Dual-Action Regenerative Therapies: Regeneration and Antimicrobial Effects of Platelet- and Marrow-Derived Biologics
Abstract
1. Introduction
2. Biological Basis of Regenerative Protein Products
3. Platelet-Rich Plasma
3.1. Preparation and Activation
| Spin Protocol | Blood Volume | Tube/Separator Type | Anticoagulant |
|---|---|---|---|
| Double: (1) 100× g, 15 min; (2) 1600× g, 20 min [31] | 10 mL | 10 mL conical tube | ACD-A |
| Single: 100× g, 10 min Double: (1) 100× g, 10 min; (2) 400× g, 10 min [39] | 15 mL | Conical tubes | ACD-A |
| Single: 3000 rpm, 15 min Double: (1) 15,000 rpm, 6 min; (2) 2500 rpm, 15 min [40] | 15 mL | Standard tubes | Sodium citrate 3.2% |
| Double: (1) 900× g, 5 min; (2) 1500× g; 10 min [41] | 18 mL | 15 mL conical tube | Citrate phosphate dextrose |
3.2. Indications
3.3. Antibacterial and Antifungal Properties
3.4. Limitations
4. Bone Marrow Aspirate Concentrate
4.1. Preparation and Delivery
4.2. Indications
4.3. Antibacterial and Antifungal Properties
4.4. Limitations
5. Autologous Protein Solution and Plasma Fractions
5.1. Autologous Protein Solution
5.2. Platelet-Poor Plasma
5.3. Protein-Rich Plasma and Ultrafiltration-Derived Protein Concentrates
6. Other Protein-Based Regenerative Therapies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PRP | Platelet-rich plasma |
| BMAC | Bone marrow aspirate concentrate |
| GF | Growth factor |
| PDGF | Platelet-derived growth factor |
| EGF | Epidermal growth factor |
| TGF-β | Transforming growth factor-β |
| ECM | Extracellular matrix |
| RR | Recovery rate |
| PPP | Platelet-poor plasma |
| MSC | Mesenchymal stem cell |
| BMSC | Bone marrow stromal cell |
| APS | Autologous protein solution |
| PR-PRP | Protein-rich platelet-rich plasma |
| PEF-PRP | Protein-enriched filtered platelet-rich plasma |
| ACS | Autologous conditioned serum |
References
- Green, E.M.; Lee, R.T. Proteins and Small Molecules for Cellular Regenerative Medicine. Physiol. Rev. 2013, 93, 311–325. [Google Scholar] [CrossRef]
- Gu, X.; Carroll Turpin, M.A.; Romero-Ortega, M.I. Biomaterials and Regenerative Medicine in Pain Management. Curr. Pain. Headache Rep. 2022, 26, 533–541. [Google Scholar] [CrossRef]
- Kaye, A.D.; Edinoff, A.N.; Rosen, Y.E.; Boudreaux, M.A.; Kaye, A.J.; Sheth, M.; Cornett, E.M.; Moll, V.; Friedrich, C.; Verhagen, J.S.; et al. Regenerative Medicine: Pharmacological Considerations and Clinical Role in Pain Management. Curr. Pain. Headache Rep. 2022, 26, 751–765. [Google Scholar] [CrossRef]
- Martínez-Zapata, M.J.; Martí-Carvajal, A.; Solà, I.; Bolibar, I.; Ángel Expósito, J.; Rodriguez, L.; García, J. Efficacy and Safety of the Use of Autologous Plasma Rich in Platelets for Tissue Regeneration: A Systematic Review. Transfusion 2009, 49, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Enoch, S.; Leaper, D.J. Basic Science of Wound Healing. Surgery 2008, 26, 31–37. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Yeaman, M.R.; Selsted, M.E. Antimicrobial Peptides from Human Platelets. Infect. Immun. 2002, 70, 6524–6533. [Google Scholar] [CrossRef] [PubMed]
- Bielecki, T.M.; Gazdzik, T.S.; Arendt, J.; Szczepanski, T.; Król, W.; Wielkoszynski, T. Antibacterial Effect of Autologous Platelet Gel Enriched with Growth Factors and Other Active Substances: An In Vitro Study. J. Bone Jt. Surg. Br. 2007, 89, 417–420. [Google Scholar] [CrossRef]
- Drago, L.; Bortolin, M.; Vassena, C.; Taschieri, S.; Del Fabbro, M. Antimicrobial Activity of Pure Platelet-Rich Plasma against Microorganisms Isolated from Oral Cavity. BMC Microbiol. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Lehrer, R.I. Antimicrobial Peptides of Leukocytes. Curr. Opin. Hematol. 1997, 4, 53–58. [Google Scholar] [CrossRef]
- Malmsten, M.; Davoudi, M.; Walse, B.; Rydengård, V.; Pasupuleti, M.; Mörgelin, M.; Schmidtchen, A. Antimicrobial Peptides Derived from Growth Factors. Growth Factors 2007, 25, 60–70. [Google Scholar] [CrossRef]
- Lu, S.L.; Noda, T. VEGF (Vascular Endothelial Growth Factor) Provides Antimicrobial Effects via Autophagy and Lysosomal Empowerment in Endothelial Cells. Autophagy Rep. 2022, 1, 555. [Google Scholar] [CrossRef]
- Reed, S.G. TGF-β in Infections and Infectious Diseases. Microbes Infect. 1999, 1, 1313–1325. [Google Scholar] [CrossRef] [PubMed]
- Batista-Silva, L.R.; Rodrigues, L.S.; Vivarini, A.D.C.; Costa, F.D.M.R.; De Mattos, K.A.; Costa, M.R.S.N.; Rosa, P.S.; Toledo-Pinto, T.G.; Dias, A.A.; Moura, D.F.; et al. Mycobacterium leprae-Induced Insulin-like Growth Factor I Attenuates Antimicrobial Mechanisms, Promoting Bacterial Survival in Macrophages. Sci. Rep. 2016, 6, 27632. [Google Scholar] [CrossRef]
- Kearney, K.J.; Ariëns, R.A.S.; MacRae, F.L. The Role of Fibrin(Ogen) in Wound Healing and Infection Control. Semin. Thromb. Hemost. 2022, 48, 174–187. [Google Scholar] [CrossRef]
- Moman, R.N.; Gupta, N.; Varacallo, M.A. Physiology, Albumin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Pikoulas, A.; Morianos, I.; Nidris, V.N.; Hamdy, R.; López-López, Á.; Moran-Garrido, M.; Muthu, V.; Halabalaki, M.; Papadovasilaki, M.; Irene, K.; et al. Albumin Orchestrates a Natural Host Defense Mechanism against Mucormycosis. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Arzumanyan, V.G.; Ozhovan, I.M.; Svitich, O.A. Antimicrobial Effect of Albumin on Bacteria and Yeast Cells. Bull. Exp. Biol. Med. 2019, 167, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.A.; Ahsan, H.; Khan, F.H. Alpha-2-Macroglobulin: A Physiological Guardian. J. Cell. Physiol. 2013, 228, 1665–1675. [Google Scholar] [CrossRef] [PubMed]
- Buontempo, M.G.; Alhanshali, L.; Shapiro, J.; Sicco, K.L.; Garshick, M.S. Platelet-Rich Plasma Applications, the Past 5 Years: A Review Article. EMJ Dermatol. Dermatol. 2023, 10. [Google Scholar] [CrossRef]
- Mathew, J.; Sankar, P.; Varacallo, M.A. Physiology, Blood Plasma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Rath, M.; Spinnen, J.; Kuhrt, L.D.; Priglinger, E.; Seika, P.; Runge, D.; Schubring, S.; Laue, D.; Wickert, M.; Erdem, M.; et al. Platelet-Rich Plasma—A Comprehensive Review of Isolation, Activation, and Application. Acta Biomater. 2025, 204, 52–75. [Google Scholar] [CrossRef]
- Crickx, E.; Mahévas, M.; Michel, M.; Godeau, B. Older Adults and Immune Thrombocytopenia: Considerations for the Clinician. Clin. Interv. Aging 2023, 18, 115–130. [Google Scholar] [CrossRef]
- Weibrich, G.; Kleis, W.K.G.; Hafner, G.; Hitzler, W.E. Growth Factor Levels in Platelet-Rich Plasma and Correlations with Donor Age, Sex, and Platelet Count. J. Cranio-Maxillofac. Surg. 2002, 30, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Yoshioka, T.; Sugaya, H.; Gosho, M.; Aoto, K.; Kanamori, A.; Yamazaki, M. Growth Factor Levels in Leukocyte-Poor Platelet-Rich Plasma and Correlations with Donor Age, Gender, and Platelets in the Japanese Population. J. Exp. Orthop. 2019, 6, 4. [Google Scholar] [CrossRef]
- Harrison, T.E.; Bowler, J.; Levins, T.N.; Cheng, A.L.; Reeves, K.D. Platelet Yield and Yield Consistency for Six Single-Spin Methods of Platelet Rich Plasma Preparation. Platelets 2020, 31, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Arora, G.; Arora, S. Platelet-Rich Plasma—Where Do We Stand Today? A Critical Narrative Review and Analysis. Dermatol. Ther. 2021, 34, e14343. [Google Scholar] [CrossRef]
- Harrison, P.; Alsousou, J.; Andia, I.; Burnouf, T.; Dohan Ehrenfest, D.; Everts, P.; Langer, H.; Magalon, J.; Marck, R.; Gresele, P. The Use of Platelets in Regenerative Medicine and Proposal for a New Classification System: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 1895–1900. [Google Scholar] [CrossRef] [PubMed]
- Piao, L.; Park, H.; Jo, C.H. Theoretical Prediction and Validation of Cell Recovery Rates in Preparing Platelet-Rich Plasma through a Centrifugation. PLoS ONE 2017, 12, e0187509. [Google Scholar] [CrossRef]
- Yin, W.; Qi, X.; Zhang, Y.; Sheng, J.; Xu, Z.; Tao, S.; Xie, X.; Li, X.; Zhang, C. Advantages of Pure Platelet-Rich Plasma Compared with Leukocyte- and Platelet-Rich Plasma in Promoting Repair of Bone Defects. J. Transl. Med. 2016, 14, 73. [Google Scholar] [CrossRef]
- Jo, C.H.; Roh, Y.H.; Kim, J.E.; Shin, S.; Yoon, K.S. Optimizing Platelet-Rich Plasma Gel Formation by Varying Time and Gravitational Forces during Centrifugation. J. Oral Implant. 2013, 39, 525–532. [Google Scholar] [CrossRef]
- Muthu, S.; Krishnan, A.; Ramanathan, K.R. Standardization and Validation of a Conventional High Yield Platelet-Rich Plasma Preparation Protocol. Ann. Med. Surg. 2022, 82, 104593. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Chen, X.; Du, X.; Luo, Y.; Li, Y.; Kang, J.; Wan, L.; Tang, J.; Fu, X. Comparative Analysis of the Quality of Platelet Concentrates Produced by Apheresis Procedures, Platelet Rich Plasma, and Buffy Coat. Transfusion 2024, 64, 367–379. [Google Scholar] [CrossRef]
- Everts, P.A.M.; Brown Mahoney, C.; Hoffmann, J.J.M.L.; Schönberger, J.P.A.M.; Box, H.A.M.; van Zundert, A.; Knape, J.T.A. Platelet-Rich Plasma Preparation Using Three Devices: Implications for Platelet Activation and Platelet Growth Factor Release. Growth Factors 2006, 24, 165–171. [Google Scholar] [CrossRef]
- Bajaj, S.P.; Butkowski, R.J.; Mann, K.G. Prothrombin Fragments. Ca2+ Binding and Activation Kinetics. J. Biol. Chem. 1975, 250, 2150–2156. [Google Scholar] [CrossRef]
- Franco, D.; Franco, T.; Schettino, A.M.; Filho, J.M.T.; Vendramin, F.S. Protocol for Obtaining Platelet-Rich Plasma (PRP), Platelet-Poor Plasma (PPP), and Thrombin for Autologous Use. Aesthetic Plast. Surg. 2012, 36, 1254–1259. [Google Scholar] [CrossRef]
- Farndale, R.W. Collagen-Induced Platelet Activation. Blood Cells Mol. Dis. 2006, 36, 162–165. [Google Scholar] [CrossRef]
- Caiado, A.; Ferreira-Dos-Santos, G.; Gonçalves, S.; Horta, L.; Soares Branco, P. Proposal of a New Standardized Freeze-Thawing Technical Protocol for Leucocyte-Poor Platelet-Rich Plasma Preparation and Cryopreservation. Cureus 2020, 12, e8997. [Google Scholar] [CrossRef] [PubMed]
- Strandberg, G.; Sellberg, F.; Sommar, P.; Ronaghi, M.; Lubenow, N.; Knutson, F.; Berglund, D. Standardizing the Freeze-Thaw Preparation of Growth Factors from Platelet Lysate. Transfusion 2017, 57, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; BS, R.; Biligi, D.S.; Prasanna BK, P. Comparison of Different Methods of Centrifugation for Preparation of Platelet-Rich Plasma (PRP). Indian J. Pathol. Oncol. 2025, 3, 535–539. [Google Scholar] [CrossRef]
- Legiawati, L.; Yusharyahya, S.N.; Bernadette, I.; Novianto, E.; Priyanto, M.H.; Gliselda, K.C.; Iriyanty, S.; Mutiara, R. Comparing Single-Spin Versus Double-Spin Platelet-Rich Plasma (PRP) Centrifugation Methods on Thrombocyte Count and Clinical Improvement of Androgenetic Alopecia: A Preliminary, Randomized, Double-Blind Clinical Trial. J. Clin. Aesthetic Dermatol. 2023, 16, 39–44. [Google Scholar] [PubMed]
- Seidel, S.R.T.; Vendruscolo, C.P.; Moreira, J.J.; Fülber, J.; Ottaiano, T.F.; Oliva, M.L.V.; Michelacci, Y.M.; Baccarin, R.Y.A. Does Double Centrifugation Lead to Premature Platelet Aggregation and Decreased TGF-Β1 Concentrations in Equine Platelet-Rich Plasma? Vet. Sci. 2019, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Le, A.D.K.; Enweze, L.; DeBaun, M.R.; Dragoo, J.L. Current Clinical Recommendations for Use of Platelet-Rich Plasma. Curr. Rev. Musculoskelet. Med. 2018, 11, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Pötter, N.; Westbrock, F.; Grad, S.; Alini, M.; Stoddart, M.J.; Schmal, H.; Kubosch, D.; Salzmann, G.; Kubosch, E.J. Evaluation of the Influence of Platelet-Rich Plasma (PRP), Platelet Lysate (PL) and Mechanical Loading on Chondrogenesis In Vitro. Sci. Rep. 2021, 11, 20188. [Google Scholar] [CrossRef]
- Laudy, A.B.M.; Bakker, E.W.P.; Rekers, M.; Moen, M.H. Efficacy of Platelet-Rich Plasma Injections in Osteoarthritis of the Knee: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2015, 49, 657–672. [Google Scholar] [CrossRef]
- Dai, W.L.; Zhou, A.G.; Zhang, H.; Zhang, J. Efficacy of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Meta-Analysis of Randomized Controlled Trials. Arthrosc. J. Arthrosc. Relat. Surg. 2017, 33, 659–670.e1. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Bingi, S.K.; Muthu, S.; Jeyaraman, N.; Packkyarathinam, R.P.; Ranjan, R.; Sharma, S.; Jha, S.K.; Khanna, M.; Rajendran, S.N.S.; et al. Impact of the Process Variables on the Yield of Mesenchymal Stromal Cells from Bone Marrow Aspirate Concentrate. Bioengineering 2022, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, B.; Vandenbulcke, F.; Vitale, N.D.; Iacono, F.; Ashmore, K.; Marcacci, M.; Kon, E. Minimally Manipulated Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Systematic Review of Clinical Evidence. Stem Cells Int. 2019, 2019, 1735242. [Google Scholar] [CrossRef]
- Park, D.; Koh, H.S.; Choi, Y.H.; Park, I. Bone Marrow Aspirate Concentrate (BMAC) for Knee Osteoarthritis: A Narrative Review of Clinical Efficacy and Future Directions. Medicina 2025, 61, 853. [Google Scholar] [CrossRef]
- Gianakos, A.; Ni, A.; Zambrana, L.; Kennedy, J.G.; Lane, J.M. Bone Marrow Aspirate Concentrate in Animal Long Bone Healing: An Analysis of Basic Science Evidence. J. Orthop. Trauma 2016, 30, 1–9. [Google Scholar] [CrossRef]
- Cotter, E.J.; Wang, K.C.; Yanke, A.B.; Chubinskaya, S. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence. Cartilage 2018, 9, 161–170. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Xia, Y.; Li, Y.; Fu, C. Application of Platelet-Rich Plasma in Spinal Surgery. Front. Endocrinol. 2023, 14, 1138255. [Google Scholar] [CrossRef]
- Sethi, D.; Martin, K.E.; Shrotriya, S.; Brown, B.L. Systematic Literature Review Evaluating Evidence and Mechanisms of Action for Platelet-Rich Plasma as an Antibacterial Agent. J. Cardiothorac. Surg. 2021, 16, 277. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.A.M.; Hoffmann, J.; Weibrich, G.; Mahoney, C.B.; Schönberger, J.P.A.M.; Van Zundert, A.; Knape, J.T.A. Differences in Platelet Growth Factor Release and Leucocyte Kinetics during Autologous Platelet Gel Formation. Transfus. Med. 2006, 16, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Li, W.D.; Lin, F.; Sun, Y.; Zhu, Z.J.; Luo, M.L.; Zeng, Y.Q.; Lin, Z.; Zhou, M. Effect of Platelet-Rich Plasma and Platelet-Rich Fibrin on Healing of Burn Wound with Dual-Species Biofilm. Kaohsiung J. Med. Sci. 2025, 41, e12940. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.A.; Heiba, A.A.; Metwally, L.; Kishk, R.M.; Kamel, N. Antimicrobial Effect of Platelet Rich Plasma and Platelet Gel against Staphylococcus aureus Isolated from Surgical Site Infections: An In Vitro Study. Egypt. J. Med. Microbiol. 2019, 28, 113–120. [Google Scholar] [CrossRef]
- Gilbertie, J.M.; Schaer, T.P.; Schubert, A.G.; Jacob, M.E.; Menegatti, S.; Ashton Lavoie, R.; Schnabel, L.V. Platelet-Rich Plasma Lysate Displays Antibiofilm Properties and Restores Antimicrobial Activity against Synovial Fluid Biofilms In Vitro. J. Orthop. Res. 2020, 38, 1365–1374. [Google Scholar] [CrossRef]
- Aggour, R.L.; Gamil, L. Antimicrobial Effects of Platelet-Rich Plasma against Selected Oral and Periodontal Pathogens. Pol. J. Microbiol. 2017, 66, 31–37. [Google Scholar] [CrossRef]
- Niemczyk, W.; Kępa, M.; Żurek, J.; Aboud, A.; Skaba, D.; Wiench, R. Application of Platelet-Rich Fibrin and Concentrated Growth Factors as Carriers for Antifungal Drugs—In Vitro Study. J. Clin. Med. 2025, 14, 5111. [Google Scholar] [CrossRef]
- CL, K.; Jeyaraman, M.; Jeyaraman, N.; Ramasubramanian, S.; Khanna, M.; Yadav, S. Antimicrobial Effects of Platelet-Rich Plasma and Platelet-Rich Fibrin: A Scoping Review. Cureus 2023, 15, e51360. [Google Scholar] [CrossRef]
- Krepuska, M.; Mayer, B.; Vitale-Cross, L.; Myneni, V.D.; Boyajian, M.K.; Németh, K.; Szalayova, I.; Cho, T.; Mc Clain-Caldwell, I.; Gingerich, A.D.; et al. Bone Marrow Stromal Cell-Derived Hepcidin Has Antimicrobial and Immunomodulatory Activities. Sci. Rep. 2024, 14, 3986. [Google Scholar] [CrossRef]
- Imam, M.A.; Mahmoud, S.S.S.; Holton, J.; Abouelmaati, D.; Elsherbini, Y.; Snow, M. A Systematic Review of the Concept and Clinical Applications of Bone Marrow Aspirate Concentrate in Orthopaedics. SICOT J. 2017, 3, 17. [Google Scholar] [CrossRef]
- Canton, G.; Tomic, M.; Tosolini, L.; Di Lenarda, L.; Murena, L. Use of Bone Marrow Aspirate Concentrate (BMAC) in the Treatment of Delayed Unions and Nonunions: A Single-Center Case Series. Acta Biomed. 2023, 94, e2023118. [Google Scholar] [CrossRef]
- Hix, J.; Klaassen, M.; Foreman, R.; Cullen, E.; Toler, K.; King, W.; Woodell-May, J. An Autologous Anti-Inflammatory Protein Solution Yielded a Favorable Safety Profile and Significant Pain Relief in an Open-Label Pilot Study of Patients with Osteoarthritis. BioRes. Open Access 2017, 6, 151–158. [Google Scholar] [CrossRef]
- Fucaloro, S.P.; Bragg, J.; Berhane, M.; Mulvey, M.; Krivicich, L.; Zink, T.; Salzler, M. Complications of Platelet-Rich Plasma Injection for Knee Osteoarthritis Are Similar to Those of Corticosteroids and Hyaluronic Acid but Are Significantly Greater Than Those of Placebo Injections: A Meta-Analysis of Randomized Controlled Trials. Arthroscopy, 2025; in press. [Google Scholar] [CrossRef]
- Lim, J.J.; Belk, J.W.; Wharton, B.R.; McCarthy, T.P.; McCarty, E.C.; Dragoo, J.L.; Frank, R.M. Most Orthopaedic Platelet-Rich Plasma Investigations Don’t Report Protocols and Composition: An Updated Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2025, 41, 821–834. [Google Scholar] [CrossRef]
- Rahman, E.; Rao, P.; Abu-Farsakh, H.N.; Thonse, C.; Ali, I.; Upton, A.E.; Baratikkae, S.Y.; Carruthers, J.D.A.; Mosahebi, A.; Heidari, N.; et al. Systematic Review of Platelet-Rich Plasma in Medical and Surgical Specialties: Quality, Evaluation, Evidence, and Enforcement. J. Clin. Med. 2024, 13, 4571. [Google Scholar] [CrossRef]
- Asubiaro, J.; Avajah, F. Platelet-Rich Plasma in Aesthetic Dermatology: Current Evidence and Future Directions. Cureus 2024, 16, e66734. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019, 2019, 9628536. [Google Scholar] [CrossRef] [PubMed]
- García-Bernal, D.; García-Arranz, M.; Yáñez, R.M.; Hervás-Salcedo, R.; Cortés, A.; Fernández-García, M.; Hernando-Rodríguez, M.; Quintana-Bustamante, Ó.; Bueren, J.A.; García-Olmo, D.; et al. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front. Cell Dev. Biol. 2021, 9, 650664. [Google Scholar] [CrossRef] [PubMed]
- Chahla, J.; Mannava, S.; Cinque, M.E.; Geeslin, A.G.; Codina, D.; LaPrade, R.F. Bone Marrow Aspirate Concentrate Harvesting and Processing Technique. Arthrosc. Tech. 2017, 6, e441. [Google Scholar] [CrossRef]
- Dave, U.; Rubin, J.; Shah, H.; Gerhold, C.; McCormick, J.R.; Bi, A.S.; Yuh, C.; Rossi, L.A.; Chahla, J. Bone Marrow Aspirate Concentrate (BMAC) Harvested in the Axial and Appendicular Skeleton Does Not Differ in Progenitor Cell Count: A Systematic Review and Meta-Analysis. J. Orthop. 2025, 63, 216–223. [Google Scholar] [CrossRef]
- Muschler, G.F.; Nitto, H.; Boehm, C.A.; Easley, K.A. Age- and Gender-Related Changes in the Cellularity of Human Bone Marrow and the Prevalence of Osteoblastic Progenitors. J. Orthop. Res. 2001, 19, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.M.; Wu, X.; Gimble, J.M.; Guan, X.; Freitas, M.A.; Bunnell, B.A. Age-Related Changes in Mesenchymal Stem Cells Derived from Rhesus Macaque Bone Marrow. Aging Cell 2011, 10, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Piuzzi, N.S.; Hussain, Z.B.; Chahla, J.; Cinque, M.E.; Moatshe, G.; Mantripragada, V.P.; Muschler, G.F.; LaPrade, R.F. Variability in the Preparation, Reporting, and Use of Bone Marrow Aspirate Concentrate in Musculoskeletal Disorders: A Systematic Review of the Clinical Orthopaedic Literature. J. Bone Jt. Surg. 2018, 100, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Feddahi, N.; Herten, M.; Tassemeier, T.; Rekasi, H.; Hackel, A.; Haversath, M.; Jäger, M. Does Needle Design Affect the Regenerative Potential of Bone Marrow Aspirate? An In Vitro Study. Life 2021, 11, 748. [Google Scholar] [CrossRef]
- Soundharya, V.; Arthi, R.; Haran, H.; Suresh Kumar, I.; James, S. Enhanced Bone Marrow Aspirate Concentrate (BMAC) Preparation Strategy in the Management of Chondromalacia Patella: A Case Report. Cureus 2024, 16, e59321. [Google Scholar] [CrossRef] [PubMed]
- Boffa, A.; Di Martino, A.; Andriolo, L.; De Filippis, R.; Poggi, A.; Kon, E.; Zaffagnini, S.; Filardo, G. Bone Marrow Aspirate Concentrate Injections Provide Similar Results versus Viscosupplementation up to 24 Months of Follow-up in Patients with Symptomatic Knee Osteoarthritis. A Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3958–3967. [Google Scholar] [CrossRef]
- Kon, E.; Boffa, A.; Andriolo, L.; Di Martino, A.; Di Matteo, B.; Magarelli, N.; Marcacci, M.; Onorato, F.; Trenti, N.; Zaffagnini, S.; et al. Subchondral and Intra-Articular Injections of Bone Marrow Concentrate Are a Safe and Effective Treatment for Knee Osteoarthritis: A Prospective, Multi-Center Pilot Study. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 4232–4240. [Google Scholar] [CrossRef]
- Kon, E.; Boffa, A.; Andriolo, L.; Di Martino, A.; Di Matteo, B.; Magarelli, N.; Trenti, N.; Zaffagnini, S.; Filardo, G. Combined Subchondral and Intra-Articular Injections of Bone Marrow Aspirate Concentrate Provide Stable Results up to 24 Months. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 2511–2517. [Google Scholar] [CrossRef]
- Keeling, L.E.; Belk, J.W.; Kraeutler, M.J.; Kallner, A.C.; Lindsay, A.; McCarty, E.C.; Postma, W.F. Bone Marrow Aspirate Concentrate for the Treatment of Knee Osteoarthritis: A Systematic Review. Am. J. Sports Med. 2022, 50, 2315–2323. [Google Scholar] [CrossRef]
- Krasnodembskaya, A.; Song, Y.; Fang, X.; Gupta, N.; Serikov, V.; Lee, J.W.; Matthay, M.A. Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37. Stem Cells 2010, 28, 2229–2238. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, M.S.; Park, W.T.; Lee, G.W. Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 3224. [Google Scholar] [CrossRef]
- Lana, J.F.S.D.; da Fonseca, L.F.; Macedo, R.d.R.; Mosaner, T.; Murrell, W.; Kumar, A.; Purita, J.; de Andrade, M.A.P. Platelet-Rich Plasma vs. Bone Marrow Aspirate Concentrate: An Overview of Mechanisms of Action and Orthobiologic Synergistic Effects. World J. Stem Cells 2021, 13, 155–167. [Google Scholar] [CrossRef]
- Moyal, A.J.; Li, A.W.; Adelstein, J.M.; Moon, T.J.; Napora, J.K. Bone Marrow Aspirate and Bone Marrow Aspirate Concentrate: Does the Literature Support Use in Long-Bone Nonunion and Provide New Insights into Mechanism of Action? Eur. J. Orthop. Surg. Traumatol. 2024, 34, 2871–2880. [Google Scholar] [CrossRef]
- Hernigou, P.; Dubory, A.; Homma, Y.; Flouzat Lachaniette, C.H.; Chevallier, N.; Rouard, H. Single-Stage Treatment of Infected Tibial Non-Unions and Osteomyelitis with Bone Marrow Granulocytes Precursors Protecting Bone Graft. Int. Orthop. 2018, 42, 2443–2450. [Google Scholar] [CrossRef]
- Murray, I.R.; Robinson, P.G.; West, C.C.; Goudie, E.B.; Yong, L.Y.; White, T.O.; LaPrade, R.F. Reporting Standards in Clinical Studies Evaluating Bone Marrow Aspirate Concentrate: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1366–1375. [Google Scholar] [CrossRef]
- Sarigianni, M.; Vlachaki, E.; Chissan, S.; Klonizakis, F.; Vetsiou, E.; Anastasiadou, K.I.; Ioannidou-Papagiannaki, E.; Klonizakis, I. Haematoma Caused by Bone Marrow Aspiration and Trephine Biopsy. Hematol. Rep. 2011, 3, e25. [Google Scholar] [CrossRef] [PubMed]
- Kuball, J.; Schüz, J.; Gamm, H.; Weber, M. Bone Marrow Punctures and Pain. Acute Pain 2004, 6, 9–14. [Google Scholar] [CrossRef]
- Bertone, A.L.; Ishihara, A.; Zekas, L.J.; Maxey, D.; Wellman, L.; Lewis, K.B.; Schwarze, R.A.; Barnaba, A.R.; Schmall, M.L.; Kanter, P.M.; et al. Evaluation of a Single Intra-Articular Injection of Autologous Protein Solution for Treatment of Osteoarthritis in Horses. Am. J. Vet. Res. 2014, 75, 141–151. [Google Scholar] [CrossRef]
- Camargo Garbin, L.; Morris, M.J. A Comparative Review of Autologous Conditioned Serum and Autologous Protein Solution for Treatment of Osteoarthritis in Horses. Front. Vet. Sci. 2021, 8, 602978. [Google Scholar] [CrossRef]
- Kon, E.; Buda, R.; Filardo, G.; Di Martino, A.; Timoncini, A.; Cenacchi, A.; Fornasari, P.M.; Giannini, S.; Marcacci, M. Platelet-Rich Plasma: Intra-Articular Knee Injections Produced Favorable Results on Degenerative Cartilage Lesions. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Wanstrath, A.W.; Hettlich, B.F.; Su, L.; Smith, A.; Zekas, L.J.; Allen, M.J.; Bertone, A.L. Evaluation of a Single Intra-Articular Injection of Autologous Protein Solution for Treatment of Osteoarthritis in a Canine Population. Vet. Surg. 2016, 45, 764–774. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessey, K.; Matuska, A.; Hoeppner, J.; Farr, J.; Klaassen, M.; Kaeding, C.; Lattermann, C.; King, W.; Woodell-May, J. An Autologous Protein Solution Prepared from the Blood of Osteoarthritic Patients Contains an Enhanced Profile of Anti-Inflammatory Cytokines and Anabolic Growth Factors. J. Orthop. Res. 2014, 32, 1349. [Google Scholar] [CrossRef] [PubMed]
- Woodell-May, J.; Steckbeck, K.; King, W.; Miller, K.; Han, B.; Vedi, V.; Kon, E. Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use. Int. J. Mol. Sci. 2025, 26, 7577. [Google Scholar] [CrossRef]
- Cattaneo, M.; Lecchi, A.; Zighetti, M.L.; Lussana, F. Platelet Aggregation Studies: Autologous Platelet-Poor Plasma Inhibits Platelet Aggregation When Added to Platelet-Rich Plasma to Normalize Platelet Count. Haematologica 2007, 92, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Orthopedic Applications of Platelet-Rich Plasma. Available online: https://www.southcarolinablues.com/web/public/brands/medicalpolicyhb/external-policies/orthopedic-applications-of-platelet-rich-plasma/ (accessed on 28 September 2025).
- Kruse, R.C.; Volfson, E. Platelet-Poor Plasma for the Treatment of Acute Hamstring Muscle Injuries in Collegiate Football Athletes: A Cohort Study. Clin. J. Sport Med. 2024, 35, 529–533. [Google Scholar] [CrossRef]
- Maghsoudi, O.; Ranjbar, R.; Mirjalili, S.H.; Fasihi-Ramandi, M. Inhibitory Activities of Platelet-Rich and Platelet-Poor Plasma on the Growth of Pathogenic Bacteria. Iran. J. Pathol. 2016, 12, 79. [Google Scholar] [CrossRef]
- Burnouf, T.; Chou, M.L.; Wu, Y.W.; Su, C.Y.; Lee, L.W. Antimicrobial Activity of Platelet (PLT)-Poor Plasma, PLT-Rich Plasma, PLT Gel, and Solvent/Detergent-Treated PLT Lysate Biomaterials against Wound Bacteria. Transfusion 2013, 53, 138–146. [Google Scholar] [CrossRef]
- Mercader Ruiz, J.; Beitia, M.; Delgado, D.; Sánchez, P.; Guadilla, J.; Pérez de Arrilucea, C.; Benito-Lopez, F.; Basabe-Desmonts, L.; Sánchez, M. Method Based on Ultrafiltration to Obtain a Plasma Rich in Platelet and Plasma Growth Factors. J. Clin. Med. 2023, 12, 5941. [Google Scholar] [CrossRef] [PubMed]
- Mercader-Ruiz, J.; Beitia, M.; Delgado, D.; Sánchez, P.; Porras, B.; Gimeno, I.; González, S.; Benito-Lopez, F.; Basabe-Desmonts, L.; Sánchez, M. Current Challenges in the Development of Platelet-Rich Plasma-Based Therapies. BioMed Res. Int. 2024, 2024, 6444120. [Google Scholar] [CrossRef]
- Everts, P.A.; Lana, J.F.; Alexander, R.W.; Dallo, I.; Kon, E.; Ambach, M.A.; van Zundert, A.; Podesta, L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int. J. Mol. Sci. 2024, 25, 7914. [Google Scholar] [CrossRef]
- Mazzucco, L.; Balbo, V.; Zingarelli, E.M.; Desilvestri, M.; Marchioni, M.; Perrero, L.; Pollis, F.; Varvello, I. Treatment of Severe Pressure Ulcers with Protein-Enriched Filtered Platelet-Rich Plasma (PEFPRP): A Possible Management. Front. Bioeng. Biotechnol. 2024, 11, 1279149. [Google Scholar] [CrossRef]
- Shakouri, S.K.; Dolati, S.; Santhakumar, J.; Thakor, A.S.; Yarani, R. Autologous Conditioned Serum for Degenerative Diseases and Prospects. Growth Factors 2021, 39, 59–70. [Google Scholar] [CrossRef]
- Lasarzik de Ascurra, J.; Ehrle, A.; Einspanier, R.; Lischer, C. Influence of Incubation Time and Incubation Tube on the Cytokine and Growth Factor Concentrations of Autologous Conditioned Serum in Horses. J. Equine Vet. Sci. 2019, 75, 30–34. [Google Scholar] [CrossRef]
- Löfgren, M.; Ekman, S.; Ekholm, J.; Engström, M.; Fjordbakk, C.T.; Svala, E.; Holm Forsström, K.; Lindahl, A.; Skiöldebrand, E. Conditioned Serum In Vitro Treatment of Chondrocyte Pellets and Osteoarthritic Explants. Equine Vet. J. 2022, 55, 325. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, M.; Spurio, G.; Compagno, V.; Rizzo, A.; Di Simone, M.; Corsale, A.M.; Mazzola, G.; Giarratano, A.; Meraviglia, S.; Cortegiani, A.; et al. Autologous Conditioned Serum for Chronic Pain in Patients with Osteoarthritis: A Feasibility Observational Study. Br. J. Pain 2023, 17, 103–111. [Google Scholar] [CrossRef]
- Frisbie, D.D. Autologous-Conditioned Serum: Evidence for Use in the Knee. J. Knee Surg. 2015, 28, 63–66. [Google Scholar] [CrossRef]
- Guo, B.; Lei, B.; Li, P.; Ma, P.X. Functionalized Scaffolds to Enhance Tissue Regeneration. Regen. Biomater. 2015, 2, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, H.; Wang, Z.; Jiao, J.; Wang, Y.; Jiang, W.; Yu, T.; Liu, H.; Guan, L.; Li, M.; et al. Strategic Incorporation of Metal Ions in Bone Regenerative Scaffolds: Multifunctional Platforms for Advancing Osteogenesis. Regen. Biomater. 2025, 12, rbaf068. [Google Scholar] [CrossRef]
- Gao, Q.; Feng, T.; Huang, D.; Liu, P.; Lin, P.; Wu, Y.; Ye, Z.; Ji, J.; Li, P.; Huang, W. Antibacterial and Hydroxyapatite-Forming Coating for Biomedical Implants Based on Polypeptide-Functionalized Titania Nanospikes. Biomater. Sci. 2019, 8, 278–289. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, H.; Wang, H.; Li, J.; Li, B.; Liu, L.; Yang, H. A Multifunctional Composite Scaffold Responds to Microenvironment and Guides Osteogenesis for the Repair of Infected Bone Defects. J. Nanobiotechnol. 2024, 22, 577. [Google Scholar] [CrossRef]
| Type | Healing | Antibacterial/Antifungal |
|---|---|---|
| Cells | ||
| Platelets | Thrombin formation | Release antimicrobial peptides [6] Generate reactive oxygen species [6] Direct antibacterial activity: S. aureus, E. coli [7,8] Limited antifungal properties |
| Leukocytes | Phagocytose bacteria and foreign particles | Release antimicrobial peptides [9] Generate reactive oxygen species [9] |
| Growth factors | ||
| PDGF | Endothelial cell proliferation [5] Fibroblast proliferation and chemotaxis Smooth muscle cell proliferation Neutrophil chemotaxis | PDGF-derived peptides show antimicrobial activity [10] |
| VEGF | Stimulates granulation tissue angiogenesis [5] Stimulates blood vessel formation | Cell-mediated antimicrobial action: upregulation of autophagic, lysosomal pathways [11] |
| TGF-β | Fibroblast proliferation [5] Macrophage movement Smooth muscle cell proliferation | Modulate macrophage function against bacterial and fungal infections [12] |
| IGF-1 | Fibroblast proliferation [5] Stimulates sulphated proteoglycan synthesis Stimulates collagen synthesis | Attenuate antimicrobial mechanisms [13] Little direct effect |
| HGF | Re-epithelialization [5] Neovascularization Granulation tissue formation | HGF-derived peptides have antimicrobial activity [10] |
| Plasma proteins | ||
| Fibrinogen | Provisional ECM formation [14] Contribute to hemostasis Support re-epithelialization Support angiogenesis | Physical barrier against microbes [14] Modulate immune behavior through leukocyte binding |
| Albumin | GF transport [15] Maintain fluid balance | Antifungal action via fatty acids [16] Direct antibacterial activity [17] |
| Alpha-2-macroglobulin | Inhibit proteases [18] Bind and modulate GF, hormones, cytokines | Modulate inflammatory mediators [18] |
| Study Design | Outcomes | Safety/Adverse Events |
|---|---|---|
| PRP | ||
| Systematic review and meta-analysis of RCTs in knee OA [44] | PRP reduced pain, improved function at 6 months compared to placebo and HA | High risk of bias across trials Limited evidence |
| Meta-analysis of RCTs [45] | PRP reduced pain, improved function at 12 months compared to placebo and HA PRP similar to HA at 6 months | PRP did not increase risk of adverse events |
| Preclinical in vivo study in animal models [29] | LP-PRP promoted bone repair better than LR-PRP | Human safety not studied |
| Observational study, cross-sectional [24] | Positive correlation between platelet count and GF levels in LP-PRP | Safety outcomes not applicable |
| BMAC | ||
| Experimental, observational study [46] | Procedural variables (e.g., aspiration site, centrifugation speed and time) affect MSC yield | Limited as a process study |
| Systematic review of clinical studies in knee OA [47] | BMAC reduced pain, improved function in short term | BMAC safe in short term; limited data on long term safety Risk of bias in studies |
| Narrative review of knee OA [48] | BMAC relieves symptoms in short- and mid-term Possible cartilage and bone regeneration | BMAC appears safe but limited long-term data Inconsistent protocols |
| Animal model analysis [49] | BMAC enhances osteogenesis and angiogenesis | Human safety not assessed |
| Translational, clinical study review [50] | BMAC may promote cartilage repair | Limited clinical safety data |
| In Vitro | In Vivo |
|---|---|
| PRP | |
| P-PRP inhibited Enterococcus faecalis, Streptococcus oralis, Candida albicans in agar tests; no action against Pseudomonas aeruginosa [8] | PRP and PRF seem to provide antimicrobial activity beneficial in clinical wound management [59] PRP reduced infections in animal models (e.g., equine, rabbit) [7,52] |
| BMAC | |
| Reduced bacterial proliferation; via hepcidin secretion and immunomodulation [60] | Clinical indications of indirect antimicrobial effect, regenerative support [61,62] Reduced bacterial load and inflammation in animal models (e.g., rat, rabbit) [60] |
| APS | |
| (Ex vivo) Indirect antimicrobial and antifungal activity in explants [11] | Positive joint tissue environment modulation; indirect antimicrobial effect [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Ang, S.P.; Hasoon, J.J.; Tolba, R.; Ruan, Q.Z.; Lam, C.M.; Lo Bianco, G.; Christo, P.J.; Robinson, C.L. Dual-Action Regenerative Therapies: Regeneration and Antimicrobial Effects of Platelet- and Marrow-Derived Biologics. Biomedicines 2025, 13, 2832. https://doi.org/10.3390/biomedicines13112832
Yuan C, Ang SP, Hasoon JJ, Tolba R, Ruan QZ, Lam CM, Lo Bianco G, Christo PJ, Robinson CL. Dual-Action Regenerative Therapies: Regeneration and Antimicrobial Effects of Platelet- and Marrow-Derived Biologics. Biomedicines. 2025; 13(11):2832. https://doi.org/10.3390/biomedicines13112832
Chicago/Turabian StyleYuan, Claire, Samuel P. Ang, Jamal J. Hasoon, Reda Tolba, Qing Zhao Ruan, Christopher M. Lam, Giuliano Lo Bianco, Paul J. Christo, and Christopher L. Robinson. 2025. "Dual-Action Regenerative Therapies: Regeneration and Antimicrobial Effects of Platelet- and Marrow-Derived Biologics" Biomedicines 13, no. 11: 2832. https://doi.org/10.3390/biomedicines13112832
APA StyleYuan, C., Ang, S. P., Hasoon, J. J., Tolba, R., Ruan, Q. Z., Lam, C. M., Lo Bianco, G., Christo, P. J., & Robinson, C. L. (2025). Dual-Action Regenerative Therapies: Regeneration and Antimicrobial Effects of Platelet- and Marrow-Derived Biologics. Biomedicines, 13(11), 2832. https://doi.org/10.3390/biomedicines13112832

