Integrative Approaches to Ovulation Induction in Polycystic Ovary Syndrome: A Narrative Review of Conventional and Complementary Therapies
Abstract
1. Introduction
2. Conventional Ovulation Induction
2.1. Clomiphene Citrate
2.2. Letrozole
2.3. Gonadotropin
2.4. Combination Therapy
2.5. Tamoxifen
3. Adjuncts to Conventional Ovulation Induction
3.1. Insulin-Sensitizing Agents
3.2. Dexamethasone
3.3. Dopamine Agonist
3.4. Aspirin
3.5. Sildenafil
3.6. Vitamin D
3.7. Omega 3
3.8. Coenzyme Q10
4. Complementary and Traditional Therapies
4.1. Acupuncture
| Author, Year | Type of Study | Treatment | Included Studies | Main Finding | Overlapping Articles | Bias Ranking | Level of Evidence |
|---|---|---|---|---|---|---|---|
| Bai, 2024 [158] | Umbrella review | Acupuncture | 20 meta-analyses | Acupuncture therapies were significantly associated with a higher ovulation rate (RR 1.25, 95% CI 1.15–1.35) | 8 articles overlap with [146] | NA | |
| Deng, 2024 [160] | Network meta-analysis | Acupuncture as a combination therapy | 28 RCTs | Ear point pressure + herbal enema + herbal, acupuncture and moxibustion + herbal, fire acupuncture + herbal, and acupuncture + herbal improved ovulation rates better than acupuncture, herbal, and Western medicine monotherapy | 4 articles with [161], 1 with [154] | High ~ unclear risk | |
| Yang, 2023 [152] | Meta-analysis | Acupuncture and moxibustion combined with clomiphene | 6 RCTs | Acupuncture and moxibustion was effective in improving ovulation-promoting effects and pregnancy outcomes in PCOS patients. The ovulation-promoting effect of acupuncture and moxibustion, or combined with clomiphene, was similar to that of clomiphene alone, but acupuncture & moxibustion combined with clomiphene had more advantages in improving pregnancy rates | 1 article with [151], 1 article with [154], and 1 article with [161] | Mostly low risk | Low |
| Yang, 2023 [146] | Overview of systematic reviews | Acupuncture | 11 systematic reviews | Combining acupuncture with other medicines effectively improved clinical pregnancy and ovulation rates. When compared with medicine alone, acupuncture alone also improved clinical pregnancy rates. The efficacy and safety of acupuncture for PCOS remain uncertain due to the limitations and inconsistencies of the current evidence | - | NA | |
| Chen 2022 [153] | Meta-analysis | Acupuncture combined with metformin vs. metformin | 9 RCTs | Compared with metformin alone, acupuncture combined with metformin had a positive effect on ovulation rates in PCOS patients (RR 1.18, 95% CI 1.08–1.29, p = 0.57, I2 = 0%) | 2 articles overlap with [161] | High risk | Low |
| Li 2022 [161] | Meta-analysis | Acupuncture combined with moxibustion | 25 RCTs | Acupuncture combined with moxibustion as a complementary therapy to basic treatments improved ovulation (RR 1.31, 95% CI 1.22–1.40, p < 0.01) | - | Moderate ~ high risk | Low |
| Wu 2020 [151] | Meta-analysis | Acupuncture | 22 RCTs | Significantly high rate of ovulation with acupuncture (RR 1.11, 95% CI 1.00–1.24, I2 = 65%; p = 0.05) | 4 articles overlap with [154] | High ~ unclear risk | Very low ~ low |
| Song 2019 [150] | Network meta-analysis | Acupuncture | 39 RCTs | Ovulation rates were better for acupuncture-medication therapy than for Western medication | - | NA | |
| Lim 2019 [154] | Meta-analysis | Acupuncture | 8 RCTs | For true acupuncture versus sham acupuncture, the authors could not exclude clinically relevant differences in ovulation rates (SMD 0.02, 95% CI—0.15–0.19, I2 = 0%) | 5 articles overlap with [154] | High risk | Low ~ moderate |
| Jo 2017 [155] | Meta-analysis | Acupuncture | 3 RCTs | Acupuncture was more likely to improve ovulation rates compared with no acupuncture (MD 0.35, 95% CI: 0.14–0.56) | 1 article overlaps with [154] | High ~ unclear risk | Low |
| Lim 2016 [154] | Meta-analysis | Acupuncture | 5 RCTs | Insufficient evidence to support the use of acupuncture to treat ovulation disorders in women with PCOS (MD—0.03, 95% CI—0.14–0.08) | - | High ~ unclear risk | Low |
4.2. Chinese Herbal Medicine
| Phytoconstituents | Mechanism | Efficacy in PCOS Patients | References |
|---|---|---|---|
| Quercetin | Inhibits PI3K/Akt/FoxO3a pathway Enhances hypothalamic-pituitary-ovarian axis Lowers hyperandrogenism Decreases LH/FSH ratio, enhances CYP19A1 and CYP11A1 expression Improves insulin resistance in PCOS rats and restores the estrous cycle of rats | Modulates serum FSH and AMH Decreases testosterone levels Improves pregnancy rates | [178,179] |
| Cinnamon | Enhances insulin sensitivity Increases serum FSH, IGFBP-1, and decreases insulin, IGF-1 | Improves menstrual cycles and ovarian size in patients Beneficial effects on metabolism | [180] |
| Curcumin | Upregulates the expression of the peroxisome proliferator-activated receptor γ (PPAR-γ) gene, the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) gene, the low-density lipoprotein receptor gene, and the activity of glutathione peroxidase | Reduces body mass index, fasting blood glucose, insulin levels, and the degree of insulin resistance Reduces complications related to oxidative stress in PCOS patients and improves insulin sensitivity | [181] |
| Berberine | Relieves the progression of PCOS by affecting the production of short-chain fatty acids by intestinal flora in PCOS mice Neuroprotective and cardiovascular protective effects in an animal model Improves insulin resistance, cell viability, and inhibits apoptosis in granulosa cells | Lipid-lowering and insulin resistance-improving effects alleviate insulin resistance, improve glucose and lipid metabolism and reproductive endocrine status | [182] |
| Apigenin | Inhibits antioxidant effects and downregulates TNF-α and IL-6 expression | Improves ovarian histologic alteration and follicular dynamics | [183,184] |
| Resveratrol | Improves estradiol, LH, and testosterone Reduces mTOR and Akt expression Improves insulin resistance and glycolysis by activating SIRT2 | Improves menstrual cycles | [185] |
| Genistein | Modulates PCOS symptoms through the ER-Nrf2-Foxo1-ROS pathway | May enhance insulin sensitivity and has potential to regularize menstrual cycles | [186] |
| Licorice | Inhibits 11 beta hydroxysteroid dehydrogenase type 2 enzyme | Helps maintain male hormone levels | [187] |
| Lignans | Upregulates PPAR-r gene and anti-inflammatory and antioxidant function | Helps regulate blood sugar, promote weight loss, and suppress male hormone levels | [187] |
| Catechins (L-epicatechin) | Decreases insulin resistance, LH/FSH ratio, and inflammatory cytokines | Reduces hormone levels associated with ovarian cysts and promotes weight loss | [188] |
| Ginseng | Reduces plasma LH level and improve endocrine status | Lowers blood sugar levels | [187] |
| Author, Year | Type of Study | Treatment | Included studies | Main Finding | Overlapping Articles | Bias Ranking | Level of Evidence |
|---|---|---|---|---|---|---|---|
| Deng, 2024 [160] | Network meta-analysis | Combined CHM | 28 RCTs | Moxibustion + herbal, fire acupuncture + herbal, acupuncture + herbal, electroacupuncture + herbal, and acupoint application + herbal improved clinical pregnancy rates better than acupuncture, herbal, and Western medicine monotherapy | 4 articles overlap with [170], 1 article overlaps with [189], 1 article overlaps with [190] | High ~ unclear risk | |
| Rong 2023 [190] | Meta-analysis | Add-on of the Guizhi Fuling formula | 16 RCTs | The Guizhi Fuling formula plus Western medicine significantly improved ovulation and pregnancy rates better than Western medicine alone. Ovulation rate (RR 1.24, 95% CI 1.15–1.34) | - | Unclear | Low |
| Zhou 2023 [189] | Meta-analysis | Xiao Yao San | 9 studies | Xiao Yao San plus conventional medicines for PCOS significantly improved ovulation rate and pregnancy rate Ovulation rate: intervention vs. control (OR 2.45, 95% CI 1.94 to 3.08, p < 0.001) | 1 article overlaps with [170] | Moderate ~ high | Low |
| Tang 2021 [191] | Meta-analysis | Kuntai capsule combined with letrozole | 17 studies | Combination group showed improved ovulation and pregnancy rates compared to the letrozole group Ovulation rate: combination vs. letrozole (OR 3.36, 95% CI 1.90–5.94, p < 0.0001) | 1 article overlaps with [170] | High | Low |
| Wang 2021 [172] | Overview of systematic reviews | CHM | 18 studies | There is insufficient evidence to suggest that improved efficacy is achieved by the combined use of Chinese and Western medicine compared with Western medicine alone in treating PCOS | NA | High | Low |
| Zhou 2021 [169] | Meta-analysis | CHM | 8 RCTs | There is insufficient evidence to support the use of CHM for subfertile women with PCOS. Pregnancy rate CHM vs. Clomiphene (OR 1.41, 95% CI 0.63 to 3.19) CHM + clomiphene vs. clomiphene (OR 3.06, 95% CI 2.05 to 4.55) | 5 articles overlap with [169] | Unclear | Very low ~ low |
| Kwon 2018 [170] | Meta-analysis | CHM combined with moxibustion | 9 RCTs and quasi-RCTs | CHM combined with moxibustion might be beneficial for treating PCOS, but similar ovulation rate: Oriental herbal medicine + moxibustion vs. Western medicine (RR 1.23, 95% CI 0.98–1.55) | - | High ~ unclear | Low |
| Ma 2017 [192] | Meta-analysis | CM with letrozole | 8 RCTs | Cycle ovulation rate in groups co-treated with CHM and letrozole was higher than in groups receiving letrozole monotherapy (OR 2.28, 95% CI 1.58–3.30, p < 0.0001) | - | Unclear | Low |
| Zhou 2016 [169] | Meta-analysis | CHM | 5 RCTs | There is insufficient evidence to support the use of CHM for women with PCOS and subfertility. Pregnancy rate CHM vs. clomiphene (OR 1.98, 95% CI 0.78–5.06) CHM + clomiphene vs. clomiphene (OR 2.62, 95% CI 1.65–4.14) | 4 articles overlap with [169] | Unclear | Very low |
| Reid 2015 [193] | Meta-analysis | CHM | 40 RCTs | 18% increased chance of improved ovulation with CHM compared to standard WM therapy in women with previously anovulatory cycles (RR 1.18, 95% CI 1.12–1.25, p < 0.001) | 5 articles overlap with [169] | High | Low |
| Zhang 2010 [169] | Meta-analysis | CHM | 4 RCTs | No evidence of statistically significant difference in improving ovulation between CHM and clomiphene or between CHM plus laparoscopic ovarian drilling | NA |
5. Limitations and Future Directions
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fauser, B. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Chaudhary, V.; Haloi, P.; Munjal, K.; Chitme, H.R. Pharmacotherapeutic importance of phytoconstituents in the management of Polycystic Ovary Syndrome (PCOS) and associated complications. Egypt. J. Basic Appl. Sci. 2025, 12, 1–26. [Google Scholar] [CrossRef]
- Vyrides, A.A.; El Mahdi, E.; Giannakou, K. Ovulation induction techniques in women with polycystic ovary syndrome. Front. Med. 2022, 9, 982230. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Gupta, N.; Joseph, T.; Yadav, B.; Kunjummen, A.T.; Kamath, M.S. Comparison of Letrozole Versus Combination Letrozole and Clomiphene Citrate (CC) for Ovulation Induction in Sub Fertile Women with Polycystic Ovarian Syndrome (PCOS)-An Open Label Randomized Control Trial. Reprod. Sci. 2024, 31, 3834–3842. [Google Scholar] [CrossRef]
- Thabet, M.; Abdelhafez, M.S.; Elshamy, M.R.; Albahlol, I.A.; Fayala, E.; Wageeh, A.; El-Zayadi, A.A.; Bahgat, N.A.; Mohammed, S.M.; Mohamed, A.A.; et al. Competence of Combined Low Dose of Human Chorionic Gonadotropin (HCG) and Clomiphene Citrate (CC) Versus Continued CC during Ovulation Induction in Women with CC-Resistant Polycystic Ovarian Syndrome: A Randomized Controlled Trial. Medicina 2024, 60, 1300. [Google Scholar] [CrossRef] [PubMed]
- Jamal, H.; Waheed, K.; Mazhar, R.; Sarwar, M.Z. Comparative Study of Combined Co-Enzyme Q10 And Clomiphene Citrate Vs Clomiphene Citrate Alone for Ovulation Induction In Patients with Polycystic Ovarian Syndrome. J. Pak. Med. Assoc. 2023, 73, 1502–1505. [Google Scholar] [CrossRef]
- Panda, S.R.; Sharmila, V.; Kalidoss, V.K.; Hota, S. A triple-blind, randomized controlled trial, comparing combined letrozole and clomiphene versus only letrozole for ovulation induction in women with polycystic ovarian syndrome. Int. J. Gynecol. Obstet. 2023, 161, 63–70. [Google Scholar] [CrossRef]
- Ji, X.; Chen, J.; Xu, P.; Shen, S.; Bi, Y. Effect of probiotics combined with metformin on improvement of menstrual and metabolic patterns in women with polycystic ovary syndrome: A randomized clinical trial. Gynecol. Endocrinol. 2022, 38, 856–860. [Google Scholar] [CrossRef]
- Rasheedy, R.; Sammour, H.; Elkholy, A.; Salim, Y. The efficacy of vitamin D combined with clomiphene citrate in ovulation induction in overweight women with polycystic ovary syndrome: A double blind, randomized clinical trial. Endocrine 2020, 69, 393–401. [Google Scholar] [CrossRef]
- Mejia, R.B.; Summers, K.M.; Kresowik, J.D.; Van Voorhis, B.J. A randomized controlled trial of combination letrozole and clomiphene citrate or letrozole alone for ovulation induction in women with polycystic ovary syndrome. Fertil. Steril. 2019, 111, 571–578. e571. [Google Scholar] [CrossRef]
- Yu, L.; Cao, L.; Xie, J.; Shi, Y. Therapeutic effects on ovulation and reproduction promotion with acupuncture and clomiphene in polycystic ovary syndrome. Zhongguo Zhen Jiu 2018, 38, 263–268. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Zhang, H.; Jiang, D.; Guo, G. Clinical therapeutic effects of acupuncture combined with Chinese herbal medicine on infertility of polycystic ovary syndrome in the patients with ovulation induction with letrozole. Zhongguo Zhen Jiu 2018, 38, 27–32. [Google Scholar] [CrossRef]
- Ma, H.; Quan, X.; Chen, X.; Dong, Y. Flying needling therapy combined with clomiphene for ovulation failure in polycystic ovary syndrome:a randomized controlled trial. Zhongguo Zhen Jiu 2016, 36, 1161–1165. [Google Scholar] [CrossRef]
- Ruan, H.B.; Wang, M.Z.; Wu, T.T.; Liu, X.; Mo, W.W. Clinical Effect of Bushen Quyu Recipe Combined with Acupuncture in Treatment of Clomiphene- resistant Polycystic Ovary Syndrome Infertility Patients after Cold Needle Puncture Drainage Operation. Zhongguo Zhong Xi Yi Jie He Za Zhi 2016, 36, 1038–1041. [Google Scholar]
- Wu, X.K.; Wang, Y.Y.; Liu, J.P.; Liang, R.N.; Xue, H.Y.; Ma, H.X.; Shao, X.G.; Ng, E.H. Randomized controlled trial of letrozole, berberine, or a combination for infertility in the polycystic ovary syndrome. Fertil. Steril. 2016, 106, 757–765.e751. [Google Scholar] [CrossRef]
- El-khayat, W.; Abdel Moety, G.; Al Mohammady, M.; Hamed, D. A randomized controlled trial of clomifene citrate, metformin, and pioglitazone versus letrozole, metformin, and pioglitazone for clomifene-citrate-resistant polycystic ovary syndrome. Int. J. Gynecol. Obstet. 2016, 132, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Maged, A.M.; Elsawah, H.; Abdelhafez, A.; Bakry, A.; Mostafa, W.A. The adjuvant effect of metformin and N-acetylcysteine to clomiphene citrate in induction of ovulation in patients with Polycystic Ovary Syndrome. Gynecol. Endocrinol. 2015, 31, 635–638. [Google Scholar] [CrossRef]
- Li, N. Efficacy and safety evaluation of acupuncture combined with auricular point sticking therapy in the treatment of polycystic ovary syndrome. Zhongguo Zhen Jiu 2013, 33, 961–964. [Google Scholar]
- Ghanem, M.E.; Elboghdady, L.A.; Hassan, M.; Helal, A.S.; Gibreel, A.; Houssen, M.; Shaker, M.E.; Bahlol, I.; Mesbah, Y. Clomiphene citrate co-treatment with low dose urinary FSH versus urinary FSH for clomiphene resistant PCOS: Randomized controlled trial. J. Assist. Reprod. Genet. 2013, 30, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, A.; Alwan, Y.; Farooq, M.U. Efficacy of combined metformin-clomiphene citrate in comparison with clomiphene citrate alone in infertile women with polycystic ovarian syndrome (PCOS). J. Med. Life 2013, 6, 199–201. [Google Scholar] [PubMed]
- Salehpour, S.; Sene, A.A.; Saharkhiz, N.; Sohrabi, M.R.; Moghimian, F. N-Acetylcysteine as an adjuvant to clomiphene citrate for successful induction of ovulation in infertile patients with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 2012, 38, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, I.A. A randomized controlled trial of the effect of rosiglitazone and clomiphene citrate versus clomiphene citrate alone in overweight/obese women with polycystic ovary syndrome. Gynecol. Endocrinol. 2012, 28, 269–272. [Google Scholar] [CrossRef]
- Abu Hashim, H.; El Lakany, N.; Sherief, L. Combined metformin and clomiphene citrate versus laparoscopic ovarian diathermy for ovulation induction in clomiphene-resistant women with polycystic ovary syndrome: A randomized controlled trial. J. Obstet. Gynaecol. Res. 2011, 37, 169–177. [Google Scholar] [CrossRef]
- Zakherah, M.S.; Nasr, A.; El Saman, A.M.; Shaaban, O.M.; Shahin, A.Y. Clomiphene citrate plus tamoxifen versus laparoscopic ovarian drilling in women with clomiphene-resistant polycystic ovary syndrome. Int. J. Gynecol. Obstet. 2010, 108, 240–243. [Google Scholar] [CrossRef]
- Siebert, T.I.; Kruger, T.F.; Lombard, C. Evaluating the equivalence of clomiphene citrate with and without metformin in ovulation induction in PCOS patients. J. Assist. Reprod. Genet. 2009, 26, 165–171. [Google Scholar] [CrossRef]
- Ganesh, A.; Goswami, S.K.; Chattopadhyay, R.; Chaudhury, K.; Chakravarty, B. Comparison of letrozole with continuous gonadotropins and clomiphene-gonadotropin combination for ovulation induction in 1387 PCOS women after clomiphene citrate failure: A randomized prospective clinical trial. J. Assist. Reprod. Genet. 2009, 26, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Elkind-Hirsch, K.; Marrioneaux, O.; Bhushan, M.; Vernor, D.; Bhushan, R. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 2670–2678. [Google Scholar] [CrossRef]
- Zain, M.M.; Jamaluddin, R.; Ibrahim, A.; Norman, R.J. Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction, achievement of pregnancy, and live birth in Asian women with polycystic ovary syndrome: A randomized controlled trial. Fertil. Steril. 2009, 91, 514–521. [Google Scholar] [CrossRef]
- Legro, R.S.; Zaino, R.J.; Demers, L.M.; Kunselman, A.R.; Gnatuk, C.L.; Williams, N.I.; Dodson, W.C. The effects of metformin and rosiglitazone, alone and in combination, on the ovary and endometrium in polycystic ovary syndrome. Am. J. Obstet. Gynecol. 2007, 196, 402.e1-10; discussion 402.e10-1. [Google Scholar] [CrossRef] [PubMed]
- Rouzi, A.A.; Ardawi, M.S. A randomized controlled trial of the efficacy of rosiglitazone and clomiphene citrate versus metformin and clomiphene citrate in women with clomiphene citrate-resistant polycystic ovary syndrome. Fertil. Steril. 2006, 85, 428–435. [Google Scholar] [CrossRef]
- Elnashar, A.; Abdelmageed, E.; Fayed, M.; Sharaf, M. Clomiphene citrate and dexamethazone in treatment of clomiphene citrate-resistant polycystic ovary syndrome: A prospective placebo-controlled study. Hum. Reprod. 2006, 21, 1805–1808. [Google Scholar] [CrossRef] [PubMed]
- Sohrabvand, F.; Ansari, S.; Bagheri, M. Efficacy of combined metformin-letrozole in comparison with metformin-clomiphene citrate in clomiphene-resistant infertile women with polycystic ovarian disease. Hum. Reprod. 2006, 21, 1432–1435. [Google Scholar] [CrossRef]
- Baillargeon, J.P.; Jakubowicz, D.J.; Iuorno, M.J.; Jakubowicz, S.; Nestler, J.E. Effects of metformin and rosiglitazone, alone and in combination, in nonobese women with polycystic ovary syndrome and normal indices of insulin sensitivity. Fertil. Steril. 2004, 82, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Gao, H.Y.; Zhao, Z.G.; Jia, P. Effect of rosiglitazone on ovulation induction in women with polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi 2004, 39, 173–175. [Google Scholar]
- Parsanezhad, M.E.; Alborzi, S.; Jahromi, B.N. A prospective, double-blind, randomized, placebo-controlled clinical trial of bromocriptine in clomiphene-resistant patients with polycystic ovary syndrome and normal prolactin level. Int. J. Fertil. Womens Med. 2002, 47, 272–277. [Google Scholar]
- Clark, J.H.; Markaverich, B.M. The agonistic-antagonistic properties of clomiphene: A review. Pharmacol. Ther. 1981, 15, 467–519. [Google Scholar] [CrossRef]
- Hsueh, A.J.; Erickson, G.F.; Yen, S.S. Sensitisation of pituitary cells to luteinising hormone releasing hormone by clomiphene citrate in vitro. Nature 1978, 273, 57–59. [Google Scholar] [CrossRef]
- Homburg, R. Clomiphene citrate—End of an era? a mini-review. Hum. Reprod. 2005, 20, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Gysler, M.; March, C.M.; Mishell, D.R.; Bailey, E.J. A decade’s experience with an individualized clomiphene treatment regimen including its effect on the postcoital test. Fertil. Steril. 1982, 37, 161–167. [Google Scholar] [CrossRef]
- Wu, C.H.; Winkel, C.A. The effect of therapy initiation day on clomiphene citrate therapy. Fertil. Steril. 1989, 52, 564–568. [Google Scholar] [CrossRef]
- Hurst, B.S.; Hickman, J.M.; Matthews, M.L.; Usadi, R.S.; Marshburn, P.B. Novel clomiphene “stair-step” protocol reduces time to ovulation in women with polycystic ovarian syndrome. Am. J. Obstet. Gynecol. 2009, 200, 510.e511–510.e514. [Google Scholar] [CrossRef]
- Deveci, C.D.; Demir, B.; Sengul, O.; Dilbaz, B.; Goktolga, U. Clomiphene citrate ‘stair-step’ protocol vs. traditional protocol in patients with polycystic ovary syndrome: A randomized controlled trial. Arch. Gynecol. Obstet. 2015, 291, 179–184. [Google Scholar] [CrossRef]
- Agrawal, K.; Gainder, S.; Dhaliwal, L.K.; Suri, V. Ovulation Induction Using Clomiphene Citrate Using Stair—Step Regimen versus Traditional Regimen in Polycystic Ovary Syndrome Women—A Randomized Control Trial. J. Hum. Reprod. Sci. 2017, 10, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Ho, J.R.; Gualtieri, M.; Bruno-Gaston, J.; Chung, K.; Paulson, R.J.; Bendikson, K.A. Clomiphene Stair-Step Protocol for Women with Polycystic Ovary Syndrome. Obstet. Gynecol. 2018, 131, 91–95. [Google Scholar] [CrossRef]
- Shahgheibi, S.; Seyedoshohadaei, F.; Khezri, D.; Ghasemi, S. Endometrial and follicular development following stair-step and traditional protocols in women with polycystic ovary syndrome: An RCT. Int. J. Reprod. Biomed. 2021, 19, 537–544. [Google Scholar] [CrossRef]
- Imani, B.; Eijkemans, M.J.; te Velde, E.R.; Habbema, J.D.; Fauser, B.C. Predictors of chances to conceive in ovulatory patients during clomiphene citrate induction of ovulation in normogonadotropic oligoamenorrheic infertility. J. Clin. Endocrinol. Metab. 1999, 84, 1617–1622. [Google Scholar] [CrossRef]
- Correy, J.F.; Marsden, D.E.; Schokman, F.C. The outcome of pregnancy resulting from clomiphene-induced ovulation. Aust. N. Z. J. Obstet. Gynaecol. 1982, 22, 18–21. [Google Scholar] [CrossRef]
- Ahlgren, M.; Källén, B.; Rannevik, G. Outcome of pregnancy after clomiphene therapy. Acta Obstet. Gynecol. Scand. 1976, 55, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Schenker, J.G.; Yarkoni, S.; Granat, M. Multiple pregnancies following induction of ovulation. Fertil. Steril. 1981, 35, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.; Hinshelwood, M.M.; Murry, B.A.; Mendelson, C.R. Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans. Trends Endocrinol. Metab. 2002, 13, 122–128. [Google Scholar] [CrossRef]
- Naftolin, F.; MacLusky, N.J.; Leranth, C.Z.; Sakamoto, H.S.; Garcia-Segura, L.M. The cellular effects of estrogens on neuroendocrine tissues. J. Steroid Biochem. 1988, 30, 195–207. [Google Scholar] [CrossRef]
- Mitwally, M.F.; Casper, R.F. Use of an aromatase inhibitor for induction of ovulation in patients with an inadequate response to clomiphene citrate. Fertil. Steril. 2001, 75, 305–309. [Google Scholar] [CrossRef]
- Shi, L.; Ye, S.; Gao, M.; Chen, Y.; Jin, X.; Zhang, Z. Effect of different timing of letrozole initiation on pregnancy outcome in polycystic ovary syndrome. Front. Endocrinol. 2022, 13, 1059609. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Fu, Y. Extending letrozole treatment duration is effective in inducing ovulation in women with polycystic ovary syndrome and letrozole resistance. Fertil. Steril. 2023, 119, 107–113. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Jiang, F. Meta-analysis of letrozole versus clomiphene citrate in polycystic ovary syndrome. Reprod. Biomed. Online 2011, 23, 91–96. [Google Scholar] [CrossRef]
- Misso, M.L.; Wong, J.L.; Teede, H.J.; Hart, R.; Rombauts, L.; Melder, A.M.; Norman, R.J.; Costello, M.F. Aromatase inhibitors for PCOS: A systematic review and meta-analysis. Hum. Reprod. Update 2012, 18, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Franik, S.; Eltrop, S.M.; Kremer, J.A.; Kiesel, L.; Farquhar, C. Aromatase inhibitors (letrozole) for subfertile women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2018, 5, Cd010287. [Google Scholar] [CrossRef]
- Hu, S.; Yu, Q.; Wang, Y.; Wang, M.; Xia, W.; Zhu, C. Letrozole versus clomiphene citrate in polycystic ovary syndrome: A meta-analysis of randomized controlled trials. Arch. Gynecol. Obstet. 2018, 297, 1081–1088. [Google Scholar] [CrossRef]
- Wang, R.; Li, W.; Bordewijk, E.M.; Legro, R.S.; Zhang, H.; Wu, X.; Gao, J.; Morin-Papunen, L.; Homburg, R.; König, T.E.; et al. First-line ovulation induction for polycystic ovary syndrome: An individual participant data meta-analysis. Hum. Reprod. Update 2019, 25, 717–732. [Google Scholar] [CrossRef]
- Abu-Zaid, A.; Gari, A.; Sabban, H.; Alshahrani, M.S.; Khadawardi, K.; Badghish, E.; AlSghan, R.; Bukhari, I.A.; Alyousef, A.; Abuzaid, M.; et al. Comparison of Letrozole and Clomiphene Citrate in Pregnancy Outcomes in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. Reprod. Sci. 2024, 31, 883–905. [Google Scholar] [CrossRef]
- Salaheldin AbdelHamid, A.M.; Rateb, A.M.; Ismail Madkour, W.A. Is clomiphene citrate stair-step protocol a good alternative to gonadotrophins in clomiphene-resistant PCO patients? Prospective study. J. Obstet. Gynaecol. Res. 2016, 42, 547–553. [Google Scholar] [CrossRef]
- Sakar, M.N.; Oğlak, S.C. Comparison of the efficacy of letrozole stair-step protocol with clomiphene citrate stair-step protocol in the management of clomiphene citrate-resistant polycystic ovary syndrome patients. J. Obstet. Gynaecol. Res. 2021, 47, 3875–3882. [Google Scholar] [CrossRef] [PubMed]
- Al-Thuwaynee, S.; Swadi, A.A.J. Comparing efficacy and safety of stair step protocols for clomiphene citrate and letrozole in ovulation induction for women with polycystic ovary syndrome (PCOS): A randomized controlled clinical trial. J. Med. Life 2023, 16, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.S.; Kostova, E.; Nahuis, M.; Mol, B.W.J.; Van der Veen, F.; van Wely, M. Gonadotrophins for ovulation induction in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2019, 2019, CD010290. [Google Scholar] [CrossRef] [PubMed]
- Balen, A.H.; Braat, D.D.; West, C.; Patel, A.; Jacobs, H.S. Cumulative conception and live birth rates after the treatment of anovulatory infertility: Safety and efficacy of ovulation induction in 200 patients. Hum. Reprod. 1994, 9, 1563–1570. [Google Scholar] [CrossRef]
- Schwartz, M.; Jewelewicz, R.; Dyrenfurth, I.; Tropper, P.; Vande Wiele, R.L. The use of human menopausal and chorionic gonadotropins for induction of ovulation. Sixteen years’ experience at the Sloane Hospital for Women. Am. J. Obstet. Gynecol. 1980, 138, 801–807. [Google Scholar] [CrossRef]
- Fluker, M.R.; Urman, B.; Mackinnon, M.; Barrow, S.R.; Pride, S.M.; Yuen, B.H. Exogenous gonadotropin therapy in World Health Organization groups I and II ovulatory disorders. Obstet. Gynecol. 1994, 83, 189–196. [Google Scholar]
- Weiss, N.S.; Nahuis, M.J.; Bordewijk, E.; Oosterhuis, J.E.; Smeenk, J.M.; Hoek, A.; Broekmans, F.J.; Fleischer, K.; de Bruin, J.P.; Kaaijk, E.M.; et al. Gonadotrophins versus clomifene citrate with or without intrauterine insemination in women with normogonadotropic anovulation and clomifene failure (M-OVIN): A randomised, two-by-two factorial trial. Lancet 2018, 391, 758–765. [Google Scholar] [CrossRef]
- Ibrahem, M.A. Simultaneous letrozole and clomiphene citrate versus letrozole alone in clomiphene citrate resistant polycystic ovary syndrome: A randomised controlled trial. Open J. Obstet. Gynecol. 2019, 9, 1532. [Google Scholar] [CrossRef]
- Sharma, P.; Chandra, R.; Sarkar, A.; Jindal, S.; Sharma, A.; Sharma, J.C.; Jaggarwal, S. Assessment of Fertility Outcomes Following Combined Clomiphene and Letrozole Versus Letrozole Therapy for the Treatment of Polycystic Ovarian Syndrome Subfertility. Cureus 2023, 15, e38886. [Google Scholar] [CrossRef]
- Du, B.; Ni, M.; Chen, P. Effects of letrozole combined with clomiphene in the treatment of polycystic ovary syndrome: A meta-analysis. BMC Women’s Health 2025, 25, 344. [Google Scholar] [CrossRef] [PubMed]
- Eskandar, K.; Oliveira, J.A.; Ribeiro, S.A.; Chavez, M.P.; Zotti, A.I.A.; Dias, Y.J.M.; Novellino, A.M.M. Letrozole and clomiphene versus letrozole alone for ovulation induction in women with PCOS: A systematic review and meta-analysis. Rev. Bras. Ginecol. Obstet. 2025, 47, e-rbgo21. [Google Scholar] [CrossRef]
- Ryan, G.L.; Moss, V.; Davis, W.A.; Sparks, A.; Dokras, A.; Van Voorhis, B.J. Oral ovulation induction agents combined with low-dose gonadotropin injections and intrauterine insemination: Cost-and clinical effectiveness. J. Reprod. Med. 2005, 50, 943–950. [Google Scholar] [PubMed]
- Hajishafiha, M.; Dehghan, M.; Kiarang, N.; Sadegh-Asadi, N.; Shayegh, S.N.; Ghasemi-Rad, M. Combined letrozole and clomiphene versus letrozole and clomiphene alone in infertile patients with polycystic ovary syndrome. Drug Des. Dev. Ther. 2013, 1427–1431. [Google Scholar] [CrossRef]
- Xia, T.T.; Zeng, K.F.; Peng, Q.M. Comparison of Three Ovulation Induction Therapies for Patients with Polycystic Ovary Syndrome and Infertility. J. Clin. Pharmacol. 2023, 63, 1371–1376. [Google Scholar] [CrossRef]
- Dai, X.; Li, J.; Fu, T.; Long, X.; Li, X.; Weng, R.; Liu, Y.; Zhang, L. Ovulation induction using sequential letrozole/gonadotrophin in infertile women with PCOS: A randomized controlled trial. Reprod. Biomed. Online 2023, 46, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Choudhary, M.; Swarankar, V.; Vaishnav, V. Comparison of Tamoxifen and Clomiphene Citrate for Ovulation Induction in Women with Polycystic Ovarian Syndrome: A Prospective Study. J. Reprod. Infertil. 2021, 22, 274–281. [Google Scholar] [CrossRef]
- Xuekun, S.H.; Siyou, H.Z. Different stimulate ovulation drugs influence of early pregnancy outcome in patients with polycystic ovary syndrome. Pract. Med. J. 2011, 27, 3760–3762. [Google Scholar]
- Narayanan, M.; Jahaan, U.; Gupta, N. Comparative evaluation of different cost effective ovulation induction drugs and their effect on follicular growth, endometrial thickness and pregnancy outcome. Int. J. Reprod. Contracept. Obstet. Gynecol. 2019, 8, 4549–4553. [Google Scholar] [CrossRef]
- Sattar, M.M.A.; El-Halaby, A.E.F.; El-Shamy, E.-S.A.; Taha, S.N. Effect of clomiphene citrate, tamoxifen, and letrozole on endometrial thickness in cycles of ovulation induction: A randomized controlled trial. Menoufia Med. J. 2020, 33, 405. [Google Scholar]
- Li, Y.; Yang, D.-z. Letrozole, tamoxifen or clomiphene citrate for ovulation induction in women with polycystic ovarian syndrome after pretreatment: A prospective randomized trial. Chin. J. Pract. Gynecol. Obstet. 2011, 27, 606–608. [Google Scholar]
- Boostanfar, R.; Jain, J.K.; Mishell, D.R., Jr.; Paulson, R.J. A prospective randomized trial comparing clomiphene citrate with tamoxifen citrate for ovulation induction. Fertil. Steril. 2001, 75, 1024–1026. [Google Scholar] [CrossRef]
- Nardo, L.G. Management of anovulatory infertility associated with polycystic ovary syndrome: Tamoxifen citrate an effective alternative compound to clomiphene citrate. Gynecol. Endocrinol. 2004, 19, 235–238. [Google Scholar] [CrossRef]
- Seyedoshohadaei, F.; Zandvakily, F.; Shahgeibi, S. Comparison of the effectiveness of clomiphene citrate, tamoxifen and letrozole in ovulation induction in infertility due to isolated unovulation. Iran. J. Reprod. Med. 2012, 10, 531–536. [Google Scholar]
- Xiang, D.; Chen, L.; Zeng, L. Clinical efficacy of clomiphene and tamoxifen on infertility patients with polycystic ovary syndrome. Iran. J. Reprod. Med. 2016, 2, 284–287. [Google Scholar]
- Luo, Q.-y. The clinical effect of letrozole, tamoxifen and clomiphene in treatment of patients with polycystic ovary syndrome infertility. Clin. Med. Res. Pract. 2016, 1, 39–40. [Google Scholar]
- Jie, L.; Li, D.; Yang, C.; Haiying, Z. Tamoxifen versus clomiphene citrate for ovulation induction in infertile women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 228, 57–64. [Google Scholar] [CrossRef]
- El-Gharib, M.N.; Mahfouz, A.E.; Farahat, M.A. Comparison of letrozole versus tamoxifen effects in clomiphen citrate resistant women with polycystic ovarian syndrome. J. Reprod. Infertil. 2015, 16, 30–35. [Google Scholar] [PubMed]
- Flory, J.; Lipska, K. Metformin in 2019. JAMA 2019, 321, 1926–1927. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Hutchison, S.K.; Zoungas, S. The management of insulin resistance in polycystic ovary syndrome. Trends Endocrinol. Metab. 2007, 18, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Sam, S.; Ehrmann, D.A. Metformin therapy for the reproductive and metabolic consequences of polycystic ovary syndrome. Diabetologia 2017, 60, 1656–1661. [Google Scholar] [CrossRef]
- Tang, T.; Glanville, J.; Hayden, C.J.; White, D.; Barth, J.H.; Balen, A.H. Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled, double-blind multicentre study. Hum. Reprod. 2006, 21, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Abu Hashim, H.; Foda, O.; Ghayaty, E. Combined metformin-clomiphene in clomiphene-resistant polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Acta Obstet. Gynecol. Scand. 2015, 94, 921–930. [Google Scholar] [CrossRef]
- Sharpe, A.; Morley, L.C.; Tang, T.; Norman, R.J.; Balen, A.H. Metformin for ovulation induction (excluding gonadotrophins) in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2019, 12, Cd013505. [Google Scholar] [CrossRef]
- Lin, W.; Feng, J.; Zhou, H.; Chen, X.; Diao, W.; Ma, P. Therapeutic efficacy of clomiphene citrate combined with metformin in patients with polycystic ovary syndrome. J. Clin. Pharm. Ther. 2022, 47, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Azargoon, A.; Fatemi, H.M.; Mirmohammadkhani, M.; Darzi, S. Is the Co-administration of Metformin and Clomiphene Superior to Induce Ovulation in Infertile Patients with Poly Cystic Ovary Syndrome and Confirmed Insulin-Resistance: A Double Blind Randomized Clinical Trial. J. Fam. Reprod. Health 2023, 17, 21–28. [Google Scholar] [CrossRef]
- Palomba, S.; Falbo, A.; La Sala, G.B. Metformin and gonadotropins for ovulation induction in patients with polycystic ovary syndrome: A systematic review with meta-analysis of randomized controlled trials. Reprod. Biol. Endocrinol. 2014, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Bordewijk, E.M.; Nahuis, M.; Costello, M.F.; Van der Veen, F.; Tso, L.O.; Mol, B.W.; van Wely, M. Metformin during ovulation induction with gonadotrophins followed by timed intercourse or intrauterine insemination for subfertility associated with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2017, 1, Cd009090. [Google Scholar] [CrossRef]
- Gupta, A.; Jakubowicz, D.; Nestler, J.E. Pioglitazone Therapy Increases Insulin-Stimulated Release of d-Chiro-Inositol-Containing Inositolphosphoglycan Mediator in Women with Polycystic Ovary Syndrome. Metab. Syndr. Relat. Disord. 2016, 14, 391–396. [Google Scholar] [CrossRef]
- Morley, L.C.; Tang, T.; Yasmin, E.; Norman, R.J.; Balen, A.H. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst. Rev. 2017, 11, Cd003053. [Google Scholar] [CrossRef]
- Kim, C.H.; Jeon, G.H.; Kim, S.R.; Kim, S.H.; Chae, H.D.; Kang, B.M. Effects of pioglitazone on ovarian stromal blood flow, ovarian stimulation, and in vitro fertilization outcome in patients with polycystic ovary syndrome. Fertil. Steril. 2010, 94, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Emekçi Özay, Ö.; Özay, A.C.; Çağlıyan, E.; Okyay, R.E.; Gülekli, B. Myo-inositol administration positively effects ovulation induction and intrauterine insemination in patients with polycystic ovary syndrome: A prospective, controlled, randomized trial. Gynecol. Endocrinol. 2017, 33, 524–528. [Google Scholar] [CrossRef]
- Agrawal, A.; Mahey, R.; Kachhawa, G.; Khadgawat, R.; Vanamail, P.; Kriplani, A. Comparison of metformin plus myoinositol vs metformin alone in PCOS women undergoing ovulation induction cycles: Randomized controlled trial. Gynecol. Endocrinol. 2019, 35, 511–514. [Google Scholar] [CrossRef]
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.D., Jr.; Lincoln, S.R.; Cowan, B.D. Extended clomiphene citrate (CC) and prednisone for the treatment of chronic anovulation resistant to CC alone. Fertil. Steril. 1997, 67, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Brann, D.; O’Conner, J.; Wade, M.; Mahesh, V. LH and FSH subunit mRNA concentrations during the progesterone-induced gonadotropin surge in ovariectomized estrogen-primed immature rats. Mol. Cell. Neurosci. 1992, 3, 171–178. [Google Scholar] [CrossRef]
- Farzaneh, F.; Afshar, F. Comparison of ovulation induction with letrozole plus dexamethasone and letrozole alone in infertile women with polycystic ovarian disease: An RCT. Int. J. Reprod. Biomed. 2020, 18, 307. [Google Scholar] [CrossRef]
- Neblett, M.F., 2nd; Baumgarten, S.C.; Babayev, S.N.; Shenoy, C.C. Ovulation induction with letrozole and dexamethasone in infertile patients with letrozole-resistant polycystic ovary syndrome. J. Assist. Reprod. Genet. 2023, 40, 1461–1466. [Google Scholar] [CrossRef]
- Lobo, R.A.; Paul, W.; March, C.M.; Granger, L.; Kletzky, O.A. Clomiphene and dexamethasone in women unresponsive to clomiphene alone. Obstet. Gynecol. 1982, 60, 497–501. [Google Scholar]
- Daly, D.C.; Walters, C.A.; Soto-Albors, C.E.; Tohan, N.; Riddick, D.H. A randomized study of dexamethasone in ovulation induction with clomiphene citrate. Fertil. Steril. 1984, 41, 844–848. [Google Scholar] [CrossRef]
- Trott, E.A.; Plouffe, L., Jr.; Hansen, K.; Hines, R.; Brann, D.W.; Mahesh, V.B. Ovulation induction in clomiphene-resistant anovulatory women with normal dehydroepiandrosterone sulfate levels: Beneficial effects of the addition of dexamethasone during the follicular phase. Fertil. Steril. 1996, 66, 484–486. [Google Scholar] [CrossRef]
- Parsanezhad, M.E.; Alborzi, S.; Motazedian, S.; Omrani, G. Use of dexamethasone and clomiphene citrate in the treatment of clomiphene citrate-resistant patients with polycystic ovary syndrome and normal dehydroepiandrosterone sulfate levels: A prospective, double-blind, placebo-controlled trial. Fertil. Steril. 2002, 78, 1001–1004. [Google Scholar] [CrossRef]
- Hernández, I.; Parra, A.; Méndez, I.; Cabrera, V.; Cravioto, M.C.; Mercado, M.; Díaz-Sánchez, V.; Larrea, F. Hypothalamic dopaminergic tone and prolactin bioactivity in women with polycystic ovary syndrome. Arch. Med. Res. 2000, 31, 216–222. [Google Scholar] [CrossRef]
- Tripathy, S.; Mohapatra, S.; M, M.; Chandrasekhar, A. Induction of Ovulation with Clomiphene Citrate Versus Clomiphene with Bromocriptine in PCOS Patients with Normal Prolactin: A Comparative Study. J. Clin. Diagn. Res. 2013, 7, 2541–2543. [Google Scholar] [CrossRef]
- Zahran, K.M.; Mostafa, W.A.; Abbas, A.M.; Khalifa, M.A.; Sayed, G.H. Clomiphene citrate plus cabergoline versus clomiphene citrate for induction of ovulation in infertile euprolactinemic patients with polycystic ovary syndrome: A randomized clinical trial. Middle East Fertil. Soc. J. 2018, 23, 173–177. [Google Scholar] [CrossRef]
- Mohammadbygi, R.; Yousefi, S.R.; Shahghaybi, S.; Zandi, S.; Sharifi, K.; Gharibi, F. Effects of Cabergoline administration on uterine perfusion in women with polycystic ovary syndrome. Pak. J. Med. Sci. 2013, 29, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Witwit, S.J. Improving pregnancy rate in infertile patients with polycystic ovarian syndrome receiving clomiphene citrate and cabergoline in euprolactinomic women in single cycle treatment. Ginekol. Pol. 2023, 94, 456–462. [Google Scholar] [CrossRef]
- Csuka, M.E.; McCarty, D.J. Aspirin and the treatment of rheumatoid arthritis. Rheum. Dis. Clin. N. Am. 1989, 15, 439–454. [Google Scholar] [CrossRef]
- Jorda, A.; Aldasoro, M.; Aldasoro, C.; Guerra-Ojeda, S.; Iradi, A.; Vila, J.M.; Campos-Campos, J.; Valles, S.L. Action of low doses of Aspirin in Inflammation and Oxidative Stress induced by aβ1-42 on Astrocytes in primary culture. Int. J. Med. Sci. 2020, 17, 834. [Google Scholar] [CrossRef]
- Yamamoto, M.M.W.; de Medeiros, S.F. Differential activity of the corticosteroidogenic enzymes in normal cycling women and women with polycystic ovary syndrome. Rev. Endocr. Metab. Disord. 2019, 20, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wang, Z.; Su, F.; Wang, M. Effectiveness and safety of aspirin combined with letrozole in the treatment of polycystic ovary syndrome: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 4632–4641. [Google Scholar] [CrossRef]
- Sereepapong, W.; Suwajanakorn, S.; Triratanachat, S.; Sampatanukul, P.; Pruksananonda, K.; Boonkasemsanti, W.; Reinprayoon, D. Effects of clomiphene citrate on the endometrium of regularly cycling women. Fertil. Steril. 2000, 73, 287–291. [Google Scholar] [CrossRef]
- Fetih, A.N.; Habib, D.M.; Abdelaal, I.I.; Hussein, M.; Fetih, G.N.; Othman, E.R. Adding sildenafil vaginal gel to clomiphene citrate in infertile women with prior clomiphene citrate failure due to thin endometrium: A prospective self-controlled clinical trial. Facts Views Vis. ObGyn 2017, 9, 21–27. [Google Scholar]
- Hale, S.A.; Jones, C.W.; Osol, G.; Schonberg, A.; Badger, G.J.; Bernstein, I.M. Sildenafil increases uterine blood flow in nonpregnant nulliparous women. Reprod. Sci. 2010, 17, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, A.A.; Elsokkary, M.; Sayed, S. The Value of Oral Sildenafil in the Treatment of Female Infertility: A Randomized Clinical Trial. Life Sci. J. 2015, 12, 78–82. [Google Scholar]
- Ashoush, S.; Abdelshafy, A. Sildenafil citrate adjuvant treatment in women with polycystic ovary syndrome following clomiphene failure: A randomized controlled trial. Evid. Based Women’s Health J. 2019, 9, 487–493. [Google Scholar] [CrossRef]
- Mohammed, W.E.; Abbas, M.M.; Abdelazim, I.A.; Salman, M.M. Sildenafil citrate as an adjuvant to clomiphene citrate for ovulation induction in polycystic ovary syndrome: Crossover randomized controlled trial. Prz. Menopauzalny 2022, 21, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luan, T.; Zhao, C.; Zhang, M.; Dong, L.; Su, Y.; Ling, X. Effect of sildenafil citrate on treatment of infertility in women with a thin endometrium: A systematic review and meta-analysis. J. Int. Med. Res. 2020, 48, 300060520969584. [Google Scholar] [CrossRef]
- Gutarra-Vilchez, R.B.; Bonfill Cosp, X.; Glujovsky, D.; Viteri-García, A.; Runzer-Colmenares, F.M.; Martinez-Zapata, M.J. Vasodilators for women undergoing fertility treatment. Cochrane Database Syst. Rev. 2018, 10, Cd010001. [Google Scholar] [CrossRef]
- Mohamed, T. Oral sildenafil for treatment of female infertility among pco patients: Randomized comparative study. Austin J. Obstet. Gynecol. 2019, 6, 1143. [Google Scholar]
- Menichini, D.; Facchinetti, F. Effects of vitamin D supplementation in women with polycystic ovary syndrome: A review. Gynecol. Endocrinol. 2020, 36, 1–5. [Google Scholar] [CrossRef]
- Berridge, M.J. Vitamin D deficiency: Infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am. J. Physiol. Cell Physiol. 2018, 314, C135–C151. [Google Scholar] [CrossRef]
- Yang, M.; Shen, X.; Lu, D.; Peng, J.; Zhou, S.; Xu, L.; Zhang, J. Effects of vitamin D supplementation on ovulation and pregnancy in women with polycystic ovary syndrome: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1148556. [Google Scholar] [CrossRef]
- Tóth, B.E.; Takács, I.; Valkusz, Z.; Jakab, A.; Fülöp, Z.; Kádár, K.; Putz, Z.; Kósa, J.P.; Lakatos, P. Effects of Vitamin D3 Treatment on Polycystic Ovary Symptoms: A Prospective Double-Blind Two-Phase Randomized Controlled Clinical Trial. Nutrients 2025, 17, 1246. [Google Scholar] [CrossRef]
- Ko, J.K.Y.; Yung, S.S.F.; Lai, S.F.; Wan, R.S.F.; Wong, C.K.Y.; Wong, K.; Cheung, C.L.; Ng, E.H.Y.; Li, R.H.W. Effect of vitamin D in addition to letrozole on the ovulation rate of women with polycystic ovary syndrome: Protocol of a multicentre randomised double-blind controlled trial. BMJ Open 2024, 14, e070801. [Google Scholar] [CrossRef] [PubMed]
- Hammiche, F.; Vujkovic, M.; Wijburg, W.; de Vries, J.H.; Macklon, N.S.; Laven, J.S.; Steegers-Theunissen, R.P. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil. Steril. 2011, 95, 1820–1823. [Google Scholar] [CrossRef]
- Wathes, D.C.; Abayasekara, D.R.; Aitken, R.J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Thomas, M.; Bao, B.; Williams, G. Dietary fats varying in their fatty acid composition differentially influence follicular growth in cows fed isoenergetic diets. J. Anim. Sci. 1997, 75, 2512–2519. [Google Scholar] [CrossRef]
- Wise, L.A.; Wesselink, A.K.; Tucker, K.L.; Saklani, S.; Mikkelsen, E.M.; Cueto, H.; Riis, A.H.; Trolle, E.; McKinnon, C.J.; Hahn, K.A. Dietary fat intake and fecundability in 2 preconception cohort studies. Am. J. Epidemiol. 2018, 187, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Nadjarzadeh, A.; Dehghani-Firouzabadi, R.; Daneshbodi, H.; Lotfi, M.H.; Vaziri, N.; Mozaffari-Khosravi, H. Effect of omega-3 supplementation on visfatin, adiponectin, and anthropometric indices in women with polycystic ovarian syndrome. J. Reprod. Infertil. 2015, 16, 212. [Google Scholar] [PubMed]
- Phelan, N.; O’Connor, A.; Kyaw Tun, T.; Correia, N.; Boran, G.; Roche, H.M.; Gibney, J. Hormonal and metabolic effects of polyunsaturated fatty acids in young women with polycystic ovary syndrome: Results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 2011, 93, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Trop-Steinberg, S.; Heifetz, E.M.; Azar, Y.; Kafka, I.; Weintraub, A.; Gal, M. Omega-3 Intake Improves Clinical Pregnancy Rate in Polycystic Ovary Syndrome Patients: A Double-Blind, Randomized Study. Isr. Med. Assoc. J. 2023, 25, 131–136. [Google Scholar] [PubMed]
- Izhar, R.; Husain, S.; Tahir, M.A.; Husain, S. Effect of Administrating Coenzyme Q10 with Clomiphene Citrate on Ovulation Induction in Polycystic Ovary Syndrome Cases with Resistance to Clomiphene Citrate: A Randomized Controlled Trial. J. Reprod. Infertil. 2022, 23, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bao, H.; Cong, J.; Qu, Q. Comparative effects of acupuncture and metformin on insulin sensitivity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Front. Endocrinol. 2025, 16, 1553684. [Google Scholar] [CrossRef]
- Ye, Y.; Zhou, C.C.; Hu, H.Q.; Fukuzawa, I.; Zhang, H.L. Underlying mechanisms of acupuncture therapy on polycystic ovary syndrome: Evidences from animal and clinical studies. Front. Endocrinol. 2022, 13, 1035929. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Z.Y.; Yin, Z.H.; Yu, Z.; Liu, J.J.; Xiao, Y.Q.; Zhou, Y.; Li, J.; Yang, J.; Liang, F.R. Efficacy and safety of acupuncture for polycystic ovary syndrome: An overview of systematic reviews. J. Integr. Med. 2023, 21, 136–148. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Gao, J.; Yan, J.; Feng, X.; He, X.; Jin, H.; Li, X.; Cui, Z.; Zhao, J.; et al. Effect of Acupuncture on Polycystic Ovary Syndrome in Animal Models: A Systematic Review. Evid. Based Complement. Altern. Med. 2021, 2021, 5595478. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Sun, Y.; Zhou, J.; Gao, Y.L.; Ma, G.Z.; Hu, Z.H.; Wang, Y.; Shi, Y. Effectiveness of herb-partitioned moxibustion combined with electroacupuncture on polycystic ovary syndrome in patients with symptom pattern of kidney deficiency and phlegm-dampne. J. Tradit. Chin. Med. 2021, 41, 985–993. [Google Scholar] [CrossRef]
- Chen, X.; Tang, H.; Liang, Y.; Wu, P.; Xie, L.; Ding, Y.; Yang, P.; Long, B.; Lin, J. Acupuncture regulates the autophagy of ovarian granulosa cells in polycystic ovarian syndrome ovulation disorder by inhibiting the PI3K/AKT/mTOR pathway through LncMEG3. Biomed. Pharmacother. 2021, 144, 112288. [Google Scholar] [CrossRef]
- Song, Y.J.; Liang, F.X.; Wu, S.; Yang, H.S.; Chen, L.; Huang, Q.; Tang, H.T.; Lu, W.; Wang, H.; Chen, S.; et al. Network meta-analysis on the effects of the acupuncture-related therapy on ovulation rate and pregnancy rate in patients with polycystic ovary syndrome. Zhongguo Zhen Jiu 2019, 39, 792–798. [Google Scholar] [CrossRef]
- Wu, J.; Chen, D.; Liu, N. Effectiveness of acupuncture in polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Medicine 2020, 99, e20441. [Google Scholar] [CrossRef]
- Yang, L.; Yang, W.; Sun, M.; Luo, L.; Li, H.R.; Miao, R.; Pang, L.; Chen, Y.; Zou, K. Meta analysis of ovulation induction effect and pregnancy outcome of acupuncture & moxibustion combined with clomiphene in patients with polycystic ovary syndrome. Front. Endocrinol. 2023, 14, 1261016. [Google Scholar] [CrossRef]
- Chen, X.; Lan, Y.; Yang, L.; Liu, Y.; Li, H.; Zhu, X.; Zhao, Y.; Long, C.; Wang, M.; Xie, Q.; et al. Acupuncture combined with metformin versus metformin alone to improve pregnancy rate in polycystic ovary syndrome: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 978280. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.E.; Ng, R.W.; Xu, K.; Cheng, N.C.; Xue, C.C.; Liu, J.P.; Chen, N. Acupuncture for polycystic ovarian syndrome. Cochrane Database Syst. Rev. 2016, Cd007689, Erratum in Cochrane Database Syst. Rev. 2019, 7, Cd007689. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Lee, Y.J.; Lee, H. Acupuncture for polycystic ovarian syndrome: A systematic review and meta-analysis. Medicine 2017, 96, e7066. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, N.M.; Machado, J.; Lopes, L.; Criado, M.B. A Review on Acupuncture Efficiency in Human Polycystic Ovary/Ovarian Syndrome. J. Pharmacopunct. 2023, 26, 105–123. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Q.; Wang, S.; Xu, H.; Fang, Y. Effectiveness of Acupuncture for Infertility in Patients with Polycystic Ovary Syndrome: A Systematic Review and Network Meta-Analysis. Endocr. Metab. Immune Disord. Drug Targets, 2024; ahead of print. [Google Scholar] [CrossRef]
- Bai, T.; Deng, X.; Bi, J.; Ni, L.; Li, Z.; Zhuo, X. The effects of acupuncture on patients with premature ovarian insufficiency and polycystic ovary syndrome: An umbrella review of systematic reviews and meta-analyses. Front. Med. 2024, 11, 1471243. [Google Scholar] [CrossRef]
- Huang, S.; Hu, M.; Ng, E.H.Y.; Stener-Victorin, E.; Zheng, Y.; Wen, Q.; Wang, C.; Lai, M.; Li, J.; Gao, X.; et al. A multicenter randomized trial of personalized acupuncture, fixed acupuncture, letrozole, and placebo letrozole on live birth in infertile women with polycystic ovary syndrome. Trials 2020, 21, 239. [Google Scholar] [CrossRef]
- Deng, Y.P.; Zhou, Y.L.; Wei, T.T.; He, G.S.; Zhu, Z.X.; Zhang, S.N.; Liu, M.J.; Xue, J.J.; Zhang, W.X.; Yang, X.G. Combined traditional Chinese medicine therapy for the treatment of infertility with polycystic ovary syndrome: A network meta-analysis of randomized controlled trials. Medicine 2024, 103, e38912. [Google Scholar] [CrossRef]
- Li, P.; Peng, J.; Ding, Z.; Zhou, X.; Liang, R. Effects of Acupuncture Combined with Moxibustion on Reproductive and Metabolic Outcomes in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2022, 2022, 3616036. [Google Scholar] [CrossRef]
- Hung, S.W.; Li, Y.; Chen, X.; Chu, K.O.; Zhao, Y.; Liu, Y.; Guo, X.; Man, G.C.; Wang, C.C. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front. Pharmacol. 2022, 13, 906746. [Google Scholar] [CrossRef]
- Suhail, M.; Rehan, M.; Tarique, M.; Tabrez, S.; Husain, A.; Zughaibi, T.A. Targeting a transcription factor NF-κB by green tea catechins using in silico and in vitro studies in pancreatic cancer. Front. Nutr. 2022, 9, 1078642. [Google Scholar] [CrossRef]
- Cai, B.; Wang, Q.; Zhong, L.; Liu, F.; Wang, X.; Chen, T. Integrating Network Pharmacology, Transcriptomics to Reveal Neuroprotective of Curcumin Activate PI3K / AKT Pathway in Parkinson’s Disease. Drug Des. Dev. Ther. 2024, 18, 2869–2881. [Google Scholar] [CrossRef]
- Buhrmann, C.; Mobasheri, A.; Busch, F.; Aldinger, C.; Stahlmann, R.; Montaseri, A.; Shakibaei, M. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: Role of the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 2011, 286, 28556–28566. [Google Scholar] [CrossRef]
- Wu, S.K.; Wang, L.; Wang, F.; Zhang, J. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1α signal pathway in SAP. Sci. Rep. 2024, 14, 26216. [Google Scholar] [CrossRef]
- Hassanein, E.H.M.; Althagafy, H.S.; Baraka, M.A.; Abd-Alhameed, E.K.; Ibrahim, I.M.; Abd El-Maksoud, M.S.; Mohamed, N.M.; Ross, S.A. The promising antioxidant effects of lignans: Nrf2 activation comes into view. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 6439–6458. [Google Scholar] [CrossRef]
- Shen, W.; Jin, B.; Pan, Y.; Han, Y.; You, T.; Zhang, Z.; Qu, Y.; Liu, S.; Zhang, Y. The Effects of Traditional Chinese Medicine-Associated Complementary and Alternative Medicine on Women with Polycystic Ovary Syndrome. Evid. Based Complement. Altern. Med. 2021, 2021, 6619597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, T.; Zhou, L.; Tang, L.; Xu, L.; Wu, T.; Lim, D.C. Chinese herbal medicine for subfertile women with polycystic ovarian syndrome. Cochrane Database Syst. Rev. 2010, 6, Cd007535, Erratum in Cochrane Database Syst. Rev. 2016, 10, Cd007535. Erratum in Cochrane Database Syst. Rev. 2021, 6, Cd007535. [Google Scholar] [CrossRef]
- Kwon, C.Y.; Lee, B.; Park, K.S. Oriental herbal medicine and moxibustion for polycystic ovary syndrome: A meta-analysis. Medicine 2018, 97, e12942. [Google Scholar] [CrossRef] [PubMed]
- Arentz, S.; Smith, C.A.; Abbott, J.; Bensoussan, A. Nutritional supplements and herbal medicines for women with polycystic ovary syndrome; a systematic review and meta-analysis. BMC Complement. Altern. Med. 2017, 17, 500. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liang, R.; Tang, Q.; Zhu, L. An Overview of Systematic Reviews of Using Chinese Medicine to Treat Polycystic Ovary Syndrome. Evid. Based Complement. Altern. Med. 2021, 2021, 9935536. [Google Scholar] [CrossRef]
- Lin, Y.; Zeng, H.; Lin, J.; Peng, Y.; Que, X.; Wang, L.; Chen, L.; Bai, N. Evaluating the therapeutic potential of moxibustion on polycystic ovary syndrome: A rat model study on gut microbiota and metabolite interaction. Front. Cell Infect. Microbiol. 2024, 14, 1328741. [Google Scholar] [CrossRef]
- Mazzei, R.; Patitucci, A.; Magariello, A.; Russo, G.; Tagarelli, G. From Hippocrates to Italian traditional medicine: Ethnopharmacological evidence for a potential pharmacological perspective in the management of polycystic ovary syndrome. J. Ethnopharmacol. 2025, 355, 120730. [Google Scholar] [CrossRef]
- Khodaeifar, F.; Bagher, F.S.M.; Khaki, A.; Torbati, M.; Olad, S.M.E.; Khaki, A.A.; Shokoohi, M.; Dalili, A.H. Investigating the role of hydroalcoholic extract of Apium graveolens and Cinnamon zeylanicum on metabolically change and ovarian oxidative injury in a rat model of polycystic ovary syndrome. Int. J. Women’s Health Reprod. Sci. 2019, 7, 92–98. [Google Scholar] [CrossRef]
- Kian, E.M.; Barancheshmeh, M.; Najafzadehvarzi, H.; Ghoreishi, S.M.; Shokrzadeh, N. Therapeutic potential of fennel essential oil and manganese in modulating steroidal hormonal imbalance and ovarian alterations in rats with polycystic ovarian syndrome: An experimental study. Int. J. Reprod. Biomed. 2025, 23, 79. [Google Scholar] [CrossRef]
- Mahood, R.A.-H. Effects of Pimpinella anisum oil extract on some biochemical parameters in mice experimentally induced for human polycystic ovary syndrome. J. Biotechnol. Res. Cent. 2012, 6, 67–73. [Google Scholar] [CrossRef]
- Li, J.; Long, H.; Cong, Y.; Gao, H.; Lyu, Q.; Yu, S.; Kuang, Y. Quercetin prevents primordial follicle loss via suppression of PI3K/Akt/Foxo3a pathway activation in cyclophosphamide-treated mice. Reprod. Biol. Endocrinol. 2021, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Shrivastva, V.K.; Mir, M.A.; Sheikh, W.M.; Ganie, M.A.; Rather, G.A.; Shafi, M.; Bashir, S.M.; Ansari, M.A.; Al-Jafary, M.A.; et al. Effect of quercetin on steroidogenesis and folliculogenesis in ovary of mice with experimentally-induced polycystic ovarian syndrome. Front. Endocrinol. 2023, 14, 1153289. [Google Scholar] [CrossRef] [PubMed]
- Wal, A.; Wal, P.; Saraswat, N.; Wadhwa, S. A detailed review on herbal treatments for treatment of PCOS-Polycystic ovary syndrome (PCOS). Curr. Nutraceuticals 2021, 2, 192–202. [Google Scholar] [CrossRef]
- Heshmati, J.; Moini, A.; Sepidarkish, M.; Morvaridzadeh, M.; Salehi, M.; Palmowski, A.; Mojtahedi, M.F.; Shidfar, F. Effects of curcumin supplementation on blood glucose, insulin resistance and androgens in patients with polycystic ovary syndrome: A randomized double-blind placebo-controlled clinical trial. Phytomedicine 2021, 80, 153395. [Google Scholar] [CrossRef]
- Yu, J.; Ding, C.; Hua, Z.; Jiang, X.; Wang, C. Protective effects of berberine in a rat model of polycystic ovary syndrome mediated via the PI3K/AKT pathway. J. Obstet. Gynaecol. Res. 2021, 47, 1789–1803. [Google Scholar] [CrossRef]
- Peng, F.; Hu, Y.; Peng, S.; Zeng, N.; Shi, L. Apigenin exerts protective effect and restores ovarian function in dehydroepiandrosterone induced polycystic ovary syndrome rats: A biochemical and histological analysis. Ann. Med. 2022, 54, 578–587. [Google Scholar] [CrossRef]
- Darabi, P.; Khazali, H.; Mehrabani Natanzi, M. Therapeutic potentials of the natural plant flavonoid apigenin in polycystic ovary syndrome in rat model: Via modulation of pro-inflammatory cytokines and antioxidant activity. Gynecol. Endocrinol. 2020, 36, 582–587. [Google Scholar] [CrossRef]
- Mansour, A.; Samadi, M.; Sanginabadi, M.; Gerami, H.; Karimi, S.; Hosseini, S.; Shirzad, N.; Hekmatdoost, A.; Mahdavi-Gorabi, A.; Mohajeri-Tehrani, M.R.; et al. Effect of resveratrol on menstrual cyclicity, hyperandrogenism and metabolic profile in women with PCOS. Clin. Nutr. 2021, 40, 4106–4112. [Google Scholar] [CrossRef]
- Luo, M.; Zheng, L.W.; Wang, Y.S.; Huang, J.C.; Yang, Z.Q.; Yue, Z.P.; Guo, B. Genistein exhibits therapeutic potential for PCOS mice via the ER-Nrf2-Foxo1-ROS pathway. Food Funct. 2021, 12, 8800–8811. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, L.; Ilango, K. Identification of phytoconstituents for combating Polycystic ovarian syndrome through in silico techniques. Indian J. Biochem. Biophys. 2023, 60, 99–107. [Google Scholar] [CrossRef]
- Khanage, S.G.; Subhash, T.Y.; Bhaiyyasaheb, I.R. Herbal drugs for the treatment of polycystic ovary syndrome (PCOS) and its complications. Pharm. Res. 2019, 2, 5–13. [Google Scholar]
- Zhou, X.; Ma, Q.; Yan, Z.; Wang, Y.; Qin, J.; Tong, T.; Liang, R.; Li, Y.; Wang, Y.; Chen, J. Efficacy and safety of Chinese patent medicine Xiao Yao San in polycystic ovary syndrome: A systematic review and meta-analysis. J. Ethnopharmacol. 2023, 313, 116517. [Google Scholar] [CrossRef]
- Rong, A.; Ta, N.; E, L.; Meng, W. Add-on effect of the Guizhi Fuling formula for management of reduced fertility potential in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Front. Endocrinol. 2022, 13, 995106. [Google Scholar] [CrossRef]
- Tang, X.; Huang, Q.; Wang, C.; Zhang, D.; Dong, S.; Yu, C. Kuntai Capsule Combined with Letrozole on Gonadal Hormone Levels and Ovarian Function in Patients with PCOS: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 789909. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.W.; Tan, Y. Effectiveness of co-treatment with traditional Chinese medicine and letrozole for polycystic ovary syndrome: A meta-analysis. J. Integr. Med. 2017, 15, 95–101. [Google Scholar] [CrossRef]
- Ried, K. Chinese herbal medicine for female infertility: An updated meta-analysis. Complement. Ther. Med. 2015, 23, 116–128. [Google Scholar] [CrossRef]
- Sha, Y.; Zhu, J.; Shen, F. A meta-analysis of efficacy on dexamethasone and clomiphene in the treatment of polycystic ovary syndrome patients. BMC Women’s Health 2024, 24, 298. [Google Scholar] [CrossRef]
- Lai, L.; Flower, A.; Prescott, P.; Wing, T.; Moore, M.; Lewith, G. Standardised versus individualised multiherb Chinese herbal medicine for oligomenorrhoea and amenorrhoea in polycystic ovary syndrome: A randomised feasibility and pilot study in the UK. BMJ Open 2017, 7, e011709. [Google Scholar] [CrossRef]
- Arentz, S.; Smith, C.A.; Abbott, J.; Fahey, P.; Cheema, B.S.; Bensoussan, A. Combined Lifestyle and Herbal Medicine in Overweight Women with Polycystic Ovary Syndrome (PCOS): A Randomized Controlled Trial. Phytother. Res. 2017, 31, 1330–1340. [Google Scholar] [CrossRef]
- Malik, S.; Saeed, S.; Saleem, A.; Khan, M.I.; Khan, A.; Akhtar, M.F. Alternative treatment of polycystic ovary syndrome: Pre-clinical and clinical basis for using plant-based drugs. Front. Endocrinol. 2023, 14, 1294406. [Google Scholar] [CrossRef]
- McKennon, S.A. Non-Pharmaceutical Intervention Options for Type 2 Diabetes: Complementary & Integrative Health Approaches (Including Natural Products And Mind/Body Practices). In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Brancheau, D.; Patel, B.; Zughaib, M. Do cinnamon supplements cause acute hepatitis? Am. J. Case Rep. 2015, 16, 250–254. [Google Scholar] [CrossRef]
- Liao, C.C.; Lin, K.T. Pseudo-Hyperaldosteronism Arising from Licorice Cough Syrup Self-Ingestion: A Case Report. Reports 2024, 7, 85. [Google Scholar] [CrossRef]
| 10 | Phase | N | Treatment | Outcomes | Side Effects |
|---|---|---|---|---|---|
| Sarkar 2024 [4] | NA | 120 | Letrozole + CC vs. letrozole | Similar ovulation rates: letrozole + CC combination vs. letrozole alone (71/92 (77.2%) vs. 52/83 (62.6%), RR 1.43, 95% CI 0.99–2.06) | No major adverse effects |
| Thabet 2024 [5] | NA | 300 | CC + low dosage of HCG vs. CC | Higher ovulation rate in combination therapy: CC + HCG vs. CC (26.8% vs. 6.1%) | NA |
| Jamal 2023 [6] | NA | 136 | Coenzyme Q10 + CC vs. CC | Higher ovulation rate in combination therapy: 16 (23.5%) | NA |
| Panda 2023 [7] | NA | 80 | Letrozole + CC vs. letrozole | Higher ovulation rate in combination therapy: Letrozole + CC vs. letrozole (73% vs. 38%, p = 0.003, RR 1.93, 95%CI 1.24–3.01) | No serious adverse events attributable to the treatments |
| Ji 2022 [8] | NA | 60 | Probiotics vs. metformin vs. probiotics + metformin combination | Higher ovulation rate in combination therapy: probiotics vs. metformin vs. combination (30% vs. 55% vs. 75%, p = 0.017) | NA |
| Rasheedy 2020 [9] | NA | 186 | Effect of vitamin D supplementation | Higher ovulation rate in combination therapy: treatment group vs. control group (92.5% vs. 78.5%, p = 0.007) | No statistically significant difference between groups regarding side effects |
| Mejia 2019 [10] | 4 | 70 | Letrozole + CC vs. letrozole | Higher ovulation rate in combination therapy: letrozole + CC vs. letrozole alone (77% vs. 43%) | No serious adverse events in either group |
| Yu 2018 [11] | NA | 80 | Electroacupuncture + CC vs. CC | Higher ovulation rate in combination therapy: acupuncture + CC vs. CC (86.8% vs. 64.9%, p < 0.05) | Medication was discontinued in 3 cases due to adverse gastrointestinal reactions |
| Yin 2018 [12] | NA | 120 | Letrozole vs. Letrozole + Chinese herbal medicine vs. Letrozole + Chinese herbal medicine + acupuncture | Higher ovulation rate in combination therapy (all p < 0.05) | NA |
| NA | |||||
| Ma 2016 [13] | NA | 90 | Flying needling therapy + CC vs. flying needling therapy vs. CC | Higher ovulation rate in combination therapy: flying needling therapy + CC vs. flying needling therapy alone vs. CC alone (86.2% vs. 66.7% vs. 69.6%, p < 0.05) | NA |
| Ruan 2016 [14] | NA | 170 | Cold needle puncture drainage surgery alone vs. cold needle puncture drainage surgery + Bushen Quyu Recipe + acupuncture | Higher ovulation rate in combination therapy: cold needle puncture drainage surgery alone vs. cold needle puncture drainage surgery + Bushen Quyu Recipe + acupuncture (75.29% vs. 56.47%, p < 0.05) | NA |
| Wu 2016 [15] | NA | 644 | Berberine + letrozole vs. letrozole | Similar ovulation rates in the combination and letrozole groups (61.0% vs. 59.4%, p = 0.845), and significantly higher than in the berberine group (61.0% vs. 36.3%, p < 0.001) | Berberine was associated with a significantly higher incidence of constipation and nausea, and letrozole was associated with a significantly higher incidence of fatigue and hot flashes. No significant differences among the three groups regarding the total number of adverse events was found |
| El-khayat 2016 [16] | 1 | 50 | CC + metformin + pioglitazone vs. letrozole + metformin + pioglitazone | Similar ovulation rate: CC + metformin + pioglitazone vs. letrozole + metformin + pioglitazone (92.3% vs. 86.9%, p = 0.184) | NA |
| Maged 2015 [17] | NA | 120 | CC alone vs. CC + metformin vs. CC + N-acetylcysteine | Similar ovulation rate | NA |
| Li 2013 [18] | NA | 100 | Acupuncture + auricular point sticking vs. CC | Higher ovulation rate in acupuncture + auricular point sticking: Acupuncture + auricular point sticking vs. CC 90.0% vs. 86.0%, p < 0.05) | No adverse effect was observed in acupuncture group, while in CC group, varying degrees of nausea, vomiting, headache and dermatitis were observed in 29 cases |
| Ghanem 2013 [19] | NA | 174 | CC + FSH vs. FSH | Higher ovulation rate in combination therapy: CC + FSH vs. FSH (72.4% vs. 34.2%, p < 0.001) | NA |
| Ayaz 2013 [20] | NA | 42 | CC + metformin vs. CC | Higher ovulation rate in combination therapy: CC + metformin vs. CC alone (76.2% vs. 38.1%; p = 0.021) | In metformin group, 60% of the females complained of loss of appetite, and 18% had nausea and vomiting, but none discontinued therapy |
| Salehpour 2012 [21] | NA | 180 | CC + N-acetylcysteine vs. CC | Higher ovulation rate in combination therapy: CC + N-acetylcysteine vs. CC alone (45.12% vs. 28%, p = 0.02) | No adverse side effects and no cases of ovarian hyperstimulation syndrome were observed in the group receiving N-acetylcystein |
| Mohsen 2012 [22] | NA | 100 | Rosiglitazone + CC vs. CC | Higher ovulation rate in combination therapy: Rosiglitazone + CC vs. CC only (81.8% vs. 55.2%, p < 0.001) | NA |
| Hashim H 2010 [23] | NA | 192 | CC + N-acetylcysteine vs. CC + metformin | Higher ovulation rate with metformin: CC + N-acetylcysteine vs. CC + metformin (20.0% vs. 69.1%, p = 0.002). | NA |
| Zakherah 2010 [24] | NA | 150 | CC + tamoxifen vs. laparoscopic ovarian drilling | Similar ovulation rates (81.3% vs. 85.3%) | NA |
| Siebert 2009 [25] | NA | 107 | Metformin + CC vs. CC | Similar ovulation rates: metformin + CC vs. CC alone (65.4% vs. 65.5%, 95% CI: −18.1–18%) | NA |
| Ganesh 2009 [26] | NA | 1387 | Letrozole vs. CC + FSH vs. FSH | Higher ovulation rate in combination therapy: letrozole vs. CC + FSH vs. FSH (79.30% vs. 56.95% vs. 89.89%, p < 0.001) | NA |
| Elkind-Hirsch 2008 [27] | 2 | 60 | Metformin vs. exenatide vs. combination therapy | Higher ovulation rate in combination therapy: (p < 0.01) | NA |
| Zain 2009 [28] | NA | 150 | Metformin vs. CC vs. metformin + CC | Ovulation rates: metformin vs. metformin + CC (24% vs. 66.6%, OR 6.98, 95% CI 2.53–19.32), CC vs. metformin + CC (59% vs. 66.6%, p = 0.74) | Nausea (overall 27%), the most common side effect, was higher in COM-treated subjects than in those on monotherapy. Other reported adverse events associated with metformin were vomiting (7%) and headache (2%). Diarrhea (overall 13%) was more likely to occur with combination or metformin treatment. |
| Legro 2007 [29] | NA | 16 | Rosiglitazone or metformin vs. combination therapy | Similar ovulation rates | NA |
| Rouzi 2006 [30] | NA | 25 | Rosiglitazone + CC vs. metformin + CC | Higher ovulation rate in rosiglitazone group: rosiglitazone + CC vs. metformin + CC (64.3% vs. 36.4%, p = 0.035). | NA |
| Elnashar 2006 [31] | NA | 80 | CC + dexamethasone vs. CC | Higher ovulation rate in combination therapy: CC + dexamethasone vs. CC only (75% vs. 15%, p < 0.001) | Dexamethasone was very well tolerated, as no patients complained of any side effects |
| Sohrabvand 2006 [32] | NA | 59 | Letrozole + metformin vs. CC + metformin | Similar ovulation rates | NA |
| Baillargeon 2004 [33] | NA | 128 | Metformin vs. rosiglitazone vs. combination therapy | Higher ovulation rate in metformin and combination therapy compared to rosiglitazone group: metformin vs. rosiglitazone vs. combination therapy (93% vs. 59% vs. 90%, p < 0.001) | NA |
| Zhang 2004 [34] | NA | 96 | CC vs. rosiglitazone alone vs. CC + rosiglitazone | Higher ovulation rate in combination therapy: CC alone vs. rosiglitazone alone vs. CC + rosiglitazone (59% vs. 35% vs. 80%, p < 0.05). | NA |
| Parsanezhad 2002 [35] | NA | 230 | CC + dexamethasone vs. CC | Higher ovulation rate in combination therapy: CC + dexamethasone vs. CC (88% vs. 20%) | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.Y. Integrative Approaches to Ovulation Induction in Polycystic Ovary Syndrome: A Narrative Review of Conventional and Complementary Therapies. Biomedicines 2025, 13, 2711. https://doi.org/10.3390/biomedicines13112711
Song SY. Integrative Approaches to Ovulation Induction in Polycystic Ovary Syndrome: A Narrative Review of Conventional and Complementary Therapies. Biomedicines. 2025; 13(11):2711. https://doi.org/10.3390/biomedicines13112711
Chicago/Turabian StyleSong, Soo Youn. 2025. "Integrative Approaches to Ovulation Induction in Polycystic Ovary Syndrome: A Narrative Review of Conventional and Complementary Therapies" Biomedicines 13, no. 11: 2711. https://doi.org/10.3390/biomedicines13112711
APA StyleSong, S. Y. (2025). Integrative Approaches to Ovulation Induction in Polycystic Ovary Syndrome: A Narrative Review of Conventional and Complementary Therapies. Biomedicines, 13(11), 2711. https://doi.org/10.3390/biomedicines13112711
