Regenerative and Drug-Free Strategies for Chronic Musculoskeletal Pain: An Evidence-Based Perspective on Shockwave Therapy, High-Intensity Laser Therapy and Ultrasound-Guided Mechanical Needling with Sterile Water Injection
Abstract
1. Introduction
2. Mechanistic Foundations and Clinical Overview
2.1. Extracorporeal Shockwave Therapy (ESWT)
2.1.1. Mechanistic Background
2.1.2. Clinical Translation
2.2. High-Intensity Laser Therapy (HILT): Mechanistic and Clinical Overview
2.2.1. Mechanistic Background
2.2.2. Anti-Inflammatory and Regenerative Mechanisms
2.2.3. Clinical Translation
2.3. Ultrasound-Guided Mechanical Needling with Sterile Water Injection (SWI)
2.3.1. Mechanistic Background
2.3.2. Clinical Translation
2.3.3. Comparative and Mechanistic Evidence
3. Regenerative Framework
3.1. Phase 1—Structural Restoration and Intrinsic Activation (SWI)
3.2. Phase 2—Mechanotransductive Stimulation (ESWT)
3.3. Phase 3—Mitochondrial Recovery and Stabilization (HILT)
3.4. Integrated Concept
4. Safety Considerations
4.1. Extracorporeal Shockwave Therapy (ESWT)
4.1.1. Mechanistic Background
4.1.2. Safety Profile
4.1.3. Contraindications and Mechanistic Reassurance
4.2. High-Intensity Laser Therapy (HILT)
4.2.1. Mechanistic Background
4.2.2. Safety Profile
4.2.3. Contraindications and Mechanistic Reassurance
4.3. Ultrasound-Guided Mechanical Needling with Sterile Water Injection (SWI)
4.3.1. Mechanistic Background
4.3.2. Safety Profile
4.3.3. Contraindications and Parameters
4.3.4. Mechanistic Reassurance
4.4. Mechanistic Distinction: Why Sterile Water Instead of Normal Saline Solution (NSS)
4.5. Triple-Component Injection Hypothesis: Mechanistic Integration and the Authors’ Perspective
5. Risk of Bias Assessment
6. Limitations
7. Evidence Certainty (GRADE)
8. Clinical Practice Guidance
- Patient selection:
- ○
- ESWT: tendinopathies, plantar fasciitis, calcific tendinitis
- ○
- HILT: knee osteoarthritis, chronic spinal pain
- ○
- SWI: lumbar spinal stenosis, facet syndrome, elderly with polypharmacy
- Typical protocols:
- ○
- ESWT: 0.05–0.3 mJ/mm2, 1500–3000 pulses, 1–4 sessions
- ○
- HILT: pulsed Nd:YAG 2–10 kW, 8–12 sessions
- ○
- SWI: US-guided, 2.5 mL sterile water plus 1% lidocaine without adrenaline 0.5 mL per site, 1–4 sessions
- Sequencing (regenerative algorithm):
- ○
- SWI—remove fibrosis/calcification
- ○
- ESWT—stimulate angiogenesis, ECM remodeling
- ○
- HILT—consolidate repair via mitochondrial bioenergetics and anti-inflammatory effects
- Safety: mild, transient effects (erythema, soreness); avoid in malignancy, pregnancy, infection, bleeding risk
- Practice integration:
- ○
- ESWT/HILT: outpatient rehab clinics
- ○
- SWI: interventional/ultrasound settings
- ○
- Always within multidisciplinary rehabilitation programs
9. Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CMP | Chronic Musculoskeletal Pain |
| ECM | Extracellular Matrix |
| ESWT | Extracorporeal Shockwave Therapy |
| HILT | High-Intensity Laser Therapy |
| SWI | Ultrasound-Guided Mechanical Needling with Sterile Water Injection |
| NSS | Normal Saline Solution |
| RCT | Randomized Controlled Trial |
| NOS | Newcastle–Ottawa Scale |
| RoB 2.0 | Risk of Bias 2.0 Tool |
| GRADE | Grading of Recommendations, Assessment, Development and Evaluation |
| VAS | Visual Analog Scale |
| OA | Osteoarthritis |
| WOMAC | Western Ontario and McMaster Universities Osteoarthritis Index |
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Kumar, L.; Bisen, M.; Khan, A.; Kumar, P.; Patel, S.K.S. Role of matrix metalloproteinases in musculoskeletal diseases. Biomedicines 2022, 10, 2477. [Google Scholar] [CrossRef] [PubMed]
- Sheets, K.; Overbey, J.; Ksajikian, A.; Bovid, K.; Kenter, K.; Li, Y. The pathophysiology and treatment of musculoskeletal fibrosis. J. Cell. Biochem. 2022, 123, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.; Chiu, K.Y.; Yan, C.H. Review Article: Osteophytes. J. Orthop. Surg. 2016, 24, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Oliva, F.; Via, A.G.; Maffulli, N. Physiopathology of intratendinous calcific deposition. BMC Med. 2012, 10, 95. [Google Scholar] [CrossRef]
- Fan, X.; Wu, X.; Crawford, R.; Xiao, Y.; Prasadam, I. Macro, micro, and molecular. changes of the osteochondral interface in osteoarthritis development. Front. Cell Dev. Biol. 2021, 9, 659654. [Google Scholar] [CrossRef]
- Ungprasert, P.; Cheungpasitporn, W.; Crowson, C.S.; Matteson, E.L. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: A systematic review and meta-analysis of observational studies. Eur. J. Intern. Med. 2015, 26, 285–291. [Google Scholar] [CrossRef]
- Häuser, W.; Petzke, F.; Radbruch, L.; Tölle, T.R. The opioid epidemic and the long-term opioid therapy for chronic non-cancer pain revisited: A transatlantic perspective. Pain. Manag. 2016, 6, 249–263. [Google Scholar] [CrossRef]
- Qaseem, A.; Wilt, T.J.; McLean, R.M.; Forciea, M.A.; Clinical Guidelines Committee of the American College of Physicians; Denberg, T.D.; Barry, M.J.; Boyd, C.; Chow, R.D.; Fitterman, N.; et al. Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline. Ann. Intern. Med. 2017, 166, 514–530. [Google Scholar] [CrossRef]
- Kou, D.; Chen, Q.; Wang, Y.; Xu, G.; Lei, M.; Tang, X.; Ni, H.; Zhang, F. The application of extracorporeal shock wave therapy on stem cells therapy to treat various diseases. Stem Cell Res. Ther. 2024, 15, 271. [Google Scholar] [CrossRef]
- Poenaru, D.; Sandulescu, M.I.; Cinteza, D. Biological effects of extracorporeal shockwave therapy in tendons: A systematic review. Biomed. Rep. 2022, 18, 15. [Google Scholar] [CrossRef]
- Chen, Y.; Lyu, K.; Lu, J.; Jiang, L.; Zhu, B.; Liu, X.; Li, Y.; Liu, X.; Long, L.; Wang, X.; et al. Biological response of extracorporeal shock wave therapy to tendinopathy in vivo (review). Front. Vet. Sci. 2022, 9, 851894. [Google Scholar] [CrossRef]
- Ryskalin, L.; Morucci, G.; Natale, G.; Soldani, P.; Gesi, M. Molecular mechanisms underlying the pain-relieving effects of extracorporeal shock wave therapy: A focus on fascia nociceptors. Life 2022, 12, 743. [Google Scholar] [CrossRef] [PubMed]
- Majidi, L.; Khateri, S.; Nikbakht, N.; Moradi, Y.; Nikoo, M.R. The effect of extracorporeal shock-wave therapy on pain in patients with various tendinopathies: A systematic review and meta-analysis of randomized control trials. BMC Sports Sci. Med. Rehabil. 2024, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.; Fang, L.; Zhu, R.; Wang, J. The effectiveness of shockwave therapy on patellar tendinopathy, Achilles tendinopathy, and plantar fasciitis: A systematic review and meta-analysis. Front Immunol. 2023, 14, 1193835. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Song, Q.; Yang, X.; Kuati, A.; Fu, H.; Liu, Y.; Cui, G. Effect of extracorporeal shockwave therapy for rotator cuff tendinopathy: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2024, 25, 357. [Google Scholar] [CrossRef]
- De la Corte-Rodríguez, H.; Román-Belmonte, J.M.; Rodríguez-Damiani, B.A.; Vázquez-Sasot, A.; Rodríguez-Merchán, E.C. Extracorporeal shock wave therapy for the treatment of musculoskeletal pain: A narrative review. Healthcare 2023, 11, 2830. [Google Scholar] [CrossRef]
- Simplicio, C.L.; Purita, J.; Murrell, W.; Santos, G.S.; Dos Santos, R.G.; Lana, J.F.S.D. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J. Clin. Orthop. Trauma 2020, 11 (Suppl. 3), S309–S318. [Google Scholar] [CrossRef]
- Liao, C.D.; Huang, Y.Y.; Chen, H.C.; Liou, T.H.; Lin, C.L.; Huang, S.W. Relative effect of extracorporeal shockwave therapy alone or in combination with noninjective treatments on pain and physical function in knee osteoarthritis: A network meta-analysis of ran-domized controlled trials. Biomedicines 2022, 10, 306. [Google Scholar] [CrossRef]
- Rau, O.R.; Cheng, J.; Jivanelli, B.; Tenforde, A.S.; Wyss, J.F. Extracorporeal shockwave therapy for tendinopathies around the hip and pelvis: A systematic review. HSS J. 2025, ahead of print, 15563316251332189. [Google Scholar] [CrossRef]
- Lippi, L.; Folli, A.; Moalli, S.; Turco, A.; Ammendolia, A.; de Sire, A.; Invernizzi, M. Efficacy and tolerability of extracorporeal shock wave therapy in patients with plantar fasciopathy: A systematic review with meta-analysis and meta-regression. Eur. J. Phys. Rehabil. Med. 2024, 60, 832–846. [Google Scholar] [CrossRef]
- Ismail Hassan, M.; Shafiek Mustafa Saleh, M.; Hesham Sallam, M.; Hesham Elkhodary, H.; Mohamed Sayed, M.; Samy, H.; Hesham Mohamed, A.; Said Ashour, A.; Mohamed Mosaid, E.; Hassan Zaghloul, M.; et al. Extracorporeal Shock Wave Therapy versus laser therapy in treating musculoskeletal disorders: A systematic review and meta-analysis. Lasers Med. Sci. 2025, 40, 194. [Google Scholar] [CrossRef]
- Ravera, S.; Ferrando, S.; Agas, D.; De Angelis, N.; Raffetto, M.; Sabbieti, M.G.; Signore, A.; Benedicenti, S.; Amaroli, A. 1064 nm Nd:YAG laser light affects transmembrane mitochondria respiratory chain complexes. J. Biophotonics 2019, 12, e201900101. [Google Scholar] [CrossRef]
- Saleh, M.S.; Shahien, M.; Mortada, H.; Elaraby, A.; Hammad, Y.S.; Hamed, M.; Elshennawy, S. High-intensity versus low-level laser in musculoskeletal disorders. Lasers Med. Sci. 2024, 39, 179. [Google Scholar] [CrossRef] [PubMed]
- Hang, N.L.T.; Aviña, A.E.; Chang, C.J.; Yang, T.S. Photobiomodulation in promoting cartilage regeneration. Int. J. Mol. Sci. 2025, 26, 5580. [Google Scholar] [CrossRef] [PubMed]
- Ucci, S.; Caradonna, E.; Aliberti, A.; Cusano, A. Photobiomodulation in fibroblasts: From light to healing through molecular pathways, omics and artificial intelligence. Front. Bioeng. Biotechnol. 2025, 13, 1675619. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Qu, J. The mechanisms and efficacy of photobiomodulation therapy for arthritis: A comprehensive review. Int. J. Mol. Sci. 2023, 24, 14293. [Google Scholar] [CrossRef]
- Kelini, K.I.S.; Saleh, M.S.M.; Abbas, M.A.M.; Bayoumi, M.B.I.; Ahmed, S.M. High-intensity laser therapy can improve pain, health status and quality of life in women with fibromyalgia: A single blinded-randomized controlled trial. Lasers Med. Sci. 2025, 40, 123. [Google Scholar] [CrossRef]
- Song, H.J.; Seo, H.J.; Kim, D. Effectiveness of high-intensity laser therapy in the management of patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. J. Back Musculoskelet. Rehabil. 2020, 33, 875–884. [Google Scholar] [CrossRef]
- Arroyo-Fernández, R.; Aceituno-Gómez, J.; Serrano-Muñoz, D.; Avendaño-Coy, J. High-intensity laser therapy for musculoskeletal disorders: A systematic review and meta-analysis of randomized clinical trials. J. Clin. Med. 2023, 12, 1479. [Google Scholar] [CrossRef]
- Suputtitada, A.; Chen, C.P.C.; Pongpirul, K. Mechanical needling with sterile water versus lidocaine injection for lumbar spinal stenosis. Glob. Spine J. 2024, 14, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Suputtitada, A.; Chen, C.P.C.; Pongpirul, K. Mechanical needling with sterile water versus steroids injection for facet joint syndrome: A retrospective observational study. Pain Res. Manag. 2022, 2022, 9830766. [Google Scholar] [CrossRef]
- Chen, C.P.C.; Suputtitada, A. Prolotherapy at multifidus muscle versus mechanical needling and sterile water injection in lumbar spinal stenosis. J. Pain. Res. 2023, 16, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Angeles, M.; Morales-Lázaro, S.L.; Juárez-González, E.; Rosenbaum, T. TRPV1: Structure, endogenous agonists, and mechanisms. Int. J. Mol. Sci. 2020, 21, 3421. [Google Scholar] [CrossRef]
- Savadipour, A.; Palmer, D.; Ely, E.V.; Collins, K.H.; Garcia-Castorena, J.M.; Harissa, Z.; Kim, Y.S.; Oestrich, A.; Qu, F.; Rashidi, N.; et al. The role of PIEZO ion channels in the musculoskeletal system. Am. J. Physiol. Cell Physiol. 2023, 324, C728–C740. [Google Scholar] [CrossRef]
- Verkest, C.; Diochot, S.; Lingueglia, E.; Baron, A. C-Jun N-Terminal Kinase Post-Translational Regulation of Pain-Related Acid-Sensing Ion Channels 1b and 3. J. Neurosci. 2021, 41, 8673–8685. [Google Scholar] [CrossRef]
- Derry, S.; Straube, S.; Moore, R.A.; Hancock, H.; Collins, S.L. Intracutaneous or subcutaneous sterile water injection compared with blinded controls for pain management in labour. Cochrane Database Syst. Rev. 2012, 1, CD009107. [Google Scholar] [CrossRef]
- Suputtitada, A.; Chen, J.L.; Wu, C.K.; Peng, Y.N.; Yen, T.Y.; Chen, C.P.C. Determining the most suitable ultrasound-guided injection technique in treating lumbar facet joint syndrome. Biomedicines 2023, 11, 3308. [Google Scholar] [CrossRef]
- Louwerens, J.K.G.; Sierevelt, I.N.; van Hove, R.P.; van den Bekerom, M.P.J. Comparing ultrasound-guided needling + subacromial corticosteroid with high-energy ESWT for rotator-cuff calcific tendinopathy: Randomized trial. Arthroscopy 2020, 36, 2327–2338. [Google Scholar] [CrossRef]
- Forogh, B.; Karami, A.; Bagherzadeh Cham, M. Effect of extracorporeal shock wave therapy and ultrasound-guided percutaneous lavage in reducing the pain of rotator cuff calcific tendinopathy; An updated systematic review and meta-analysis. J. Orthop. 2024, 56, 151–160. [Google Scholar] [CrossRef]
- Suputtitada, A.; Nopsopon, T.; Rittiphairoj, T.; Pongpirul, K. Intra-articular facet joint injection of normal saline for chronic low back pain: A systematic review and meta-analysis. Medicina 2023, 59, 1038. [Google Scholar] [CrossRef]
- Altman, R.D.; Devji, T.; Bhandari, M.; Fierlinger, A.; Niazi, F.; Christensen, R. Clinical benefit of intra-articular saline as a comparator in clinical trials of knee osteoarthritis treatments: A systematic review and meta-analysis of randomized trials. Semin. Arthritis Rheum. 2016, 46, 151–159. [Google Scholar] [CrossRef]
- Azizi, F.; Saber Gharesoo, F.; Eidy, F.; Heidari, S.; Maghbouli, N.; Djalalinia, S.; Kasaeian, A. A systematic review and meta-analysis of the effectiveness of perineural dextrose injection in peripheral compression neuropathies of the upper limbs. Heliyon 2025, 11, e41622. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Wu, C.-H.; Lin, J.-A.; Su, D.C.-J.; Hung, C.-Y.; Lam, S.K.H. Efficacy of 5% dextrose water injection for peripheral entrapment neuropathy: A narrative review. Int. J. Mol. Sci. 2021, 22, 12358. [Google Scholar] [CrossRef]
| Modality | Core Mechanistic Actions | Key Biomarkers/Targets | Typical Parameters | Representative Evidence (2020–2025) | Principal Clinical Outcomes |
|---|---|---|---|---|---|
| Extracorporeal Shockwave Therapy (ESWT) | Induces mechanotransduction, controlled micro-cavitation, and extracellular-matrix (ECM) remodeling; stimulates angiogenesis and osteogenesis via MAPK/ERK and Wnt–β-catenin pathways; down-regulates fibrotic mediators and nociceptive neuropeptides (Substance P, CGRP). | ↑VEGF, ↑eNOS, ↑MMP-2/9, ↓TGF-β1, ↓Substance P | 0.05–0.3 mJ/mm2; 1500–3000 pulses; 1–4 sessions | Systematic reviews and RCTs in plantar fasciitis, tendinopathies, and calcific shoulder tendinitis [14,15,16,17,18,19,20,21,22] | Pain relief, resolution of calcification, improved vascularization and function |
| High-Intensity Laser Therapy (HILT) | Enhances mitochondrial respiration and ATP synthesis via photobiomodulation (cytochrome-c oxidase activation); induces photothermal vasodilation; down-regulates NF-κB and pro-inflammatory cytokines (IL-1β, TNF-α); promotes ECM remodeling and collagen renewal. | ↑ATP, ↑VEGF, ↓IL-1β, ↓TNF-α, ↑collagen markers, ↑SOD/GPx | Pulsed Nd:YAG 1064 nm; 2–10 kW; 8–12 sessions | RCTs and meta-analyses in knee OA, spinal pain, fibromyalgia [24,27,28,29,30] | Reduced pain and oxidative stress; improved WOMAC, ROM, cartilage and mitochondrial function |
| Ultrasound-Guided Mechanical Needling with Sterile Water Injection (SWI) | Combines mechanical fenestration and hypotonic lavage; disrupts fibrosis and calcification; induces osmotic desensitization of TRPV1, Piezo 1/2, and ASIC channels; restores perineural glide, vascular flow, and lymphatic drainage. | ↓IL-6, ↓TNF-α, ↑eNOS, ↑fibroblast activity, ↓nociceptive peptides | 2.5 mL sterile water plus 1% lidocaine with- out adrenaline 0.5 mL per site under US guidance; 1–4 sessions | Large cohorts (>4000 pts) with lumbar stenosis & facet syndrome [31,32,33]; RCT vs. prolotherapy/lidocaine [38]; meta-analyses [41]; saline lavage meta-evidence [40,42] | Durable pain relief, mobility restoration, fibrosis and calcification resolution; drug-free regenerative recovery |
| 5% Dextrose in Water (D5W) Perineural/Interfascial Injection | Provides metabolic and neuromodulatory effects; inhibits TRPV1 and ASIC channels; reduces neuropeptide (Substance P, CGRP) release; supports neuronal metabolism, perfusion, and redox balance; promotes neurotrophic and microvascular repair. | ↓TRPV1, ↓CGRP, ↓Substance P, ↑nerve conduction velocity, ↑blood flow | 1–5 mL per site (5% D5W) under US guidance; single or series of 3–6 sessions | RCTs and systematic reviews in carpal tunnel syndrome, meralgia paresthetica, entrapment neuropathies [43,44] | Long-term pain reduction, sensory recovery, improved nerve conduction and microcirculation |
| Triple-Component Injection (Lidocaine + D5W + Sterile Water) | Integrates sodium-channel blockade (lidocaine), metabolic neuromodulation (D5W), and osmotic hydrodissection (sterile water) to yield biphasic analgesia and sustained vascular/fascial release. | Composite of above: ↓TRPV1, ↓ASICs, ↓CGRP, ↑microcirculation | ≈3 mL per site (0.5 mL lidocaine + 1 mL D5W + 1.5 mL sterile water) under US guidance | Translational use in lumbar facet and neuropathic pain [31,32,33,38,43,44] | Rapid analgesia, prolonged desensitization, vascular restoration, fibrosis lysis; hypothesis-generating for regenerative pain rehabilitation |
| Modality | Study Type | Tool | Domains Assessed | Risk of Bias/NOS Appraisal |
|---|---|---|---|---|
| ESWT [14,15,16,17,18,19,20,21,22] | RCTs, meta-analyses | RoB 2.0 | Randomization process: generally low risk with concealed allocation; Deviations from intended interventions: some concerns due to lack of blinding in physical therapies; Missing outcome data: low risk, minimal attrition; Measurement of outcome: some risk from subjective pain reporting; Selective reporting: low risk, protocols available | Overall: Low–moderate risk of bias; heterogeneity in protocols remains a limitation |
| HILT [24,27,28,29,30] | RCTs, meta-analyses | RoB 2.0 | Randomization process: low risk in most trials, though some unclear allocation procedures; Deviations from intended interventions: moderate risk as blinding of operators difficult; Missing outcome data: low risk; Measurement of outcome: moderate risk as pain/function scales may lack assessor blinding; Selective reporting: some concern due to variable reporting of functional vs. biomarker outcomes | Overall: Moderate risk of bias, mainly due to protocol variability and blinding challenges |
| SWI [31,32,38,41] | Large cohorts, comparative studies (>4000 patients) | Newcastle–Ottawa Scale, RoB 2.0 | Selection: representative cohorts, clear case definitions, adequate sample size (★★★★); Comparability: controlled for age and sex, but comorbidities not always fully adjusted (★★☆); Outcome: validated pain/function scales, ultrasound-confirmed fibrosis/calcification, adequate follow-up (★★★★) RCT: randomization low risk; blinding/moderate concerns; sample size limited | Overall: NOS 9/10 (low risk of bias); Robust design with representative samples and validated outcomes; multicenter RCTs recommended for confirmation. |
| Intervention | Outcome | Evidence Base | Certainty (GRADE) | Justification |
|---|---|---|---|---|
| ESWT | Pain relief, function, calcific resolution | Multiple RCTs and meta-analyses | B–A– | Consistent outcomes, moderate heterogeneity |
| HILT | Pain/function in knee OA, spinal pain | RCTs and meta-analyses | B | Protocol variability, moderate risk of bias |
| SWI | Pain/function in lumbar stenosis, facet syndrome | Large cohorts, comparative studies, one RCT; NSS meta-analyses | B–A– | Strong cohort NOS 9/10, consistent outcomes, comparative superiority vs. lidocaine/prolotherapy, RCT support, and NSS meta-evidence; multicenter RCTs still required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.P.C.; Suputtitada, A. Regenerative and Drug-Free Strategies for Chronic Musculoskeletal Pain: An Evidence-Based Perspective on Shockwave Therapy, High-Intensity Laser Therapy and Ultrasound-Guided Mechanical Needling with Sterile Water Injection. Biomedicines 2025, 13, 2801. https://doi.org/10.3390/biomedicines13112801
Chen CPC, Suputtitada A. Regenerative and Drug-Free Strategies for Chronic Musculoskeletal Pain: An Evidence-Based Perspective on Shockwave Therapy, High-Intensity Laser Therapy and Ultrasound-Guided Mechanical Needling with Sterile Water Injection. Biomedicines. 2025; 13(11):2801. https://doi.org/10.3390/biomedicines13112801
Chicago/Turabian StyleChen, Carl P. C., and Areerat Suputtitada. 2025. "Regenerative and Drug-Free Strategies for Chronic Musculoskeletal Pain: An Evidence-Based Perspective on Shockwave Therapy, High-Intensity Laser Therapy and Ultrasound-Guided Mechanical Needling with Sterile Water Injection" Biomedicines 13, no. 11: 2801. https://doi.org/10.3390/biomedicines13112801
APA StyleChen, C. P. C., & Suputtitada, A. (2025). Regenerative and Drug-Free Strategies for Chronic Musculoskeletal Pain: An Evidence-Based Perspective on Shockwave Therapy, High-Intensity Laser Therapy and Ultrasound-Guided Mechanical Needling with Sterile Water Injection. Biomedicines, 13(11), 2801. https://doi.org/10.3390/biomedicines13112801

