; Nirenberg, S. An Engineering Platform for Clinical Application of Optogenetic Therapy in Retinal Degenerative Diseases. IEEE J. Transl. Eng. Health Med. 2023, 11, 296–305. [Google Scholar] [CrossRef]
- Bi, A.; Cui, J.; Ma, Y.-P.; Olshevskaya, E.; Pu, M.; Dizhoor, A.M.; Pan, Z.-H. Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron 2006, 50, 23–33. [Google Scholar] [CrossRef]
- Tomita, H.; Sugano, E.; Yawo, H.; Ishizuka, T.; Isago, H.; Narikawa, S.; Kügler, S.; Tamai, M. Restoration of Visual Response in Aged Dystrophic RCS Rats Using AAV-Mediated Channelopsin-2 Gene Transfer. Investig. Opthalmol. Vis. Sci. 2007, 48, 3821. [Google Scholar] [CrossRef]
- Tomita, H.; Sugano, E.; Isago, H.; Hiroi, T.; Wang, Z.; Ohta, E.; Tamai, M. Channelrhodopsin-2 Gene Transduced into Retinal Ganglion Cells Restores Functional Vision in Genetically Blind Rats. Exp. Eye Res. 2010, 90, 429–436. [Google Scholar] [CrossRef]
- Lagali, P.S.; Balya, D.; Awatramani, G.B.; Münch, T.A.; Kim, D.S.; Busskamp, V.; Cepko, C.L.; Roska, B. Light-Activated Channels Targeted to on Bipolar Cells Restore Visual Function in Retinal Degeneration. Nat. Neurosci. 2008, 11, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Doroudchi, M.M.; Greenberg, K.P.; Liu, J.; Silka, K.A.; Boyden, E.S.; Lockridge, J.A.; Arman, A.C.; Janani, R.; Boye, S.E.; Boye, S.L.; et al. Virally Delivered Channelrhodopsin-2 Safely and Effectively Restores Visual Function in Multiple Mouse Models of Blindness. Mol. Ther. 2011, 19, 1220–1229. [Google Scholar] [CrossRef]
- Macé, E.; Caplette, R.; Marre, O.; Sengupta, A.; Chaffiol, A.; Barbe, P.; Desrosiers, M.; Bamberg, E.; Sahel, J.-A.; Picaud, S.; et al. Targeting Channelrhodopsin-2 to ON-Bipolar Cells with Vitreally Administered AAV Restores on and off Visual Responses in Blind Mice. Mol. Ther. 2015, 23, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kleinlogel, S.; Feldbauer, K.; Dempski, R.E.; Fotis, H.; Wood, P.; Bamann, C.; Bamberg, E. Ultra Light-Sensitive and Fast Neuronal Activation with the Ca2+-Permeable Channelrhodopsin CatCh. Nat. Neurosci. 2011, 14, 513–518. [Google Scholar] [CrossRef]
- Chaffiol, A.; Caplette, R.; Jaillard, C.; Brazhnikova, E.; Desrosiers, M.; Dubus, E.; Duhamel, L.; Macé, E.; Marre, O.; Benoit, P.; et al. A New Promoter Allows Optogenetic Vision. Restoration with Enhanced Sensitivity in Macaque Retina. Mol. Ther. 2017, 25, 2546–2560. [Google Scholar] [CrossRef] [PubMed]
- Govorunova, E.G.; Sineshchekov, O.A.; Li, H.; Janz, R.; Spudich, J.L. Characterization of a Highly Efficient Blue-Shifted Channelrhodopsin from the Marine Alga Platymonas Subcordiformis. J. Biol. Chem. 2013, 288, 29911–29922. [Google Scholar] [CrossRef]
- Chen, F.; Duan, X.; Yu, Y.; Yang, S.; Chen, Y.; Gee, C.E.; Nagel, G.; Zhang, K.; Gao, S.; Shen, Y. Visual Function Restoration with a Highly Sensitive and Fast Channelrhodopsin in Blind Mice. Signal Transduct. Target Ther. 2022, 7, 104. [Google Scholar] [CrossRef]
- Zhang, F.; Prigge, M.; Beyrière, F.; Tsunoda, S.P.; Mattis, J.; Yizhar, O.; Hegemann, P.; Deisseroth, K. Red-Shifted Optogenetic Excitation: A Tool for Fast Neural Control Derived from Volvox Carteri. Nat. Neurosci. 2008, 11, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Kianianmomeni, A.; Stehfest, K.; Nematollahi, G.; Hegemann, P.; Hallmann, A. Channelrhodopsins Of Volvox Carteri Are Photochromic Proteins That Are Specifically Expressed in Somatic Cells under Control of Light, Temperature, and the Sex Inducer. Plant Physiol. 2009, 151, 347–366. [Google Scholar] [CrossRef]
- Lin, J.Y.; Knutsen, P.M.; Muller, A.; Kleinfeld, D.; Tsien, R.Y. ReaChR: A Red-Shifted Variant of Channelrhodopsin Enables Deep Transcranial Optogenetic Excitation. Nat. Neurosci. 2013, 16, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Chaffiol, A.; Macé, E.; Caplette, R.; Desrosiers, M.; Lampič, M.; Forster, V.; Marre, O.; Lin, J.Y.; Sahel, J.; et al. Red-Shifted Channelrhodopsin Stimulation Restores Light Responses in Blind Mice, Macaque Retina, and Human Retina. EMBO Mol. Med. 2016, 8, 1248–1264. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, U.; Deny, S.; Sengupta, A.; Caplette, R.; Trapani, F.; Sahel, J.-A.; Dalkara, D.; Picaud, S.; Duebel, J.; Marre, O. Towards Optogenetic Vision Restoration with High Resolution. PLoS Comput. Biol. 2020, 16, e1007857. [Google Scholar] [CrossRef]
- Rajasethupathy, P.; Sankaran, S.; Marshel, J.H.; Kim, C.K.; Ferenczi, E.; Lee, S.Y.; Berndt, A.; Ramakrishnan, C.; Jaffe, A.; Lo, M.; et al. Projections from Neocortex Mediate Top-down Control of Memory Retrieval. Nature 2015, 526, 653–659. [Google Scholar] [CrossRef]
- Too, L.K.; Shen, W.; Protti, D.A.; Sawatari, A.; Black, D.A.; Leamey, C.A.; Huang, J.Y.; Lee, S.-R.; Mathai, A.E.; Lisowski, L.; et al. Optogenetic Restoration of High Sensitivity Vision with BReaChES, a Red-Shifted Channelrhodopsin. Sci. Rep. 2022, 12, 19312. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Sugano, E.; Murayama, N.; Ozaki, T.; Nishiyama, F.; Tabata, K.; Takahashi, M.; Saito, T.; Tamai, M. Restoration of the Majority of the Visual Spectrum by Using Modified Volvox Channelrhodopsin-1. Mol. Ther. 2014, 22, 1434–1440. [Google Scholar] [CrossRef]
- Watanabe, Y.; Sugano, E.; Tabata, K.; Hatakeyama, A.; Sakajiri, T.; Fukuda, T.; Ozaki, T.; Suzuki, T.; Sayama, T.; Tomita, H. Development of an Optogenetic Gene Sensitive to Daylight and Its Implications in Vision Restoration. NPJ Regen. Med. 2021, 6, 64. [Google Scholar] [CrossRef]
- Hatakeyama, A.; Sugano, E.; Sayama, T.; Watanabe, Y.; Suzuki, T.; Tabata, K.; Endo, Y.; Sakajiri, T.; Fukuda, T.; Ozaki, T.; et al. Properties of a Single Amino Acid Residue in the Third Transmembrane Domain Determine the Kinetics of Ambient Light-Sensitive Channelrhodopsin. Int. J. Mol. Sci. 2023, 24, 5054. [Google Scholar] [CrossRef]
- Klapoetke, N.C.; Murata, Y.; Kim, S.S.; Pulver, S.R.; Birdsey-Benson, A.; Cho, Y.K.; Morimoto, T.K.; Chuong, A.S.; Carpenter, E.J.; Tian, Z.; et al. Independent Optical Excitation of Distinct Neural Populations. Nat. Methods 2014, 11, 338–346. [Google Scholar] [CrossRef]
- Schild, L.C.; Glauser, D.A. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis Elegans. Genetics 2015, 200, 1029–1034. [Google Scholar] [CrossRef]
- Shemesh, O.A.; Tanese, D.; Zampini, V.; Linghu, C.; Piatkevich, K.; Ronzitti, E.; Papagiakoumou, E.; Boyden, E.S.; Emiliani, V. Temporally Precise Single-Cell-Resolution Optogenetics. Nat. Neurosci. 2017, 20, 1796–1806. [Google Scholar] [CrossRef]
- Ganjawala, T.H.; Lu, Q.; Fenner, M.D.; Abrams, G.W.; Pan, Z.-H. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions. Mol. Ther. 2019, 27, 1195–1205. [Google Scholar] [CrossRef]
- Yan, B.; Viswanathan, S.; Brodie, S.E.; Deng, W.-T.; Coleman, K.E.; Hauswirth, W.W.; Nirenberg, S. A Clinically Viable Approach to Restoring Visual Function Using Optogenetic Gene Therapy. Mol. Ther.-Methods Clin. Dev. 2023, 29, 406–417. [Google Scholar] [CrossRef]
- Cheong, S.K.; Strazzeri, J.M.; Williams, D.R.; Merigan, W.H. All-Optical Recording and Stimulation of Retinal Neurons in Vivo in Retinal Degeneration Mice. PLoS ONE 2018, 13, e0194947. [Google Scholar] [CrossRef]
- Chaffiol, A.; Provansal, M.; Joffrois, C.; Blaize, K.; Labernede, G.; Goulet, R.; Burban, E.; Brazhnikova, E.; Duebel, J.; Pouget, P.; et al. In Vivo Optogenetic Stimulation of the Primate Retina Activates the Visual Cortex after Long-Term Transduction. Mol. Ther.-Methods Clin. Dev. 2022, 24, 1–10. [Google Scholar] [CrossRef]
- Gauvain, G.; Akolkar, H.; Chaffiol, A.; Arcizet, F.; Khoei, M.A.; Desrosiers, M.; Jaillard, C.; Caplette, R.; Marre, O.; Bertin, S.; et al. Optogenetic Therapy: High Spatiotemporal Resolution and Pattern Discrimination Compatible with Vision Restoration in Non-Human Primates. Commun. Biol. 2021, 4, 125. [Google Scholar] [CrossRef]
- Sahel, J.-A.; Boulanger-Scemama, E.; Pagot, C.; Arleo, A.; Galluppi, F.; Martel, J.N.; Esposti, S.D.; Delaux, A.; de Saint Aubert, J.-B.; de Montleau, C.; et al. Partial Recovery of Visual Function in a Blind Patient after Optogenetic Therapy. Nat. Med. 2021, 27, 1223–1229. [Google Scholar] [CrossRef]
- McGregor, J.E.; Kunala, K.; Xu, Z.; Murphy, P.J.; Godat, T.; Strazzeri, J.M.; Bateman, B.A.; Fischer, W.S.; Parkins, K.; Chu, C.J.; et al. Optogenetic Therapy Restores Retinal Activity in Primate for at Least a Year Following Photoreceptor Ablation. Mol. Ther. 2022, 30, 1315–1328. [Google Scholar] [CrossRef]
- Marshel, J.H.; Kim, Y.S.; Machado, T.A.; Quirin, S.; Benson, B.; Kadmon, J.; Raja, C.; Chibukhchyan, A.; Ramakrishnan, C.; Inoue, M.; et al. Cortical Layer–Specific Critical Dynamics Triggering Perception. Science 2019, 365, eaaw5202. [Google Scholar] [CrossRef]
- Kishi, K.E.; Kim, Y.S.; Fukuda, M.; Inoue, M.; Kusakizako, T.; Wang, P.Y.; Ramakrishnan, C.; Byrne, E.F.X.; Thadhani, E.; Paggi, J.M.; et al. Structural Basis for Channel Conduction in the Pump-like Channelrhodopsin ChRmine. Cell 2022, 185, 672–689. [Google Scholar] [CrossRef]
- Bansal, H.; Pyari, G.; Roy, S. Theoretical Prediction of Broadband Ambient Light Optogenetic Vision Restoration with ChRmine and Its Mutants. Sci. Rep. 2024, 14, 11642. [Google Scholar] [CrossRef]
- Batabyal, S.; Cervenka, G.; Ha, J.H.; Kim, Y.; Mohanty, S. Broad-Band Activatable White-Opsin. PLoS ONE 2015, 10, e0136958. [Google Scholar] [CrossRef]
- Wright, W.; Pradhan, S.; Bhattacharya, S.; Mahapatra, V.; Tripathy, A.; Gajjeraman, S.; Mohanty, S. Multi-Characteristic Opsin Enabled Vision Restoration. Proc. SPIE 2017, 4, 041505. [Google Scholar] [CrossRef]
- Wright, W.W.; Gajjeraman, S.; Batabyal, S.; Pradhan, S.; Bhattacharya, S.; Mahapatra, V.; Tripathy, A.; Mohanty, S.K. Restoring Vision in Mice with Retinal Degeneration Using Multicharacteristic Opsin. Neurophotonics 2017, 4, 1. [Google Scholar] [CrossRef]
- Batabyal, S.; Gajjeraman, S.; Pradhan, S.; Bhattacharya, S.; Wright, W.; Mohanty, S. Sensitization of ON-Bipolar Cells with Ambient Light Activatable Multi-Characteristic Opsin Rescues Vision in Mice. Gene Ther. 2020, 28, 162–176. [Google Scholar] [CrossRef]
- Batabyal, S.; Kim, S.; Carlson, M.; Narcisse, D.; Tchedre, K.; Dibas, A.; Sharif, N.A.; Mohanty, S. Multi-Characteristic Opsin Therapy to Functionalize Retina, Attenuate Retinal Degeneration, and Restore Vision in Mouse Models of Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2024, 13, 25. [Google Scholar] [CrossRef]
- Batabyal, S.; Kim, S.; Carlson, M.; Narcisse, D.; Tchedre, K.; Dibas, A.; Sharif, N.A.; Mohanty, S. Multi-characteristic opsin gene therapy attenuates retinal degeneration and restore vision in mouse models of retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2024, 65, 5356. [Google Scholar]
- Boyer, D.S.; Bergstrom, L.; Emanuelli, A.; Gonzalez, V.H.; Wykoff, C.C.; Gupta, S.; Liao, D.S.; Zak, V.; Chavala, S.H.; Mohanty, S.; et al. Efficacy and safety of MCO-010 optogenetic therapy for vision restoration in patients with severe vision loss due to retinitis pigmentosa: A phase 2b randomized, sham-controlled, multi-center, multi-dose, double-masked clinical trial (RESTORE). Investig. Ophthalmol. Vis. Sci. 2023, 64, 5443. [Google Scholar]
- Ho, A. Longitudinal BCVA analysis of low-or high-dose MCO-010 mutation agnostic optogenetic therapy for retinitis pigmentosa: 12-month results from a Phase 2b/3 randomized, sham-controlled, patient-and assessor-masked clinical trial (RESTORE). Investig. Ophthalmol. Vis. Sci. 2024, 65, 2137. [Google Scholar]
- Gonzalez, V.H.; Lam, B.L.; Zak, V.; Mohanty, S.; Chang, J.; Ayyagari, A.; Chavala, S.H.; Piltz-Seymour, J.; Koester, J.; Osborne, A. MCO-010 intravitreal optogenetic therapy in Stargardt disease. 6-month outcomes from the Phase 2 STARLIGHT trial. Investig. Ophthalmol. Vis. Sci. 2023, 64, 3546. [Google Scholar]
- Mahajan, V.B. Longitudinal BCVA Analysis of Patients With Stargardt Disease and Macular Degeneration Treated With MCO-010, a Mutation-Agnostic Optogenetic Therapy: 48-Week Results From a Phase 2a Clinical Trial (STARLIGHT). Investig. Ophthalmol. Vis. Sci. 2024, 65, 5266. [Google Scholar]
- Zhang, Y.; Ivanova, E.; Bi, A.; Pan, Z.-H. Ectopic Expression of Multiple Microbial Rhodopsins Restores on and off Light Responses in Retinas with Photoreceptor Degeneration. J. Neurosci. 2009, 29, 9186–9196. [Google Scholar] [CrossRef]
- Gradinaru, V.; Thompson, K.R.; Deisseroth, K. ENpHR: A Natronomonas Halorhodopsin Enhanced for Optogenetic Applications. Brain Cell Biol. 2008, 36, 129–139. [Google Scholar] [CrossRef]
- Busskamp, V.; Duebel, J.; Balya, D.; Fradot, M.; Viney, T.J.; Siegert, S.; Groner, A.C.; Cabuy, E.; Forster, V.; Seeliger, M.; et al. Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa. Science 2010, 329, 413–417. [Google Scholar] [CrossRef]
- Chuong, A.S.; Miri, M.L.; Busskamp, V.; Matthews, G.A.C.; Acker, L.C.; Sørensen, A.T.; Young, A.; Klapoetke, N.C.; Henninger, M.A.; Kodandaramaiah, S.B.; et al. Noninvasive Optical Inhibition with a Red-Shifted Microbial Rhodopsin. Nat. Neurosci. 2014, 17, 1123–1129. [Google Scholar] [CrossRef]
- Khabou, H.; Garita-Hernandez, M.; Chaffiol, A.; Reichman, S.; Jaillard, C.; Brazhnikova, E.; Bertin, S.; Forster, V.; Desrosiers, M.; Winckler, C.; et al. Noninvasive Gene Delivery to Foveal Cones for Vision Restoration. JCI Insight 2018, 3, e96029. [Google Scholar] [CrossRef]
- Lin, B.; Koizumi, A.; Tanaka, N.; Panda, S.; Masland, R.H. Restoration of Visual Function in Retinal Degeneration Mice by Ectopic Expression of Melanopsin. Proc. Natl. Acad. Sci. USA 2008, 105, 16009–16014. [Google Scholar] [CrossRef]
- Liu, M.M.; Dai, J.M.; Liu, W.Y.; Zhao, C.J.; Lin, B.; Yin, Z.Q. Human Melanopsin-AAV2/8 Transfection to Retina Transiently Restores Visual Function in Rd1 Mice. Int. J. Ophthalmol. 2016, 9, 655–661. [Google Scholar] [CrossRef]
- De Silva, S.R.; Barnard, A.R.; Hughes, S.; Tam, S.K.E.; Martin, C.; Singh, M.S.; Barnea-Cramer, A.O.; McClements, M.E.; During, M.J.; Peirson, S.N.; et al. Long-Term Restoration of Visual Function in End-Stage Retinal Degeneration Using Subretinal Human Melanopsin Gene Therapy. Proc. Natl. Acad. Sci. USA 2017, 114, 11211–11216. [Google Scholar] [CrossRef]
- Van Wyk, M.; Pielecka-Fortuna, J.; Löwel, S.; Kleinlogel, S. Restoring the on Switch in Blind Retinas: Opto-MGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol. 2015, 13, e1002143. [Google Scholar] [CrossRef]
- Maddalena, A.; Kleinlogel, S. CRISPR-Mediated Optogene Expression from a Cell-Specific Endogenous Promoter in Retinal ON-Bipolar Cells to Restore Vision. Drug Deliv. 2023, 3, 934394. [Google Scholar] [CrossRef]
- Caporale, N.; Kolstad, K.D.; Lee, T.W.; Tochitsky, I.; Dalkara, D.; Trauner, D.; Kramer, R.H.; Dan, Y.; Isacoff, E.Y.; Flannery, J.G. LiGluR Restores Visual Responses in Rodent Models of Inherited Blindness. Mol. Ther. 2011, 19, 1212–1219. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Eleftheriou, C.; Allen, A.E.; Milosavljevic, N.; Pienaar, A.; Bedford, R.; Davis, K.E.; Bishop, P.N.; Lucas, R.J. Restoration of Vision with Ectopic Expression of Human Rod Opsin. Curr. Biol. 2015, 25, 2111–2122. [Google Scholar] [CrossRef]
- Berry, M.H.; Holt, A.; Levitz, J.; Broichhagen, J.; Gaub, B.M.; Visel, M.; Stanley, C.; Aghi, K.; Kim, Y.J.; Cao, K.; et al. Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat. Commun. 2017, 8, 1862. [Google Scholar] [CrossRef]
- Berry, M.H.; Holt, A.; Salari, A.; Veit, J.; Visel, M.; Levitz, J.; Aghi, K.; Gaub, B.M.; Sivyer, B.; Flannery, J.G.; et al. Restoration of High-Sensitivity and Adapting Vision with a Cone Opsin. Nat. Commun. 2019, 10, 1221. [Google Scholar] [CrossRef]
- Katada, Y.; Yoshida, K.; Serizawa, N.; Lee, D.; Kobayashi, K.; Negishi, K.; Okano, H.; Kandori, H.; Tsubota, K.; Kurihara, T. Highly Sensitive Visual Restoration and Protection via Ectopic Expression of Chimeric Rhodopsin in Mice. iScience 2023, 26, 107716. [Google Scholar] [CrossRef]
Light-Sensitive Protein | Source | Function | Optimal Light Wavelength (nm) | Key Properties | Citations |
---|---|---|---|---|---|
ChR2 (Channelrhodopsin-2) | Chlamydomonas reinhardtii (algae) | Depolarization (light-gated non-selective cation channel) | ~460 | First opsin utilized in optogenetic vision restoration | Bi et al. (2006) [25], Tomita et al. (2007) [26], Lagali et al. (2008) [27], Tomita et al. (2010) [28], Doroudchi et al. (2011) [29], Macé et al. (2015) [30] |
CatCh (Calcium-Translocating Channelrhodopsin) | Modification of ChR2 | Depolarization (light-gated non-selective cation channel) | ~478 | Improved Ca2+ permeability, leading to increased light sensitivity compared to ChR2 | Kleinlogel et al. (2011) [31], Chaffiol et al. (2017) [32] |
PsCatCh2.0 (Platymonas subcordiformis Channelrhodopsin 2.0) | Modification of PsChR from Platymonas (Tetraselmis) subcordiformis | Depolarization (light-gated non-selective cation channel) | ~475 | Improved Ca2+ and Na+ conductance and kinetics compared to CatCh | Govorunova et al. (2013) [33], Chen et al. (2022) [34] |
NpHR (Halorhodopsin) | Natronomonas pharaonis (archaea) | Hyperpolarization (light-gated Cl−- pump) | ~580 | First hyperpolarizing opsin utilized in optogenetic vision restoration | Zhang et al. (2009) [35] |
eNpHR (Enhanced Halorhodopsin) | Modification of NpHR | Hyperpolarization (light-gated Cl−- pump) | ~580 | Improved distribution within the cell, with stronger localization in the cell membrane compared to NpHR | Gradinaru et al. (2008) [69], Busskamp et al. (2010) [70] |
VChR1 (Volvox Channelrhodopsin-1) | Volvox carteri (algae) | Depolarization (light-gated non-selective cation channel) | ~535 | Red-shifted microbial opsin | Zhang et al. (2008) [35], Kianianmomeni et al. (2009) [36] |
ReaChR (Red-Shifted Channelrhodopsin) | Modification of VChR1 | Depolarization (light-gated non-selective cation channel) | ~630 | Modified red-shifted microbial opsin; functions effectively over a broad spectrum of light wavelengths | Lin et al. (2013) [37], Sengupta et al. (2016) [38], Ferrari et al. (2020) [39] |
bReaChES | Modification of ReaChR | Depolarization (light-gated non-selective cation channel) | ~575 | Modified red-shifted microbial opsin; functions effectively over a broad spectrum of light wavelengths; exhibits high light sensitivity and temporal resolution | Rajasethupathy et al. (2015) [40], Too et al. (2022) [41] |
mVChR1 (Modified VChR1) | Chimeric protein combining Volvox channelrhodopsin-1 and Chlamydomonas channelrhodopsin-1 | Depolarization (light-gated non-selective cation channel) | ~505 | Functions effectively over a broad spectrum of light wavelengths | Tomita et al. (2014) [42] |
ComV1 (ex3mV1) | Modification of mVChR1 | Depolarization (light-gated non-selective cation channel) | ~ 505 | Improved light sensitivity compared to mVChR1 | Watanabe et al. (2021) [43] |
H172A Mutant of ComV1 | Modification of ComV1 | Depolarization (light-gated non-selective cation channel) | ~500 | Improved kinetics compared to ComV1 | Hatakeyama et al. (2023) [44] |
Jaws | Modified opsin from Haloarcula salinarum (Halobacteriaceae) | Hyperpolarization (light-gated Cl−- pump) | ~600 | Red-shifted microbial hyperpolarizing opsin | Chuong et al. (2014) [71], Khabou et al. (2018) [72] |
CoChR (Chloromonas oogama Channelrhodopsin) | Chloromonas oogama | Depolarization (light-gated non-selective cation channel) | ~480 | Microbial opsin with improved light sensitivity | Klapoetke et al. (2014) [45], Schild et al. (2015) [46], Shemesh et al. (2017) [47] |
CoChR-LC | Modification of CoChR | Depolarization (light-gated non-selective cation channel) | ~480 | Improved light sensitivity compared to CoChR | Ganjawala et al. (2019) [48] |
CoChR-3M | Modification of CoChR | Depolarization (light-gated non-selective cation channel) | ~480 | Improved light sensitivity compared to CoChR | Ganjawala et al. (2019) [48] |
Chronos (ShChR, Stigeoclonium Helveticum Channelrhodopsin) | Stigeoclonium helveticum (algae) | Depolarization (light-gated non-selective cation channel) | ~500 | Microbial opsin with improved kinetics | Klapoetke et al. (2014) [45], Yan et al. (2023) [49] |
ChrimsonR (CnChR1, Chlamydomonas Noctigama Channelrhodopsin 1) | Chlamydomonas noctigama (algae) | Depolarization (light-gated non-selective cation channel) | ~590 | Red-shifted microbial opsin | Klapoetke et al. (2014) [45], Cheong et al. (2018) [50], Chaffiol et al. (2021) [51], Gauvain et al. (2021) [52], McGregor et al. (2022) [54] |
ChRmine | Rhodomonas lens (algae) | Depolarization (light-gated non-selective cation channel, with the structure partially resembling a cation pump) | ~515 | Red-shifted microbial opsin; high light sensitivity; broad activation spectrum | Marshel et al. (2019) [55], Kishi et al. (2022) [56] |
hsChRmine | Modification of ChRmine | Depolarization (light-gated non-selective cation channel, with the structure partially resembling a cation pump) | ~515 | Improved temporal resolution compared to ChRmine | Kishi et al. (2022) [56], Bansal et al. (2024) [57] |
frChRmine | Modification of ChRmine | Depolarization (light-gated non-selective cation channel, with the structure partially resembling a cation pump) | ~585 | Enhanced red-light sensitivity compared to ChRmine | Kishi et al. (2022) [56], Bansal et al. (2024) [57] |
rsChRmine | Modification of ChRmine | Depolarization (light-gated non-selective cation channel, with the structure partially resembling a cation pump) | ~510 | Slightly red-shifted activation range compared to ChRmine | Kishi et al. (2022) [56], Bansal et al. (2024) [57] |
White-opsin | Fusion of ChR2, C1V1, and ReaChR opsins | Depolarization (complex mechanism based on channel properties of the fused proteins) | ~600 | Broad spectral excitability across the visible spectrum | Batabyal et al. (2015) [58] |
MCO1 (Multi-Characteristic Opsin 1) | Designed in silico and laboratory-produced | Depolarization (complex mechanism) | ~500 | Exhibits high light sensitivity and functions effectively over a broad spectrum of light wavelengths | Wright et al. (2017) [59], Wright et al. (2017) [60], Batabyal et al. (2021) [61], Boyer et al. (2023) [64], Gonzalez et al. (2023) [66], Mahajan (2024) [67], Batabyal et al. (2024) [62], Batabyal et al. (2024) [63], Ho (2024) [65] |
OPN4 (Melanopsin) | Vertebrates (including Homo sapiens) | Depolarization (G-protein-dependent pathway) | ~480 | First vertebrate opsin utilized in optogenetic vision restoration | Lin et al. (2008) [73], Liu et al. (2016) [74], de Silva et al. (2017) [75] |
Opto-mGluR6 | Chimeric protein combining the light-sensing domains of OPN4 with the ON bipolar cell-specific metabotropic glutamate receptor mGluR6 | Depolarization (G-protein-dependent pathway) | ~479 | Chimeric protein reaching increased light sensitivity | Van Wyk et al. (2015) [76] |
LiGluR (Light-Gated Ionotropic Glutamate Receptor) | Engineered mammalian ionotropic glutamate receptor | Depolarization (light-gated non-selective cation channel) | Bistable photoswitch (380 nm opens the channel; 500 nm closes it) | Utilizes a reversible photoswitch for activation and deactivation | Caporale et al. (2011) [78] |
Rho (Human Rhodopsin) | Homo sapiens | Depolarization (G-protein-dependent pathway) | ~497 | Human opsin expressing high light sensitivity | Cehajic-Kapetanovic et al. (2015) [79] |
SNAG-mGluR2 (Photoswitch-Charged Metabotropic Glutamate Receptor 2) | Fusion of mammalian metabotropic glutamate receptor 2 with a SNAP photoswitch | Hyperpolarization (G-protein-dependent pathway) | ~445 | Evokes OFF responses to light | Berry et al. (2017) [80] |
MW-opsin (Medium-Wavelength Cone Opsin) | Vertebrates (including Homo sapiens) | Depolarization (G-protein-dependent pathway) | ~535 | Exhibits light sensitivity comparable to rhodopsin, while demonstrating ten-times-faster kinetics | Berry et al. (2019) [81] |
GHCR (Gleobacter–Human Chimeric Rhodopsin) | Chimeric protein replacing parts of Gloeobacter (cyanobacteria) rhodopsin with parts of human rhodopsin | Depolarization (light-gated non-selective cation channel activating G-protein-dependent pathway) | ~500 | Microbial–human opsin chimera; high light sensitivity and increased adaptation to light intensity changes compared to microbial and vertebrate opsins | Katada et al. (2023) [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poboży, K.; Poboży, T.; Domański, P.; Derczyński, M.; Konarski, W.; Domańska-Poboża, J. Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review. Biomedicines 2025, 13, 429. https://doi.org/10.3390/biomedicines13020429
Poboży K, Poboży T, Domański P, Derczyński M, Konarski W, Domańska-Poboża J. Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review. Biomedicines. 2025; 13(2):429. https://doi.org/10.3390/biomedicines13020429
Chicago/Turabian StylePoboży, Kamil, Tomasz Poboży, Paweł Domański, Michał Derczyński, Wojciech Konarski, and Julia Domańska-Poboża. 2025. "Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review" Biomedicines 13, no. 2: 429. https://doi.org/10.3390/biomedicines13020429
APA StylePoboży, K., Poboży, T., Domański, P., Derczyński, M., Konarski, W., & Domańska-Poboża, J. (2025). Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review. Biomedicines, 13(2), 429. https://doi.org/10.3390/biomedicines13020429