Urea Transporters in Cancer: Emerging Roles and Their Clinical Implications
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Molecular Structure, Tissue Distribution, and Physiological Functions of UTs
| Gene | Isoforms | Ecoded by Exons | Number of AA | Specific Motif or Mutation | Transmembrane Helices | Protein Expression in Normal Tissue | Function | References |
|---|---|---|---|---|---|---|---|---|
| SLC14A1 | UT-B1 | 4–11 | 389 | ALE motif | 10 | Human/Rat/Mouse liver, colon, testis, brain, heart, lung, aorta, cochlea, spinotrape zius muscle, urothelial, and mesenteric artery | Facilitate the permeation of urea | [4,8,11,13] |
| UT-B2 | 389 | 10 | Sheep and cow rumens | |||||
| SLC14A2 | UT-A1 | 1–12, 14–23 | 929 | 20 | Apical plasma membrane and in the cytoplasm of the IMCD in rat, mouse, and human medulla. | Urinary concentrating mechanism | ||
| UT-A2 | 13–23 | 397 | Val/Ile 227, Ala/Thr 357 | 19 | Thin descending limb of the loop of Henle | Minor role under physiologic conditions | ||
| UT-A3 | 1–12 | 460 | glycosylation site at N279 | Basolateral membrane of principle cells in inner medullary collecting ducts (IMCDs) | Facilitates transepithelial urea transport across the IMCD | |||
| UT-A4 | 1–7, 18–23 | 466 | glycosylation site N 223 | Rat kidney outer or inner medulla (tubular location is uncertain) | Could activated by cyclic AMP | |||
| UT-A5 | 323 | Outermost layer of the seminiferous tubules inside the testes (mouse) | corresponds with the stage of testicular development | |||||
| UT-A6 | 1–11 | 235 | Human gastrointestinal system, especially in the colon | Expression is controlled by the contents of the intestinal mucosa. |
Genetic Variations Associated with Tumors
| Genes | SNP | Mutation | Cancers | References |
|---|---|---|---|---|
| SLC14A1 | rs10853535 | C>A,G,T | urinary bladder cancer | [16,18,25] |
| rs1058396 | G>A,C,T | |||
| rs11877062 | C>T | |||
| rs17674580 rs11082469 | C>A,T | |||
| rs11082469 rs11877720 | A>G | |||
| rs11877720 | A>A,G | |||
| rs10432193 | T>C | bladder cancer | [16,19,23] | |
| rs9304322 | G>C,T | |||
| rs2170974 | A>G,T | |||
| rs9967412 | C>A,G | |||
| rs10460035 | G>A | |||
| rs8099449 | T>C,G | |||
| rs12454680 | T>A,C | |||
| rs568418 | A>G,T | |||
| rs10775480 | T>A,C | |||
| rs7238033 | T>C | urothelial cancer | [36] | |
| SLC14A2 | rs9952980 | T>A,C | breast cancer | [27,28] |
| rs12455117 | A>C,T | |||
| rs2243803 | T>A | |||
| rs145751449 | G>T | neurofibroma | [32] | |
| rs41301139 | G>A,T | |||
| rs11082438 | G>T | follicular lymphoma | [33] | |
| rs117354958 | A>G | bladder cancer | [35] | |
| rs78012883 | A>G | |||
| rs112833408 | C>T |
3.2. Tumor-Associated Post-Translational Modification (PTM) Regulatory Mechanisms of UTs
3.2.1. Phosphorylation and Ubiquitination Modifications of UTs
3.2.2. Glycosylation Modification
3.2.3. Methylation Modification
3.3. The Role of UTs in Tumor Metabolic Reprogramming
3.3.1. Urea Metabolism and Mitochondrial Oxidative Stress
3.3.2. Amino Acid Metabolism
3.3.3. Participate in Glycolysis and Energy Allocation Strategies
3.4. UTs Participates in Shaping of the Tumor Immune Microenvironment
3.5. The Correlation Between Expression of UTs and Clinicopathological Features of Tumors, and the Potential of UTs as Tumor Biomarkers
3.6. Potential of UTs as Targets for Tumor Therapy
3.7. Research Methods for Urea Transporters in Cancers
3.8. Current Research Gaps and the Overall Future Direction
3.8.1. Tissue-Specific Research
3.8.2. Redundancy Studies of Urea Transporters
3.8.3. Research on the Side Effects of Targeting Urea Transporters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SLC14A1 | Solute Carrier Family 14 Member 1 |
| UT | Urea Transporter |
| DEG | differentially expressed gene |
References
- Pavlova, N.N.; Zhu, J.; Thompson, C.B. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022, 34, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Keshet, R.; Szlosarek, P.; Carracedo, A.; Erez, A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer 2018, 18, 634–645. [Google Scholar] [CrossRef]
- Qiu, Z.; Jiang, T.; Shao, G.; Yang, B. Physiological Functions of Urea Transporters. In Urea Transporters; Book Series: Subcellular Biochemistry; Springer: Singapore, 2025; Volume 118, pp. 105–125. [Google Scholar]
- Ghosh, N.; Mahalanobish, S.; Sil, P.C. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem. Pharmacol. 2024, 228, 116326. [Google Scholar] [CrossRef]
- Parmeggiani, B.; Vargas, C.R. Oxidative stress in urea cycle disorders: Findings from clinical and basic research. Clin. Chim. Acta 2018, 477, 121–126. [Google Scholar] [CrossRef]
- Stewart, G. The emerging physiological roles of the SLC14A family of urea transporters. Br. J. Pharmacol. 2011, 164, 1780–1792. [Google Scholar] [CrossRef]
- Xiong, M.; Huang, S.; Sun, J.; Yang, B. Protein Structures of Urea Transporters. In Urea Transporters; Book Series: Subcellular Biochemistry; Springer: Singapore, 2025; Volume 118, pp. 19–43. [Google Scholar]
- Esteva-Font, C.; Anderson, M.O.; Verkman, A.S. Urea transporter proteins as targets for small-molecule diuretics. Nat. Rev. Nephrol. 2015, 11, 113–123. [Google Scholar] [CrossRef]
- Chi, G.; Dietz, L.; Tang, H.; Snee, M.; Scacioc, A.; Wang, D.; McKinley, G.; Mukhopadhyay, S.M.M.; Pike, A.C.W.; Chalk, R.; et al. Structural characterization of human urea transporters UT-A and UT-B and their inhibition. Sci. Adv. 2023, 9, eadg8229. [Google Scholar] [CrossRef]
- Ying, Y.; Kan, B.; Yang, B.; Sands, J.M. Genes and Evolution of Urea Transporters. In Urea Transporters; Book Series: Subcellular Biochemistry; Springer: Singapore, 2025; Volume 118, pp. 1–17. [Google Scholar]
- Chen, L.; Chou, C.L.; Knepper, M.A. A Comprehensive Map of mRNAs and Their Isoforms across All 14 Renal Tubule Segments of Mouse. J. Am. Soc. Nephrol. 2021, 32, 897–912. [Google Scholar] [CrossRef]
- Li, N.; Klein, J.D.; Sands, J.M.; Yang, B. Tissue Distribution, Expression and Regulation of Urea Transporters. In Urea Transporters; Book Series: Subcellular Biochemistry; Springer: Singapore, 2025; Volume 118, pp. 45–62. [Google Scholar]
- Koutros, S.; Baris, D.; Fischer, A.; Tang, W.; Garcia-Closas, M.; Karagas, M.R.; Schwenn, M.; Johnson, A.; Figueroa, J.; Waddell, R.; et al. Differential urinary specific gravity as a molecular phenotype of the bladder cancer genetic association in the urea transporter gene, SLC14A1. Int. J. Cancer 2013, 133, 3008–3013. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, H.; Hou, J.; Ran, J. Urea Transporters and Their Gene Mutations in Diseases. In Urea Transporters; Book Series: Subcellular Biochemistry; Springer: Singapore, 2025; Volume 118, pp. 127–140. [Google Scholar]
- Selinski, S.; Blaszkewicz, M.; Ickstadt, K.; Gerullis, H.; Otto, T.; Roth, E.; Volkert, F.; Ovsiannikov, D.; Moormann, O.; Banfi, G.; et al. Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer. Carcinogenesis 2017, 38, 1167–1179. [Google Scholar] [CrossRef]
- Teleka, S.; Jochems, S.H.J.; Jirström, K.; Stocks, T. The interaction between smoking and bladder cancer genetic variants on urothelial cancer risk by disease aggressiveness. Cancer Med. 2022, 11, 2896–2905. [Google Scholar] [CrossRef]
- Ebbinghaus, D.; Bánfi, G.; Selinski, S.; Blaszkewicz, M.; Bürger, H.; Hengstler, J.G.; Nyirády, P.; Golka, K. Polymorphisms of xenobiotic metabolizing enzymes in bladder cancer patients of the Semmelweis University Budapest, Hungary. J. Toxicol. Environ. Health Part A 2017, 80, 423–429. [Google Scholar] [CrossRef]
- Sultana, T.; Mou, S.I.; Chatterjee, D.; Faruk, M.O.; Hosen, M.I. Computational exploration of SLC14A1 genetic variants through structure modeling, protein-ligand docking, and molecular dynamics simulation. Biochem. Biophys. Rep. 2024, 38, 101703. [Google Scholar] [CrossRef]
- Matsuda, K.; Takahashi, A.; Middlebrooks, C.D.; Obara, W.; Nasu, Y.; Inoue, K.; Tamura, K.; Yamasaki, I.; Naya, Y.; Tanikawa, C.; et al. Genome-wide association study identified SNP on 15q24 associated with bladder cancer risk in Japanese population. Hum. Mol. Genet. 2015, 24, 1177–1184. [Google Scholar] [CrossRef]
- Wang, P.; Ye, D.; Guo, J.; Liu, F.; Jiang, H.; Gong, J.; Gu, C.; Shao, Q.; Sun, J.; Zheng, S.L.; et al. Genetic score of multiple risk-associated single nucleotide polymorphisms is a marker for genetic susceptibility to bladder cancer. Genes Chromosomes Cancer 2014, 53, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chu, H.; Lv, Q.; Wang, L.; Yuan, L.; Fu, G.; Tong, N.; Qin, C.; Yin, C.; Zhang, Z.; et al. Cumulative effect of genome-wide association study-identified genetic variants for bladder cancer. Int. J. Cancer 2014, 135, 2653–2660. [Google Scholar] [CrossRef] [PubMed]
- de Maturana, E.L.; Rava, M.; Anumudu, C.; Sáez, O.; Alonso, D.; Malats, N. Bladder Cancer Genetic Susceptibility. A Systematic Review. Bladder Cancer 2018, 4, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Niu, X.; Fu, G.; Yang, B.; Chen, G.; Sun, S. SLC14A1 (UT-B) gene rearrangement in urothelial carcinoma of the bladder: A case report. Diagn. Pathol. 2020, 15, 94. [Google Scholar] [CrossRef]
- Hou, R.; Alemozaffar, M.; Yang, B.; Sands, J.M.; Kong, X.; Chen, G. Identification of a Novel UT-B Urea Transporter in Human Urothelial Cancer. Front. Physiol. 2017, 8, 245. [Google Scholar] [CrossRef]
- Fachal, L.; Aschard, H.; Beesley, J.; Barnes, D.R.; Allen, J.; Kar, S.; Pooley, K.A.; Dennis, J.; Michailidou, K.; Turman, C.; et al. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet. 2020, 52, 56–73. [Google Scholar] [CrossRef]
- Joosten, S.E.P.; Gregoricchio, S.; Stelloo, S.; Yapıcı, E.; Huang, C.F.; Yavuz, K.; Donaldson Collier, M.; Morova, T.; Altintaş, U.B.; Kim, Y.; et al. Estrogen receptor 1 chromatin profiling in human breast tumors reveals high inter-patient heterogeneity with enrichment of risk SNPs and enhancer activity at most-conserved regions. Genome Res. 2024, 34, 539–555. [Google Scholar] [CrossRef]
- Oh, H.; Bodelon, C.; Palakal, M.; Chatterjee, N.; Sherman, M.E.; Linville, L.; Geller, B.M.; Vacek, P.M.; Weaver, D.L.; Chicoine, R.E.; et al. Ages at menarche- and menopause-related genetic variants in relation to terminal duct lobular unit involution in normal breast tissue. Breast Cancer Res. Treat. 2016, 158, 341–350. [Google Scholar] [CrossRef]
- Hällfors, J.; Palviainen, T.; Surakka, I.; Gupta, R.; Buchwald, J.; Raevuori, A.; Ripatti, S.; Korhonen, T.; Jousilahti, P.; Madden, P.A.F.; et al. Genome-wide association study in Finnish twins highlights the connection between nicotine addiction and neurotrophin signaling pathway. Addict. Biol. 2019, 24, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Nagappa, B.; Thulasingam, M.; Pandjatcharam, J.; Ganesan, S.; Sakthivel, M.; Sekhar Kar, S. The Need for Nicotine De-addiction Services among Newly Diagnosed Tobacco-Related Head and Neck Cancer Patients, South India. Asian Pac. J. Cancer Prev. 2022, 23, 2901–2906. [Google Scholar] [CrossRef]
- Shah, R.; Sharma, V.; Bhat, A.; Singh, H.; Sharma, I.; Verma, S.; Bhat, G.R.; Sharma, B.; Bakshi, D.; Kumar, R.; et al. MassARRAY analysis of twelve cancer related SNPs in esophageal squamous cell carcinoma in J&K, India. BMC Cancer 2020, 20, 497. [Google Scholar]
- Yu, Y.; Choi, K.; Wu, J.; Andreassen, P.R.; Dexheimer, P.J.; Keddache, M.; Brems, H.; Spinner, R.J.; Cancelas, J.A.; Martin, L.J.; et al. NF1 patient missense variants predict a role for ATM in modifying neurofibroma initiation. Acta Neuropathol. 2020, 139, 157–174. [Google Scholar] [CrossRef]
- Skibola, C.F.; Berndt, S.I.; Vijai, J.; Conde, L.; Wang, Z.; Yeager, M.; de Bakker, P.I.; Birmann, B.M.; Vajdic, C.M.; Foo, J.N.; et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am. J. Hum. Genet. 2014, 95, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Long, J.; Cai, Q.; Kweon, S.S.; Choi, J.Y.; Kubo, M.; Park, S.K.; Bolla, M.K.; Dennis, J.; Wang, Q.; et al. Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nat. Commun. 2020, 11, 1217. [Google Scholar] [CrossRef]
- Figueroa, J.D.; Koutros, S.; Colt, J.S.; Kogevinas, M.; Garcia-Closas, M.; Real, F.X.; Friesen, M.C.; Baris, D.; Stewart, P.; Schwenn, M.; et al. Modification of Occupational Exposures on Bladder Cancer Risk by Common Genetic Polymorphisms. J. Natl. Cancer Inst. 2015, 107, djv223. [Google Scholar] [CrossRef]
- Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of protein stability by post-translational modifications. Nat. Commun. 2023, 14, 201. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Osgood, A.O.; Chatterjee, A. Uncovering post-translational modification-associated protein-protein interactions. Curr. Opin. Struct. Biol. 2022, 74, 102352. [Google Scholar] [CrossRef]
- Pan, S.; Chen, R. Pathological implication of protein post-translational modifications in cancer. Mol. Asp. Med. 2022, 86, 101097. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Yuan, T.; Qian, M.J.; Yan, F.J.; Yang, L.; He, Q.J.; Yang, B.; Lu, J.J.; Zhu, H. Post-translational modification of KRAS: Potential targets Cancer therapy. Acta Pharmacol. Sin. 2021, 42, 1201–1211. [Google Scholar] [CrossRef]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef]
- Singh, V.; Ram, M.; Kumar, R.; Prasad, R.; Roy, B.K.; Singh, K.K. Phosphorylation: Implications in Cancer. Protein J. 2017, 36, 1–6. [Google Scholar] [CrossRef]
- Klein, J.D.; Sands, J.M. Urea transport and clinical potential of urearetics. Curr. Opin. Nephrol. Hypertens. 2016, 25, 444–451. [Google Scholar] [CrossRef]
- Hoban, C.A.; Black, L.N.; Ordas, R.J.; Gumina, D.L.; Pulous, F.E.; Sim, J.H.; Sands, J.M.; Blount, M.A. Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct. Am. J. Physiol. Ren. Physiol. 2015, 308, F49–F55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kong, Q.; Wang, J.; Jiang, Y.; Hua, H. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp. Hematol. Oncol. 2020, 9, 32. [Google Scholar] [CrossRef]
- Feng, X.; Li, Z.; Du, Y.; Fu, H.; Klein, J.D.; Cai, H.; Sands, J.M.; Chen, G. Downregulation of urea transporter UT-A1 activity by 14-3-3 protein. Am. J. Physiol. Ren. Physiol. 2015, 309, F71–F78. [Google Scholar] [CrossRef]
- Su, H.; Ye, C.; Sands, J.M.; Zhang, C. E3 ligase MDM2 mediates urea transporter-A1 ubiquitination under either constitutive or stimulatory conditions. Am. J. Physiol. Ren. Physiol. 2019, 317, F1331–F1341. [Google Scholar] [CrossRef] [PubMed]
- Blount, M.A.; Cipriani, P.; Redd, S.K.; Ordas, R.J.; Black, L.N.; Gumina, D.L.; Hoban, C.A.; Klein, J.D.; Sands, J.M. Activation of protein kinase Cα increases phosphorylation of the UT-A1 urea transporter at serine 494 in the inner medullary collecting duct. Am. J. Physiol. Cell Physiol. 2015, 309, C608–C615. [Google Scholar] [CrossRef]
- Klein, J.D.; Wang, Y.; Blount, M.A.; Molina, P.A.; LaRocque, L.M.; Ruiz, J.A.; Sands, J.M. Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts. Am. J. Physiol. Ren. Physiol. 2016, 310, F1008–F1012. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Qi, X.; Cui, P.; Kang, Y.; Liu, H.; Wei, Z.; Wang, H. SLC14A1 and TGF-β signaling: A feedback loop driving EMT and colorectal cancer metachronous liver metastasis. J. Exp. Clin. Cancer Res. 2024, 43, 208. [Google Scholar] [CrossRef]
- Xu, X.; Peng, Q.; Jiang, X.; Tan, S.; Yang, W.; Han, Y.; Oyang, L.; Lin, J.; Shen, M.; Wang, J.; et al. Altered glycosylation in cancer: Molecular functions and therapeutic potential. Cancer Commun. 2024, 44, 1316–1336. [Google Scholar] [CrossRef] [PubMed]
- RodrÍguez, E.; Schetters, S.T.T.; van Kooyk, Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat. Rev. Immunol. 2018, 18, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Ma, J.; Zhu, Y.; Wang, T.; Yang, Y.; Sun, Y.; Chen, Y.; Song, H.; Huo, X.; Zhang, J. The role and potential mechanism of O-Glycosylation in gastrointestinal tumors. Pharmacol. Res. 2022, 184, 106420. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Rathinavel, A.K.; Radhakrishnan, P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188464. [Google Scholar] [CrossRef]
- Oliveira-Ferrer, L.; Legler, K.; Milde-Langosch, K. Role of protein glycosylation in cancer metastasis. Semin. Cancer Biol. 2017, 44, 141–152. [Google Scholar] [CrossRef]
- Li, X.; Yang, B.; Chen, M.; Klein, J.D.; Sands, J.M.; Chen, G. Activation of protein kinase C-α and Src kinase increases urea transporter A1 α-2, 6 sialylation. J. Am. Soc. Nephrol. 2015, 26, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Li, X.; Ilori, T.O.; Klein, J.D.; Hughey, R.P.; Li, C.J.; Alli, A.A.; Guo, Z.; Yu, P.; Song, X.; et al. RNA-seq analysis of glycosylation related gene expression in STZ-induced diabetic rat kidney inner medulla. Front. Physiol. 2015, 6, 274. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, G. Biochemical Modification and Subcellular Trafficking of Urea Transporters. In Urea Transporters; Book Series: Subcellular Biochemistry; Springer: Singapore, 2025; Volume 118, pp. 63–85. [Google Scholar]
- Qian, X.; Sands, J.M.; Song, X.; Chen, G. Modulation of kidney urea transporter UT-A3 activity by α2,6-sialylation. Pflüg. Arch. Eur. J. Physiol. 2016, 468, 1161–1170. [Google Scholar] [CrossRef]
- Walpole, C.; Farrell, A.; McGrane, A.; Stewart, G.S. Expression and localization of a UT-B urea transporter in the human bladder. Am. J. Physiol. Ren. Physiol. 2014, 307, F1088–F1094. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Ren, T.; Zhang, Y.; Nan, N. Methylation multiplicity and its clinical values in cancer. Expert Rev. Mol. Med. 2021, 23, e2. [Google Scholar] [CrossRef]
- Chong, W.; Shang, L.; Liu, J.; Fang, Z.; Du, F.; Wu, H.; Liu, Y.; Wang, Z.; Chen, Y.; Jia, S.; et al. m6A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Theranostics 2021, 11, 2201–2217. [Google Scholar] [CrossRef]
- Bae, H.J.; Kang, S.K.; Kwon, W.S.; Jeong, I.; Park, S.; Kim, T.S.; Kim, K.H.; Kim, H.; Jeong, H.C.; Chung, H.C.; et al. p16 methylation is a potential predictive marker for abemaciclib sensitivity in gastric cancer. Biochem. Pharmacol. 2021, 183, 114320. [Google Scholar] [CrossRef]
- Zhuang, H.; Yu, B.; Tao, D.; Xu, X.; Xu, Y.; Wang, J.; Jiao, Y.; Wang, L. The role of m6A methylation in therapy resistance in cancer. Mol. Cancer 2023, 22, 91. [Google Scholar] [CrossRef]
- Ma, J.; Xue, K.; Jiang, Y.; Wang, X.; He, D.; Guo, P. Down-regulation of SLC14A1 in prostate cancer activates CDK1/CCNB1 and mTOR pathways and promotes tumor progression. Sci. Rep. 2024, 14, 14914. [Google Scholar] [CrossRef]
- Wang, Y.; Bin, T.; Tang, J.; Xu, X.J.; Lin, C.; Lu, B.; Sun, T.T. Construction of an acute myeloid leukemia prognostic model based on m6A-related efferocytosis-related genes. Front. Immunol. 2023, 14, 1268090. [Google Scholar] [CrossRef]
- Huang, B.; Huang, Z.; Wang, H.; Zhu, G.; Liao, H.; Wang, Z.; Yang, B.; Ran, J. High urea induces anxiety disorders associated with chronic kidney disease by promoting abnormal proliferation of OPC in amygdala. Eur. J. Pharmacol. 2023, 957, 175905. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Yan, R.; Wu, X.; Zou, H.; Meng, Y. Urea transporter B downregulates polyamines levels in melanoma B16 cells via p53 activation. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119236. [Google Scholar] [CrossRef]
- Shi, J.; Sha, R.; Yang, X. Role of the human solute carrier family 14 member 1 gene in hypoxia-induced renal cell carcinoma occurrence and its enlightenment to cancer nursing. BMC Mol. Cell Biol. 2023, 24, 10. [Google Scholar] [CrossRef]
- Francesco, C.; Lavinia, F.; Ionica, M.; Claudio, L.; Andrea, R. Hexokinase 2 in Cancer: A Prima Donna Playing Multi-ple Characters. Int. J. Mol. Sci. 2021, 22, 4716. [Google Scholar]
- Garcia, S.N.; Guedes, R.C.; Marques, M.M. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr. Med. Chem. 2019, 26, 7285–7322. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Guo, Q.; Mao, G.; Zhu, J.; Li, F. CircLARP4 Suppresses Cell Proliferation, Invasion and Glycolysis and Promotes Apoptosis in Non-Small Cell Lung Cancer by Targeting miR-135b. OncoTargets Ther. 2020, 13, 3717–3728. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, M.; Jiang, H.; Liu, F.; Liu, H.; Li, Y. Down-regulation of miR-214 inhibits proliferation and glycolysis in non-small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2. Biomed. Pharmacother. 2018, 105, 545–552. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, H.L.; Li, D.D.; Yang, K.L.; Tang, J.; Li, X.; Ji, J.; Yu, Y.; Wu, R.Y.; Ravichandran, S.; et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy 2018, 14, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Lis, P.; Dyląg, M.; Niedźwiecka, K.; Ko, Y.H.; Pedersen, P.L.; Goffeau, A.; Ułaszewski, S. The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate. Molecules 2016, 21, 1730. [Google Scholar] [CrossRef]
- Tufail, M.; Jiang, C.H.; Li, N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef]
- Chan, T.C.; Wu, W.J.; Li, W.M.; Shiao, M.S.; Shiue, Y.L.; Li, C.F. SLC14A1 prevents oncometabolite accumulation and recruits HDAC1 to transrepress oncometabolite genes in urothelial carcinoma. Theranostics 2020, 10, 11775–11793. [Google Scholar] [CrossRef]
- Kabutomori, J.; Pina-Lopes, N.; Musa-Aziz, R. Water transport mediated by murine urea transporters: Implications for urine concentration mechanisms. Biol. Open 2020, 9, bio051805. [Google Scholar] [CrossRef]
- Fernandes, Q.; Inchakalody, V.P.; Bedhiafi, T.; Mestiri, S.; Taib, N.; Uddin, S.; Merhi, M.; Dermime, S. Chronic inflammation and cancer; the two sides of a coin. Life Sci. 2024, 338, 122390. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.C.; Pinki, F.; Stewart, G.S.; Costello, D.A. Inhibition of Urea Transporter (UT)-B Modulates LPS-Induced Inflammatory Responses in BV2 Microglia and N2a Neuroblastoma Cells. Neurochem. Res. 2021, 46, 1322–1329. [Google Scholar] [CrossRef]
- Caligiuri, G.; Tuveson, D.A. Activated fibroblasts in cancer: Perspectives and challenges. Cancer Cell 2023, 41, 434–449. [Google Scholar] [CrossRef] [PubMed]
- Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer 2019, 19, 9–31. [Google Scholar] [CrossRef]
- Grout, J.A.; Sirven, P.; Leader, A.M.; Maskey, S.; Hector, E.; Puisieux, I.; Steffan, F.; Cheng, E.; Tung, N.; Maurin, M.; et al. Spatial Positioning and Matrix Programs of Cancer-Associated Fibroblasts Promote T-cell Exclusion in Human Lung Tumors. Cancer Discov. 2022, 12, 2606–2625. [Google Scholar] [CrossRef] [PubMed]
- Masugi, Y.; Abe, T.; Yamazaki, K.; Ueno, A.; Sakamoto, M. Three Distinct Stroma Types in Human Pancreatic Cancer Identified by Image Analysis of Fibroblast Subpopulations and Collagen—Response. Clin. Cancer Res. 2022, 28, 427. [Google Scholar] [CrossRef]
- Ma, Z.; Li, X.; Mao, Y.; Wei, C.; Huang, Z.; Li, G.; Yin, J.; Liang, X.; Liu, Z. Interferon-dependent SLC14A1+ cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell 2022, 40, 1550–1565.e1557. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, Y.; Jin, S.; Fu, C.; Shen, Y.; Liu, B.; Li, M.; Zhang, Y.; Feng, N. WGCNA-ML-MR integration: Uncovering immune-related genes in prostate cancer. Front. Oncol. 2025, 15, 1534612. [Google Scholar] [CrossRef]
- Widjaja, A.A.; Viswanathan, S.; Shekeran, S.G.; Adami, E.; Lim, W.W.; Chothani, S.; Tan, J.; Goh, J.W.T.; Chen, H.M.; Lim, S.Y.; et al. Targeting endogenous kidney regeneration using anti-IL11 therapy in acute and chronic models of kidney disease. Nat. Commun. 2022, 13, 7497. [Google Scholar] [CrossRef]
- Li, N.; Wang, J.; Zhan, X. Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Front. Immunol. 2021, 12, 752643. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tian, Y.; Ding, J.; Chen, Z.; Zhao, R.; Lu, Y.; Li, L.; Zhang, H.; Wu, H.; Li, X.; et al. Unravelling the molecular landscape of endometrial cancer subtypes: Insights from multiomics analysis. Int. J. Surg. 2024, 110, 5385–5395. [Google Scholar] [CrossRef]
- Ye, B.; Ding, K.; Li, K.; Zhu, Q. Study on the role of SLC14A1 gene in biochemical recurrence of prostate cancer. Sci. Rep. 2022, 12, 17064. [Google Scholar] [CrossRef]
- Xiao, X.; Qing, L.; Li, Z.; Ye, F.; Dong, Y.; Mi, J.; Tian, J. Identification and validation of diagnostic and prognostic biomarkers in prostate cancer based on WGCNA. Discov. Oncol. 2024, 15, 131. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, Y.; Li, C.; Zheng, D. SLC14A1 is a new biomarker in renal cancer. Clin. Transl. Oncol. 2023, 25, 2607–2623. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Dai, F.; Wang, H.; Lin, Y.; Xu, Z.; Lyu, Z. Identification and validation of SLC16A8 as a prognostic biomarker in clear cell renal cell carcinoma: A six-gene solute carrier signature. Exp. Cell Res. 2025, 448, 114567. [Google Scholar] [CrossRef]
- Hou, R.; Kong, X.; Yang, B.; Xie, Y.; Chen, G. SLC14A1: A novel target for human urothelial cancer. Clin. Transl. Oncol. 2017, 19, 1438–1446. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, Y.; Zhang, Q.; Shen, Y.; Chen, W.; Yan, L. Downregulation of SLC14A1 Expression Indicates Poor Prognosis and Promotes the Progression of Non-Small Cell Lung Cancer. Ann. Clin. Lab. Sci. 2022, 52, 753–762. [Google Scholar] [PubMed]
- Peñarando, J.; López-Sánchez, L.M.; Mena, R.; Guil-Luna, S.; Conde, F.; Hernández, V.; Toledano, M.; Gudiño, V.; Raponi, M.; Billard, C.; et al. A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer. BMC Biol. 2018, 16, 3. [Google Scholar] [CrossRef]
- Gao, Y.; Lyu, Q.; Luo, P.; Li, M.; Zhou, R.; Zhang, J.; Lyu, Q. Applications of Machine Learning to Predict Cisplatin Resistance in Lung Cancer. Int. J. Gen. Med. 2021, 14, 5911–5925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, Y.; Lu, X.; Zhao, H.; Chen, C.; Wang, Y.; Hu, W.; Zhu, Y.; Yan, H.; Yan, F. Genomic characterization of cervical cancer based on human papillomavirus status. Gynecol. Oncol. 2019, 152, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, S.; Yang, B. Urea Transporters Identified as Novel Diuretic Drug Targets. Curr. Drug Targets 2020, 21, 279–287. [Google Scholar] [CrossRef]
- Khan, A.; Liu, Y.; Gad, M.; Kenny, T.C.; Birsoy, K. Solute carriers: The gatekeepers of metabolism. Cell 2025, 188, 869–884. [Google Scholar] [CrossRef]
- Wang, W.; Zou, W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol. Cell 2020, 80, 384–395. [Google Scholar] [CrossRef]
- Song, W.; Li, D.; Tao, L.; Luo, Q.; Chen, L. Solute carrier transporters: The metabolic gatekeepers of immune cells. Acta Pharm. Sin. B 2020, 10, 61–78. [Google Scholar] [CrossRef] [PubMed]



| Transporters | Cancers or Cell Lines | Observed Effect | Mechanistic Pathway | References |
|---|---|---|---|---|
| UT-B (SLC14A1) | PCa | High expression of SLC14A1 could increase the BCR-free survival time of PCa patients |
| PMID: 36257969 |
| UT-B (SLC14A1) | PCa | overexpression of SLC14A1 inhibited cell proliferation and metastasis |
| PMID: 38942821 |
| UT-B (SLC14A1) | UBUC/UTUC | SLC14A1 played tumor suppressive roles through the inhibition of cell proliferation and metastasis in distinct UC-derived cells and animal models. |
| PMID: 33052246 |
| UT-B (SLC14A1) | KIRC | low levels of SLC14A1 expression were associated with a better clinical prognosis | The abnormal activation of the JAK-STAT signaling pathway | PMID: 37004669 |
| UT-B (SLC14A1) | CRC patients with metachronous liver metastasis | markedly upregulated in CRC patients with metachronous liver metastasis |
| PMID: 39061061 |
| UT-A (SLC14A2) | LUAD/LUSC | The expression level is positively correlated with the infiltration of immune cells (CD8+, CD4+ T cells, macrophages, etc.). High expression indicates a relatively good overall survival | Co-expression with immunomodulatory genes suggests its role in the tumor immune microenvironment | PMID: 34887858 |
| Cancers | UTs | Expression in Tumor Tissues Than that in Normal Tissues | Detection Method | Sample Size | References |
|---|---|---|---|---|---|
| UBUC/UTUC | SLC14A1 (UT-B) | Downregulation in UCs | IHC | 36 UBUCs + 42 UTUCs with normal | PMID: 33052246 |
| 295 UBUC + 340 UTUC | |||||
| next-generation sequencing | 308 and 93 UBUC | ||||
| PCa | SLC14A1 (UT-B) | Significantly reduced in prostate cancer cells and tissue | next-generation sequencing, IHC | 429 samples from TCGA + 106 samples from GEO Tissue chip containing 50 prostate cancer patients | PMC9579171 |
| PCa | SLC14A1 (UT-B) | significantly downregulated in PCa progression | next-generation sequencing, | 6 normal prostate tissues, 7 PCa tissues and 6 metastatic PCa tissues from TCGA database. | PMC11213927 |
| KIRC | SLC14A1 (UT-B) | lowly expressed in renal cancer tissues | RNA-seq, RT-PCR, single-cell transcriptomic data, RT-PCR, Western-blotting and immunohistochemistry. | 539 renal cancer specimens and 79 normal renal tissue samples; 63 renal cancer specimens and 14 paracancerous tissue samples; renal clear cell carcinoma cancer tissue (n = 9) and paracancerous tissue samples (n = 9) from TCGA and GEO | PMID: 37004669 |
| CRC | SLC14A1 (UT-B) | overexpression significantly correlating with poor relapse-free and overall survival | RNA-seq; IHC | The sample size is unclear; 230 patients, consisting of 128 males and 102 females, | PMC11282742 |
| LUAD/LUSC | SLC14A2 (UT-A) | downregulated | RNA-seq (TCGA); qRT-PCR | TCGA (LUAD n = 515; LUSC n = 501) | PMID: 34887858 |
| UTs | Cancer Type | Clinical Outcome | Biomarker Potential | References |
|---|---|---|---|---|
| SLC14A1 (UT-B) | PCa | High expression of SLC14A1 could increase the BCR-free survival time of PCa patients. | SLC14A1 is a novel important gene associated with BCR of PCa | PMID: 36257969 PMID: 38942821 |
| SLC14A1 (UT-B) | KIRC | upregulation of SLC14A1 expression levels inhibited the proliferation, invasion, and metastatic ability of renal cancer cells.associated with a better clinical prognosis. | has the potential to become a new biomarker for renal cancer | PMID: 37004669 |
| SLC14A2 (UT-A) | LUAD | Related to LUAD overall survival | As one of Immune-related genes of LUAD, can not only predict survival outcome but also reflect the immune status of lung cancers. | PMID: 34887858 |
| SLC14A1 (UT-B) | colorectal cancer metachronous liver metastasis | Overexpression significantly correlating with poor relapse-free and overall survival | underscoring their potential as prognostic markers. | PMID: 39061061 |
| SLC14A1 (UT-B) | Urothelial carcinoma | Total and membranous SLC14A1 played tumor suppressive roles through the inhibition of cell proliferation and metastasis | SLC14A1 protein level was an independent prognostic factor | PMID: 33052246 |
| Intervention Strategy | Applicable Cancer Types/Cell Lines | Verified Experimental Model | Mechanisms/Pathways of Action | References |
|---|---|---|---|---|
| inhibitor of DNA methylation (Decitabine) | PCa | PCa cell lines (22RV1, C4-2) were treated with different concentrations of decitabine for 6 days The qRT-PCR and Western blotting assays revealed that the expression of SLC14A1 at both the mRNA and protein level were increased by DCTB treatment | DNA methyltransferase DNMT3B may mediate methylation of the SLC14A1 promoter region and contribute to its low expression | PMID: 38942821 |
| Over express | PCa | In vitro transfection SLC14A1 to C4-2 and 22Rv1 cell lines Colony-forming | promote the expression of UT-B overexpression of SLC14A1 significantly reduced the protein expression of CDK1 and CCNB1 | PMID: 38942821 |
| IFN-γ induce | Bladder cancer-associated fibroblasts (CAF) | Human CAF was cultured in vitro and treated with IFN-γ RNA seq shows that SLC14A1 is upregulated Co-culture experiments showed that the self-renewal of tumor stem cells was inhibited | IFN-γ activates SLC14A1 transcription through the JAK/STAT pathway Enhance urea/arginine metabolism and reduce drug resistance of tumor stem cells | PMID: 36459995 |
| HDAC inhibitor (e.g., SAHA) Coordinated upward adjustment | UTUC/UBUC | Cell lines (RT4, T24) + SAHA ChIP qPCR detection revealed that the HDAC1 binding to the SLC14A1 promoter was removed | HDAC1 participates in the silencing of the SLC14A1 promoter, and the inhibitor relieves this inhibition Recovery of SLC14A1 expression, inhibition of HK2 and DEGS1 transcription | PMID: 33052246 |
| Combination of Metabolism and targeting (Arginine deprivation + SLC14A1 activation) | Bladder cancer and kidney cancer with ASS1 deficiency | In vitro Arg deprivation culture + overexpression of SLC14A1 The cell survival rate has dropped by more than 60% The tumor volume in the mouse model was significantly reduced | SLC14A1 promotes the excretion of urea/arginine and reduces the accumulation of Arg within cells Synergistic death with Arg deprivation drugs (ADI PEG20) | PMID: 33052246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Yang, Q.; Ding, M.; Li, S.; Xue, Y. Urea Transporters in Cancer: Emerging Roles and Their Clinical Implications. Biomedicines 2025, 13, 2699. https://doi.org/10.3390/biomedicines13112699
Sun H, Yang Q, Ding M, Li S, Xue Y. Urea Transporters in Cancer: Emerging Roles and Their Clinical Implications. Biomedicines. 2025; 13(11):2699. https://doi.org/10.3390/biomedicines13112699
Chicago/Turabian StyleSun, Huimin, Qiaoting Yang, Meng Ding, Shirui Li, and Yi Xue. 2025. "Urea Transporters in Cancer: Emerging Roles and Their Clinical Implications" Biomedicines 13, no. 11: 2699. https://doi.org/10.3390/biomedicines13112699
APA StyleSun, H., Yang, Q., Ding, M., Li, S., & Xue, Y. (2025). Urea Transporters in Cancer: Emerging Roles and Their Clinical Implications. Biomedicines, 13(11), 2699. https://doi.org/10.3390/biomedicines13112699

