Determinants of QTc Interval Prolongation in Patients with Hypopituitarism and Other Pituitary Disorders
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochemical and Hormonal Assessments
2.2. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Characteristics of Patients with Prolonged QTc
3.3. Correlations Between QTc Duration and Biochemical Parameters
3.4. Univariate Analysis of Predictors of Prolonged QTc
3.5. Multivariate Analysis of Predictors of Prolonged QTc
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| aLQTS | acquired long QT syndrome |
| am | ante meridian |
| cLQTS | congenital long QT syndrome |
| CI | confidence interval |
| CNS | central nervous system |
| ECG | Electrocardiogram |
| fT3 | free triiodothyronine |
| fT4 | free thyroxine |
| GHD | growth hormone deficiency |
| IGF-I | insulin-like growth factor I |
| IQR | interquartile range |
| LQTS | Long QT syndrome |
| LR | likelihood ratio |
| min | Minutes |
| ms | Milliseconds |
| N | Number |
| NA | not applicable |
| ns | not significant |
| OR | odds ratio |
| QTc | corrected QT |
| SD | standard deviation |
| SDS | standard deviation score |
| yrs | Years |
References
- Higham, C.E.; Johannsson, G.; Shalet, S.M. Hypopituitarism. Lancet 2016, 388, 2403–2415. [Google Scholar] [CrossRef]
- Pekic, S.; Popovic, V. Diagnosis of Endocrine Disease: Expanding the cause of hypopituitarism. Eur. J. Endocrinol. 2017, 176, R269–R282. [Google Scholar] [CrossRef]
- Heidelbaugh, J.J. Endocrinology Update: Hypopituitarism. FP Essent. 2016, 451, 25–30. [Google Scholar] [PubMed]
- Toogood, A.A.; Stewart, P.M. Hypopituitarism: Clinical features, diagnosis, and management. Endocrinol. Metab. Clin. N. Am. 2008, 37, 235–261. [Google Scholar] [CrossRef] [PubMed]
- Prencipe, N.; Marinelli, L.; Varaldo, E.; Cuboni, D.; Berton, A.M.; Bioletto, F.; Bona, C.; Gasco, V.; Grottoli, S. Isolated anterior pituitary dysfunction in adulthood. Front. Endocrinol. 2023, 14, 1100007. [Google Scholar] [CrossRef] [PubMed]
- Bioletto, F.; Sibilla, M.; Gasco, V.; Ghigo, E.; Grottoli, S. Excess mortality in patients with non-functioning pituitary adenoma: A systematic review and meta-analysis. J. Endocrinol. Investig. 2024, 47, 2143–2155. [Google Scholar] [CrossRef]
- Jasim, S.; Alahdab, F.; Ahmed, A.T.; Tamhane, S.; Prokop, L.J.; Nippoldt, T.B.; Murad, M.H. Mortality in adults with hypopituitarism: A systematic review and meta-analysis. Endocrine 2017, 56, 33–42. [Google Scholar] [CrossRef]
- Erfurth, E.M.; Holmer, H.; Fjalldal, S.B. Mortality and morbidity in adult craniopharyngioma. Pituitary 2013, 16, 46–55. [Google Scholar] [CrossRef]
- Tomlinson, J.W.; Holden, N.; Hills, R.K.; Wheatley, K.; Clayton, R.N.; Bates, A.S.; Sheppard, M.C.; Stewart, P.M. Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 2001, 357, 425–431. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Andereggen, L.; Christ, E.R. Morbidities and mortality among hospitalized patients with hypopituitarism: Prevalence, causes and management. Rev. Endocr. Metab. Disord. 2024, 25, 599–608. [Google Scholar] [CrossRef]
- Donald, D.M.; McDonnell, T.; O’Reilly, M.W.; Sherlock, M. Replacement with sex steroids in hypopituitary men and women: Implications for gender differences in morbidities and mortality. Rev. Endocrinol. Metab. Disord. 2024, 25, 839–854. [Google Scholar] [CrossRef] [PubMed]
- van Bunderen, C.C.; Olsson, D.S. Growth hormone deficiency and replacement therapy in adults: Impact on survival. Rev. Endocrinol. Metab. Disord. 2021, 22, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Ngaosuwan, K.; Johnston, D.G.; Godsland, I.F.; Cox, J.; Majeed, A.; Quint, J.K.; Oliver, N.; Robinson, S. Increased Mortality Risk in Patients With Primary and Secondary Adrenal Insufficiency. J. Clin. Endocrinol. Metab. 2021, 106, e2759–e2768. [Google Scholar] [CrossRef] [PubMed]
- Johannsson, G.; Falorni, A.; Skrtic, S.; Lennernäs, H.; Quinkler, M.; Monson, J.P.; Stewart, P.M. Adrenal insufficiency: Review of clinical outcomes with current glucocorticoid replacement therapy. Clin. Endocrinol. 2015, 82, 2–11. [Google Scholar] [CrossRef]
- Graziadio, C.; Hasenmajer, V.; Venneri, M.A.; Gianfrilli, D.; Isidori, A.M.; Sbardella, E. Glycometabolic Alterations in Secondary Adrenal Insufficiency: Does Replacement Therapy Play a Role? Front. Endocrinol. 2018, 9, 434. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Al-Khatib, S.M.; LaPointe, N.M.; Kramer, J.M.; Califf, R.M. What clinicians should know about the QT interval. JAMA 2003, 289, 2120–2127. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Amin, A.S.; Postema, P.G. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart 2022, 108, 332–338. [Google Scholar] [CrossRef]
- Wallace, E.; Howard, L.; Liu, M.; O’Brien, T.; Ward, D.; Shen, S.; Prendiville, T. Long QT Syndrome: Genetics and Future Perspective. Pediatr. Cardiol. 2019, 40, 1419–1430. [Google Scholar] [CrossRef]
- Ackerman, M.J. The long QT syndrome: Ion channel diseases of the heart. Mayo Clin. Proc. 1998, 73, 250–269. [Google Scholar] [CrossRef]
- Galić, E.; Bešlić, P.; Kilić, P.; Planinić, Z.; Pašalić, A.; Galić, I.; Ćubela, V.V.; Pekić, P. Congenital Long QT Syndrome: A Systematic Review. Acta Clin. Croat. 2021, 60, 739–748. [Google Scholar] [CrossRef]
- Chiang, C.E.; Roden, D.M. The long QT syndromes: Genetic basis and clinical implications. J. Am. Coll. Cardiol. 2000, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tester, D.J.; Ackerman, M.J. Genetics of long QT syndrome. Methodist. Debakey Cardiovasc. J. 2014, 10, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, X.; Sun, G.; Li, Z.; Zheng, L.; Sun, Y. Effect of serum electrolytes within normal ranges on QTc prolongation: A cross-sectional study in a Chinese rural general population. BMC Cardiovasc. Disord. 2018, 18, 175. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, C.P.M.; Pereboom, M.; van Stralen, K.; Berger, F.A.; van den Bemt, P.M.L.A.; Kuijper, A.F.M.; van der Hoeven, R.T.M.; Mantel-Teeuwisse, A.K.; Becker, M.L. Risk factors for QTc interval prolongation. Eur. J. Clin. Pharmacol. 2018, 74, 183–191. [Google Scholar] [CrossRef]
- Alexandraki, K.I.; Kaltsas, G.A.; Vouliotis, A.I.; Papaioannou, T.G.; Trisk, L.; Zilos, A.; Korbonits, M.; Besser, G.M.; Anastasakis, A.; Grossman, A.B. Specific electrocardiographic features associated with Cushing’s disease. Clin. Endocrinol. 2011, 74, 558–564. [Google Scholar] [CrossRef]
- Muiesan, M.L.; Lupia, M.; Salvetti, M.; Grigoletto, C.; Sonino, N.; Boscaro, M.; Rosei, E.A.; Mantero, F.; Fallo, F. Left ventricular structural and functional characteristics in Cushing’s syndrome. J. Am. Coll. Cardiol. 2003, 41, 2275–2279. [Google Scholar] [CrossRef]
- Takagi, S.; Tanabe, A.; Tsuiki, M.; Naruse, M.; Takano, K. Hypokalemia, diabetes mellitus, and hypercortisolemia are the major contributing factors to cardiac dysfunction in adrenal Cushing’s syndrome. Endocr. J. 2009, 56, 1009–1018. [Google Scholar] [CrossRef]
- Sugihara, N.; Shimizu, M.; Kita, Y.; Shimizu, K.; Ino, H.; Miyamori, I.; Nakabayashi, H.; Takeda, R. Cardiac characteristics and postoperative courses in Cushing’s syndrome. Am. J. Cardiol. 1992, 69, 1475–1480. [Google Scholar] [CrossRef]
- Kamenický, P.; Redheuil, A.; Roux, C.; Salenave, S.; Kachenoura, N.; Raissouni, Z.; Macron, L.; Guignat, L.; Jublanc, C.; Azarine, A.; et al. Cardiac structure and function in Cushing’s syndrome: A cardiac magnetic resonance imaging study. J. Clin. Endocrinol. Metab. 2014, 99, E2144–E2153. [Google Scholar] [CrossRef]
- Oikarinen, L.; Nieminen, M.S.; Viitasalo, M.; Toivonen, L.; Wachtell, K.; Papademetriou, V.; Jern, S.; Dahlöf, B.; Devereux, R.B.; Okin, P.M. Relation of QT interval and QT dispersion to echocardiographic left ventricular hypertrophy and geometric pattern in hypertensive patients. The LIFE study. The Losartan Intervention For Endpoint Reduction. J. Hypertens. 2001, 19, 1883–1891. [Google Scholar] [CrossRef]
- Pecori Giraldi, F.; Toja, P.M.; Michailidis, G.; Metinidou, A.; De Martin, M.; Scacchi, M.; Stramba-Badiale, M.; Cavagnini, F. High prevalence of prolonged QT interval duration in male patients with Cushing’s disease. Exp. Clin. Endocrinol. Diabetes 2011, 119, 221–224. [Google Scholar] [CrossRef]
- Orme, S.M.; McNally, R.J.; Cartwright, R.A.; Belchetz, P.E. Mortality and cancer incidence in acromegaly: A retrospective cohort study. United Kingdom Acromegaly Study Group. J. Clin. Endocrinol. Metab. 1998, 83, 2730–2734. [Google Scholar] [CrossRef]
- Colao, A.; Ferone, D.; Marzullo, P.; Lombardi, G. Systemic complications of acromegaly: Epidemiology, pathogenesis, and management. Endocrinol. Rev. 2004, 25, 102–152. [Google Scholar] [CrossRef]
- Lombardi, G.; Colao, A.; Marzullo, P.; Biondi, B.; Palmieri, E.; Fazio, S. Multicenter Italian Study Group on Lanreotide Improvement of left ventricular hypertrophy and arrhythmias after lanreotide-induced GH and IGF-I decrease in acromegaly. A prospective multi-center study. J. Endocrinol. Investig. 2002, 25, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Thiene, G.; Caragaro, L.; Giordano, R.; Lauro, S. Dysrhythmias and sudden death in acromegalic heart disease. A clinicopathologic study. Chest 1977, 72, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.; Olshausen, K.V.; Mohr-Kahaly, S.; Erbel, R.; Boor, S.; Beyer, J.; Meyer, J. Arrhythmia profile in acromegaly. Eur. Heart J. 1992, 13, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.A.; Caruana, M.P.; Lahiri, A.; Nabarro, J.D.; Jacobs, H.S.; Raftery, E.B. Subclinical cardiac dysfunction in acromegaly: Evidence for a specific disease of heart muscle. Br. Heart J. 1989, 62, 185–194. [Google Scholar] [CrossRef]
- Herrmann, B.L.; Bruch, C.; Saller, B.; Ferdin, S.; Dagres, N.; Ose, C.; Erbel, R.; Mann, K. Occurrence of ventricular late potentials in patients with active acromegaly. Clin. Endocrinol. 2001, 55, 201–207. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ono, S.; Sugai, T.; Fukui, N.; Watanabe, J.; Tsuneyama, N.; Sawamura, K.; Someya, T. Dose-dependent effects of olanzapine on QT intervals and plasma prolactin levels in Japanese patients with stable schizophrenia. Hum. Psychopharmacol. 2011, 26, 440–443. [Google Scholar] [CrossRef]
- Bodi, I.; Sorge, J.; Castiglione, A.; Glatz, S.M.; Wuelfers, E.M.; Franke, G.; Perez-Feliz, S.; Koren, G.; Zehender, M.; Bugger, H.; et al. Postpartum hormones oxytocin and prolactin cause pro-arrhythmic prolongation of cardiac repolarization in long QT syndrome type 2. Europace 2019, 21, 1126–1138. [Google Scholar] [CrossRef]
- García-Castro, J.M.; García-Martín, A.; Guirao-Arrabal, E.; Carrillo-Alascio, P.L. Síndrome de QT largo y taquicardia ventricular en torsade de pointes secundarios a hipopituitarismo: Unaasociación a tenerencuenta. Caso clínico [Long QT syndrome and polymorphic ventricular tachycardia due to hypopituitarism. Report of one case]. Rev. Med. Chil. 2017, 145, 941–944. [Google Scholar] [CrossRef]
- Kang, D.G.; Kim, S.E.; Park, M.S.; Kim, E.J.; Lee, J.H.; Park, D.G.; Han, K.R.; Oh, D.J. Acquired Long QT Syndrome Manifesting with Torsades de Pointes in a Patient with Panhypopituitarism due to Radiotherapy. Korean Circ. J. 2013, 43, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Komuro, J.; Kaneko, M.; Ueda, K.; Nitta, S.; Kasao, M.; Shirai, T. Adrenal insufficiency causes life-threatening arrhythmia with prolongation of QT interval. Heart Vessel. 2016, 31, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.D.; Keenan, N.G.; Bouloux, P.; Rogers, D. A heart without hormones. Lancet 2012, 379, 1922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zou, Y.; Chen, X.; Pan, J.; Yu, H.; Wang, Y.; Wu, Y.; Zou, H. Extremely dangerous hypopituitarism related long QT syndrome and transient ST-segment elevation: A case report. SAGE Open Med. Case Rep. 2023, 11, 2050313X221147194. [Google Scholar] [CrossRef]
- Kim, N.H.; Cho, J.G.; Ahn, Y.K.; Lee, S.U.; Kim, K.H.; Cho, J.H.; Kim, H.G.; Kim, W.; Jeong, M.H.; Park, J.C.; et al. A case of torsade de pointes associated with hypopituitarism due to hemorrhagic fever with renal syndrome. J. Korean Med. Sci. 2001, 16, 355–359. [Google Scholar] [CrossRef]
- Hanslik, R.; Kaspar, L.; Kroiss, A.; Slany, J. MyxödemalsUrsacheeines QT-Syndroms und rezidivierenderKammertachykardien [Myxedema as a cause of QT syndrome and recurring ventricular tachycardia]. Z. Kardiol. 1987, 76, 58–61. [Google Scholar]
- Shinde, S.D.; Sabnis, G.R.; Lanjewar, C.P.; Kerkar, P.G. A rare endocrine cause of electrical storm—A case report. Eur. Heart J. Case Rep. 2017, 1, ytx008. [Google Scholar] [CrossRef]
- Yu, M.; Sun, L.; Yang, H.L.; Sun, H.; Wang, C.; Yao, S.; Yang, P. A rare endocrine cause of ventricular tachycardia: A case series of two patients and a literature review. Cardiovasc. J. Afr. 2022, 33, 277–281. [Google Scholar] [CrossRef]
- Aste, M.; Capellini, C.; Schiappacasse, E.; Devoto, G.; Brignole, M. Ventricular fibrillation and long-QT syndrome due to panhypopituitarism. J. Cardiovasc. Med. 2017, 18, 833–834. [Google Scholar] [CrossRef]
- Hajsheikholeslami, F.; Yazdani, S. Sudden cardiac death as a result of neglected hypopituitarism. Int. J. Endocrinol. Metab. 2013, 11, 117–119. [Google Scholar] [CrossRef]
- Masood, M.Q.; Ali, S.A. Long-standing undiagnosed sheehan syndrome presenting as polymorphic and monomorphic ventricular tachycardia: A case series of 2 patients. Endocrinol. Pract. 2014, 20, e211–e214. [Google Scholar] [CrossRef]
- Nunoda, S.; Ueda, K.; Kameda, S.; Nakabayashi, H. Sheehan’s syndrome with hypomagnesemia and polymorphous ventricular tachycardia. Jpn. Heart J. 1989, 30, 251–256. [Google Scholar] [CrossRef]
- Oshizaka, Y.; Suzuki, R.; Funasaki, S.; Shiotsuka, J.; Sanayama, H. QT Prolongation and Torsades De Pointes Due to Undiagnosed Sheehan Syndrome: A Rare Cause of Lethal Arrhythmia. Cureus 2025, 17, e85974. [Google Scholar] [CrossRef]
- Yang, C.; Han, X.; Du, Y.; Ma, A.Q. Takotsubo cardiomyopathy and pituitary apoplexy: A case report. BMC Cardiovasc. Disord. 2020, 20, 236. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Hsu, S.R.; Su, S.L.; Tu, S.T. Sheehan’s syndrome presenting with early postpartum congestive heart failure. J. Chin. Med. Assoc. 2005, 68, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Pecori Giraldi, F.; Toja, P.M.; Filippini, B.; Michailidis, J.; Scacchi, M.; StrambaBadiale, M.; Cavagnini, F. Increased prevalence of prolonged QT interval in males with primary or secondary hypogonadism: A pilot study. Int. J. Androl. 2010, 33, e132–e138. [Google Scholar] [CrossRef] [PubMed]
- Vink, A.S.; Clur, S.B.; Wilde, A.A.M.; Blom, N.A. Effect of age and gender on the QTc-interval in healthy individuals and patients with long-QT syndrome. Trends Cardiovasc. Med. 2018, 28, 64–75. [Google Scholar] [CrossRef]
- Bidlingmaier, M.; Friedrich, N.; Emeny, R.T.; Spranger, J.; Wolthers, O.D.; Roswall, J.; Körner, A.; Obermayer-Pietsch, B.; Hübener, C.; Dahlgren, J.; et al. Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: Results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J. Clin. Endocrinol. Metab. 2014, 99, 1712–1721. [Google Scholar] [CrossRef]
- Fleseriu, M.; Hashim, I.A.; Karavitaki, N.; Melmed, S.; Murad, M.H.; Salvatori, R.; Samuels, M.H. Replacement in Hypopituitarism in Adults: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 3888–3921. [Google Scholar] [CrossRef]
- Yuen, K.C.J.; Biller, B.M.K.; Radovick, S.; Carmichael, J.D.; Jasim, S.; Pantalone, K.M.; Hoffman, A.R. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines For Management of Growth Hormone Deficiency in Adults and Patients Transitioning from Pediatric to Adult Care. Endocrinol. Pract. 2019, 25, 1191–1232. [Google Scholar] [CrossRef]
- Ho, K.K. 2007 GH Deficiency Consensus Workshop Participants. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: A statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur. J. Endocrinol. 2007, 157, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E.; Clemmons, D.R.; Malozowski, S.; Merriam, G.R.; Vance, M.L.; Endocrine Society. Evaluation and treatment of adult growth hormone deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1587–1609. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.Z.; Howard, G.; Cushman, M.; Kissela, B.; Kleindorfer, D.; Le, A.; Judd, S.; McClure, L.A.; Howard, V.J. Prolongation of QTc and risk of stroke: The REGARDS (REasons for Geographic and Racial Differences in Stroke) study. J. Am. Coll. Cardiol. 2012, 59, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- El-Sherif, N.; Turitto, G. Electrolyte disorders and arrhythmogenesis. Cardiol. J. 2011, 18, 233–245. [Google Scholar]
- Aimaretti, G.; Boschetti, M.; Corneli, G.; Gasco, V.; Valle, D.; Borsotti, M.; Rossi, A.; Barreca, A.; Fazzuoli, L.; Ferone, D.; et al. Normal age-dependent values of serum insulin growth factor-I: Results from a healthy Italian population. J. Endocrinol. Investig. 2008, 31, 445–449. [Google Scholar] [CrossRef]
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. [Google Scholar] [CrossRef]
- Cuboni, D.; Aversa, L.S.; Grottoli, S.; Ghigo, E.; Gasco, V. An overview of the controversies of adult growth hormone deficiency diagnosis. Expert. Rev. Endocrinol. Metab. 2025, 20, 187–200. [Google Scholar] [CrossRef]
- Aversa, L.S.; Cuboni, D.; Grottoli, S.; Ghigo, E.; Gasco, V. A 2024 Update on Growth Hormone Deficiency Syndrome in Adults: From Guidelines to Real Life. J. Clin. Med. 2024, 13, 6079. [Google Scholar] [CrossRef]

| All (n = 185) | Patients with Hypopituitarism (n = 167) | Patients Without Hypopituitarism (n = 18) | p | |
|---|---|---|---|---|
| Male gender, n (%) | 121 (65.4) | 105 (62.9) | 16 (88.9) | 0.04 |
| Age (yrs) | 57.6 (23.4) | 57.0 (25.5) | 59.5 (14.5) | 0.20 |
| Heart rate (pulse/min) | 69.6 ± 12.3 | 69.9 ± 12.4 | 66.7 ± 10.5 | 0.28 |
| Bazett QTc (ms) | 416.9 ± 27.8 | 416.9 ± 27.4 | 416.3 ± 32.3 | 0.92 |
| Sodium (mmol/L) | 140.0 (4.0) (n = 171) | 140.0 (4.0) (n = 155) | 140.5 (4.0) (n = 16) | 0.69 |
| Potassium (mmol/L) | 4.1 ± 0.4 (n = 168) | 4.1 ± 0.4 (n = 152) | 4.0 ± 0.4 (n = 16) | 0.83 |
| Calcium (mmol/L) | 2.38 ± 0.11 (n = 99) | 2.38 ± 0.11 (n = 95) | 2.37 ± 0.11 (n = 4) | 0.88 |
| Albumin-corrected calcium (mmol/L) | 2.37 ± 0.12 (n = 86) | 2.37 ± 0.12 (n = 83) | 2.32 ± 0.02 (n = 3) | 0.48 |
| Free T3 (ng/L) | 2.7 ± 0.6 (n = 76) | 2.7 ± 0.6 (n = 76) | No data available | / |
| Free T4 (ng/L) | 9.1 (3.0) (n = 93) | 9.2 (3.0) (n = 91) | 8.5 (1.0) (n = 2) | 0.29 |
| IGF-I (µg/L) | 148.9 (128.1) (n = 87) | 145.2 (119.9) (n = 84) | 219.9 (152.9) (n = 3) | 0.35 |
| IGF-I SDS | 0.02 (1.27) (n = 87) | 0.005 (1.27) (n = 84) | 0.58 (0.69) (n = 3) | 0.16 |
| Testosterone (µg/L) | 4.3 ± 2.8 (n = 60) | 4.2 ± 2.8 (n = 57) | 5.0 ± 2.8 (n = 3) | 0.62 |
| Neurosurgery and/or Radiotherapy, n (%) | 95 (51.4) | 89 (52.7) | 6 (33.3) | 0.14 |
| Pituitary disease, n (%) | 0.07 | |||
| -Pituitary adenoma | 114 (61.6) | 97 (58.1) | 17 (94.4) | |
| -Craniopharyngioma or Rathke’s cleft cyst | 15 (8.1) | 15 (9.0) | 0 (0.0) | |
| -Other types of expansive lesions * | 10 (5.4) | 9 (5.4) | 1 (5.6) | |
| -CNS malformation | 40 (21.6) | 40 (23.9) | 0 (0.0) | |
| -Idiopathic isolated GHD | 2 (1.1) | 2 (1.2) | 0 (0.0) | |
| -Miscellaneous | 4 (2.2) | 4 (2.4) | 0 (0.0) | |
| Panhypopituitarism, n (%) | 85 (46.0) | 85 (50.9) | 0 (0.0) | <0.0001 |
| Number of pituitary deficit, n (%) | <0.0001 | |||
| -0 | 18 (9.7) | 0 (0.0) | 18 (100.0) | |
| -1 | 39 (21.1) | 39 (23.3) | 0 (0.0) | |
| -2 | 32 (17.3) | 32 (19.2) | 0 (0.0) | |
| -3 | 11 (5.9) | 11 (6.6) | 0 (0.0) | |
| -4 | 68 (36.8) | 68 (40.7) | 0 (0.0) | |
| -5 | 17 (9.2) | 17 (10.2) | 0 (0.0) | |
| Type of pituitary deficit, n (%) | ||||
| -Hypocortisolism | <0.0001 | |||
| not on therapy | 2 (1.1) | 2 (1.2) | 0 (0.0) | |
| on therapy | 92 (49.7) | 92 (55.1) | 0 (0.0) | |
| -Hypothyroidism | <0.0001 | |||
| not on therapy | 3 (1.6) | 3 (1.8) | 0 (0.0) | |
| on therapy | 99 (53.5) | 99 (59.3) | 0 (0.0) | |
| -Hypogonadism | <0.0001 | |||
| not on therapy | 57 (30.8) | 57 (34.1) | 0 (0.0) | |
| on therapy | 77 (41.6) | 77 (46.1) | 0 (0.0) | |
| -GHD | <0.0001 | |||
| not on therapy | 68 (36.8) | 68 (40.7) | 0 (0.0) | |
| on therapy | 54 (29.2) | 54 (32.3) | 0 (0.0) | |
| not assessed | 52 (28.1) | 36 (21.6) | 16 (88.9) | |
| -Diabetes insipidus ** | 26 (14.1) | 26 (15.6) | 0 (0.0) | 0.08 |
| QTc ≥ 450 ms in male and ≥460 ms in female, n (%) | 15 (8.1) | 14 (8.4) | 1 (5.6) | 1.0 |
| Prolonged QTc (n = 15) | Normal QTc (n = 170) | p | |
|---|---|---|---|
| Male gender, n (%) | 11 (73.3) | 110 (64.7) | 0.58 |
| Age (yrs) | 65.7 (24.2) | 57.0 (24.2) | 0.04 |
| Heart rate (pulse/min) | 73.7 ± 9.7 | 69.3 ± 12.4 | 0.17 |
| Bazett QTc (ms) | 472.1 ± 17.5 | 412.0 ± 22.8 | <0.0001 |
| Sodium (mmol/L) | 140.0 (2.8) (n = 15) | 140.0 (4.0) (n = 156) | 0.72 |
| Potassium (mmol/L) | 3.9 ± 0.4 (n = 14) | 4.1 ± 0.4 (n = 154) | 0.08 |
| Calcium (mmol/L) | 2.30 ± 0.13 (n = 9) | 2.39 ± 0.10 (n = 90) | 0.02 |
| Albumin-corrected calcium (mmol/L) | 2.27 ± 0.14 (n = 9) | 2.38 ± 0.11 (n = 77) | 0.02 |
| Free T3 (ng/L) | 2.5 ± 0.6 (n = 7) | 2.7 ± 0.5 (n = 69) | 0.38 |
| Free T4 (ng/L) | 9.5 (2.3) (n = 8) | 9.1 (3.0) (n = 85) | 0.69 |
| IGF-I (µg/L) | 120.0 (65.3) (n = 7) | 152.4 (133.5) (n = 80) | 0.63 |
| IGF-I SDS | 0.31 (0.34) (n = 7) | −0.06 (1.29) (n = 80) | 0.17 |
| Testosterone (µg/L) | 5.2 ± 3.1 (n = 6) | 4.1 ± 2.7 (n = 54) | 0.37 |
| Neurosurgery and/or Radiotherapy, n (%) | 11 (73.3) | 84 (49.4) | 0.10 |
| Pituitary disease, n (%) | 0.47 | ||
| -Pituitary adenoma | 11 (73.3) | 103 (60.6) | |
| -Craniopharyngioma or Rathke’s cleft cyst | 1 (6.7) | 14 (8.2) | |
| -Other types of expansive lesions * | 2 (13.3) | 8 (4.7) | |
| -CNS malformation | 1 (6.7) | 39 (22.9) | |
| -Idiopathic isolated GHD | 0 (0.0) | 2 (1.2) | |
| -Miscellaneous | 0 (0.0) | 4 (2.4) | |
| Hypopituitarism, n (%) | 14 (93.3) | 153 (90.0) | 1.0 |
| Panhypopituitarism, n (%) | 8 (53.3) | 77 (45.3) | 0.60 |
| Number of pituitary deficit, n (%) | 0.45 | ||
| -0 | 1 (6.7) | 17 (10.0) | |
| -1 | 5 (33.3) | 34 (20.0) | |
| -2 | 0 (0.0) | 32 (18.8) | |
| -3 | 1 (6.7) | 10 (5.9) | |
| -4 | 7 (46.6) | 61 (35.9) | |
| -5 | 1 (6.7) | 16 (9.4) | |
| Type of pituitary deficit, n (%) | |||
| -Hypocortisolism | 0.08 | ||
| not on therapy | 1 (6.7) | 1 (0.6) | |
| on therapy | 6 (40.0) | 86 (50.6) | |
| -Hypothyroidism | 0.79 | ||
| not on therapy | 0 (0.0) | 3 (1.8) | |
| on therapy | 8 (53.3) | 91 (53.2) | |
| -Hypogonadism | 0.79 | ||
| not on therapy | 5 (33.3) | 52 (30.6) | |
| on therapy | 7 (46.7) | 70 (41.2) | |
| -GHD | 0.73 | ||
| not on therapy | 5 (33.3) | 63 (37.1) | |
| on therapy | 5 (33.3) | 49 (28.8) | |
| not assessed | 5 (33.3) | 47 (27.6) | |
| -Diabetes insipidus ** | 3 (20.0) | 23 (13.5) | 0.44 |
| LONG QTc | Univariate Analysis | Multivariate Model # 1, 2, 3 | Multivariate Model # 4 | Multivariate Model # 5, 6, 7, 8 | ||||
|---|---|---|---|---|---|---|---|---|
| OR | p Value | OR | p Value | OR | p Value | OR | p Value | |
| Age | 1.05 | 0.03 | 1.06 | 0.08 | 1.07 | 0.02 | 1.09 | 0.02 |
| Male sex | 1.5 | 0.50 | - | - | - | - | - | - |
| Sodium levels | 0.94 | 0.56 | - | - | - | - | - | - |
| Potassium levels | 0.26 | 0.08 | 0.15 | 0.08 | 0.17 | 0.09 | 0.14 | 0.09 |
| Calcium levels | 0.0006 | 0.03 | - | ns | - | ns | NA | NA |
| Albumin corrected calcium levels | 0.0002 | 0.01 | NA | NA | NA | NA | 0.0003 | 0.06 |
| Free T3 | 0.45 | 0.34 | - | - | - | - | - | - |
| Free T4 | 0.98 | 0.93 | - | - | - | - | - | - |
| IGF-I | 0.99 | 0.39 | - | - | - | - | - | - |
| IGF-I SDS | 2.70 | 0.06 | - | ns | - | ns | - | ns |
| Testosterone | 1.13 | 0.39 | - | - | - | - | - | - |
| Neurosurgery and/or Radiotherapy | 2.82 | 0.08 | 3.31 | 0.19 | - | ns | - | ns |
| Pituitary disease (vs. pituitary adenoma) | ||||||||
| -Craniopharyngioma or Rathke’s cleft cyst | 0.67 | 0.71 | - | ns | - | ns | - | ns |
| -Other type of expansive lesions * | 2.34 | 0.32 | 5.11 | 0.15 | 8.35 | <0.05 | 17.73 | 0.03 |
| -CNS malformation | 0.24 | 0.18 | - | ns | - | ns | - | ns |
| -Idiopathic isolated GHD | 0.0 | 0.99 | - | ns | - | ns | - | ns |
| -Miscellaneous | 0.0 | 0.99 | - | ns | - | ns | - | ns |
| Hypopituitarism | 1.56 | 0.68 | - | ns | NA | NA | - | ns |
| Panhypopituitarism | 1.38 | 0.55 | - | ns | NA | NA | - | ns |
| N. of pituitary deficit (vs. 0) | NA | NA | ||||||
| -1 | 2.5 | 0.42 | - | ns | - | ns | ||
| -2 | 0 | 0.99 | - | ns | - | ns | ||
| -3 | 1.7 | 0.72 | - | ns | - | ns | ||
| -4 | 1.95 | 0.54 | - | ns | - | ns | ||
| -5 | 1.06 | 0.97 | - | ns | - | ns | ||
| Type of pituitary deficit (no vs. yes) | ||||||||
| -Hypocortisolism | 12.07 | 0.08 | NA | NA | - | - | - | ns |
| -Hypothyroidism | 0 | 0.99 | NA | NA | - | - | - | ns |
| -Hypogonadism | 1.13 | 0.83 | NA | NA | - | - | - | ns |
| -GHD | ||||||||
| no vs. yes | 0.95 | 0.94 | NA | NA | - | - | - | ns |
| no vs. not assessed | 1.28 | 0.71 | NA | NA | - | - | - | ns |
| -Diabetes insipidus | 1.60 | 0.49 | NA | NA | - | - | - | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasco, V.; Cuboni, D.; Siclari, S.; Mocellini, F.; Sibilla, M.; Grottoli, S.; Ghigo, E.; Maccario, M. Determinants of QTc Interval Prolongation in Patients with Hypopituitarism and Other Pituitary Disorders. Biomedicines 2025, 13, 2676. https://doi.org/10.3390/biomedicines13112676
Gasco V, Cuboni D, Siclari S, Mocellini F, Sibilla M, Grottoli S, Ghigo E, Maccario M. Determinants of QTc Interval Prolongation in Patients with Hypopituitarism and Other Pituitary Disorders. Biomedicines. 2025; 13(11):2676. https://doi.org/10.3390/biomedicines13112676
Chicago/Turabian StyleGasco, Valentina, Daniela Cuboni, Sergio Siclari, Francesca Mocellini, Michela Sibilla, Silvia Grottoli, Ezio Ghigo, and Mauro Maccario. 2025. "Determinants of QTc Interval Prolongation in Patients with Hypopituitarism and Other Pituitary Disorders" Biomedicines 13, no. 11: 2676. https://doi.org/10.3390/biomedicines13112676
APA StyleGasco, V., Cuboni, D., Siclari, S., Mocellini, F., Sibilla, M., Grottoli, S., Ghigo, E., & Maccario, M. (2025). Determinants of QTc Interval Prolongation in Patients with Hypopituitarism and Other Pituitary Disorders. Biomedicines, 13(11), 2676. https://doi.org/10.3390/biomedicines13112676

