Pharmacogenomics Applied to Acute Leukemias: Identifying Clinically Relevant Genetic Variants
Abstract
1. Introduction
2. Methodology
Search Strategy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pagliaro, L.; Chen, S.J.; Herranz, D.; Mecucci, C.; Harrison, C.J.; Mullighan, C.G.; Zhang, M.; Chen, Z.; Boissel, N.; Winter, S.S.; et al. Acute Lymphoblastic Leukaemia. Nat. Rev. Dis. Prim. 2024, 10, 41. [Google Scholar] [CrossRef]
- Tebbi, C.K. Etiology of Acute Leukemia: A Review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef]
- Hunger, S.P.; Mullighan, C.G. Acute Lymphoblastic Leukemia in Children. N. Engl. J. Med. 2015, 373, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Vakiti, A.; Reynolds, S.B.; Mewawalla, P. Acute Myeloid Leukemia; StatPearls Publishing: Orlando, FL, USA, 2024. [Google Scholar]
- Tallman, M.S.; Gilliland, D.G.; Rowe, J.M. Drug Therapy for Acute Myeloid Leukemia. Blood 2005, 106, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Palomero, T.; Ferrando, A. Therapeutic Targeting of NOTCH1 Signaling in T-ALL Teresa. Clin. Lymphoma Myeloma 2009, 9, S205–S210. [Google Scholar] [CrossRef] [PubMed]
- Vihinen, M. When a Synonymous Variant Is Nonsynonymous. Genes 2022, 13, 1485. [Google Scholar] [CrossRef]
- Mort, M.; Ivanov, D.; Cooper, D.N.; Chuzhanova, N.A. A Meta-Analysis of Nonsense Mutations Causing Human Genetic Disease. Hum. Mutat. 2008, 29, 1037–1047. [Google Scholar] [CrossRef]
- Sadee, W.; Wang, D.; Hartmann, K.; Toland, A.E. Pharmacogenomics: Driving Personalized Medicine. Pharmacol. Rev. 2023, 75, 789–814. [Google Scholar] [CrossRef]
- Haga, S.B.; Burke, W. Using Pharmacogenetics to Improve Drug Safety and Efficacy. Jama 2004, 291, 2869–2871. [Google Scholar] [CrossRef]
- Relling, M.V.; Evans, W.E. Pharmacogenomics in the Clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Gréen, H.; Falk, I.J.; Lotfi, K.; Paul, E.; Hermansson, M.; Rosenquist, R.; Paul, C.; Nahi, H. Association of ABCB1 Polymorphisms with Survival and in Vitro Cytotoxicty in de Novo Acute Myeloid Leukemia with Normal Karyotype. Pharmacogenom. J. 2012, 12, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Park, J.Y.; Sohn, S.K.; Lee, N.Y.; Baek, J.H.; Jeon, S.B.; Kim, J.G.; Suh, J.S.; Do, Y.R.; Lee, K.B. Multidrug Resistance-1 Gene Polymorphisms Associated with Treatment Outcomes in de Novo Acute Myeloid Leukemia. Int. J. Cancer 2006, 118, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Yin, J.Y.; Xu, Y.J.; Li, X.; Zhang, Y.; Liu, Z.G.; Zhou, F.; Zhai, M.; Li, Y.; Li, X.P.; et al. Association of ABCB1 Polymorphisms with the Efficacy of Ondansetron in Chemotherapy-Induced Nausea and Vomiting. Clin. Ther. 2014, 36, 1242–1252. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; Rojas, L.; Herrero, M.J.; Bosó, V.; Montesinos, P.; Moscardó, F.; Poveda, J.L.; Sanz, M.Á.; Aliño, S.F. Influence of ABCB1 Polymorphisms upon the Effectiveness of Standard Treatment for Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis of Observational Studies. Pharmacogenom. J. 2015, 15, 109–118. [Google Scholar] [CrossRef]
- Mortland, L.; Alonzo, T.A.; Walter, R.B.; Gerbing, R.B.; Mitra, A.K.; Pollard, J.A.; Loken, M.R.; Hirsch, B.; Raimondi, S.; Franklin, J.; et al. Clinical Significance of CD33 Nonsynonymous Single-Nucleotide Polymorphisms in Pediatric Patients with Acute Myeloid Leukemia Treated with Gemtuzumab-Ozogamicin-Containing Chemotherapy. Clin. Cancer Res. 2013, 19, 1620–1627. [Google Scholar] [CrossRef]
- He, H.; Xu, Y.-J.; Yin, J.-Y.; Li, X.; Qu, J.; Xu, X.-J.; Liu, Z.-G.; Zhou, F.; Zhai, M.; Li, Y.; et al. Association of Nitric Oxide Synthase 3 (NOS3) 894 G>T Polymorphism with Prognostic Outcomes of Anthracycline in Chinese Patients with Acute Myeloid Leukaemia. Clin. Exp. Pharmacol. Physiol. 2014, 41, 400–407. [Google Scholar] [CrossRef]
- Cao, X.; Mitra, A.K.; Pounds, S.; Crews, K.R.; Gandhi, V.; Plunkett, W.; Dolan, M.E.; Hartford, C.; Raimondi, S.; Campana, D.; et al. RRM1 and RRM2 Pharmacogenetics: Association with Phenotypes in HapMap Cell Lines and Acute Myeloid Leukemia Patients. Pharmacogenomics 2013, 14, 1449–1466. [Google Scholar] [CrossRef]
- Iacobucci, I.; Lonetti, A.; Candoni, A.; Sazzini, M.; Papayannidis, C.; Formica, S.; Ottaviani, E.; Ferrari, A.; Michelutti, A.; Simeone, E.; et al. Profiling of Drug-Metabolizing Enzymes/Transporters in CD33+ Acute Myeloid Leukemia Patients Treated with Gemtuzumab-Ozogamicin and Fludarabine, Cytarabine and Idarubicin. Pharmacogenom. J. 2013, 13, 335–341. [Google Scholar] [CrossRef]
- Yunis, L.K.; Linares-Ballesteros, A.; Aponte, N.; Barros, G.; García, J.; Niño, L.; Uribe, G.; Quintero, E.; Yunis, J.J. Pharmacogenetics of ABCB1, CDA, DCK, GSTT1, GSTM1 and Outcomes in a Cohort of Pediatric Acute Myeloid Leukemia Patients from Colombia. Cancer Rep. 2023, 6, e1744. [Google Scholar] [CrossRef]
- Cheong, H.S.; Koh, Y.; Ahn, K.S.; Lee, C.; Shin, H.D.; Yoon, S.S. NT5C3 Polymorphisms and Outcome of First Induction Chemotherapy in Acute Myeloid Leukemia. Pharmacogenet. Genom. 2014, 24, 436–441. [Google Scholar] [CrossRef]
- Drenberg, C.D.; Paugh, S.W.; Pounds, S.B.; Shi, L.; Orwick, S.J.; Li, L.; Hu, S.; Gibson, A.A.; Ribeiro, R.C.; Rubnitz, J.E.; et al. Inherited Variation in OATP1B1 Is Associated with Treatment Outcome in Acute Myeloid Leukemia. Clin. Pharmacol. Ther. 2016, 99, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Varatharajan, S.; Abbas, S.; Zhang, W.; Shaji, R.V.; Ahmed, R.; Abraham, A.; George, B.; Srivastava, A.; Chandy, M.; et al. Cytidine Deaminase Genetic Variants Influence RNA Expression and Cytarabine Cytotoxicity in Acute Myeloid Leukemia. Pharmacogenomics 2012, 13, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, U.; Dransfeld, C.L.; Bulut, N.; Kramer, M.; Thiede, C.; Ehninger, G.; Schaich, M. SNP Analyses in Cytarabine Metabolizing Enzymes in AML Patients and Their Impact on Treatment Response and Patient Survival: Identification of CDA SNP C-451T as an Independent Prognostic Parameter for Survival. Leukemia 2009, 23, 1929–1932. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.Y.; Shi, Z.Z.; Zhang, S.J.; Zhu, Y.M.; Gu, B.W.; Li, G.; Bai, X.T.; Gao, X.D.; Hu, J.; Jin, W.; et al. Association between Single Nucleotide Polymorphisms in Deoxycytidine Kinase and Treatment Response among Acute Myeloid Leukaemia Patients. Pharmacogenetics 2004, 14, 759–768. [Google Scholar] [CrossRef]
- Yee, S.W.; Mefford, J.A.; Singh, N.; Percival, M.-E.; Stecula, A.; Yang, K.; Witte, J.S.; Takahashi, A.; Kubo, M.; Matsuda, K.; et al. Impact of Polymorphisms in Drug Pathway Genes on Disease—Free Survival in Adults with Acute Myeloid Leukemia. J. Hum. Genet. 2013, 58, 353–361. [Google Scholar] [CrossRef]
- Larkin, T.; Kashif, R.; Elsayed, A.H.; Greer, B.; Mangrola, K.; Rafiee, R.; Nguyen, N.; Shastri, V.; Horn, B.; Lamba, J.K. Polygenic Pharmacogenomic Markers as Predictors of Toxicity Phenotypes in the Treatment of Acute Lymphoblastic Leukemia: A Single-Center Study. JCO Precis. Oncol. 2023, 7, e2200580. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; Montesinos, P.; Herrero, M.J.; Moscardó, F.; Bosó, V.; Rojas, L.; Martínez-Cuadrón, D.; Rodríguez-Veiga, R.; Sendra, L.; Cervera, J.; et al. Impact of NADPH Oxidase Functional Polymorphisms in Acute Myeloid Leukemia Induction Chemotherapy. Pharmacogenom. J. 2018, 18, 301–307. [Google Scholar] [CrossRef]
- Cargnin, S.; Genazzani, A.A.; Canonico, P.L.; Terrazzino, S. Diagnostic Accuracy of NUDT15 Gene Variants for Thiopurine-Induced Leukopenia: A Systematic Review and Meta-Analysis. Pharmalog. Res. 2018, 135, 102–111. [Google Scholar] [CrossRef]
- Pai, A.A.; Mohan, A.; Benjamin, E.S.B.; Illangeswaran, R.S.S.; Raj, I.X.; Janet, N.B.; Arunachalam, A.K.; Kavitha, M.L.; Kulkarni, U.; Devasia, A.J.; et al. Nudt15 c.415c>t Polymorphism Predicts 6-Mp Induced Early Myelotoxicity in Patients with Acute Lymphoblastic Leukemia Undergoing Maintenance Therapy. Pharmgenomics. Pers. Med. 2021, 14, 1303–1313. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kato, M.; Hasegawa, D.; Urayama, K.Y.; Nakadate, H.; Kondoh, K.; Nakamura, K.; Koh, K.; Komiyama, T.; Manabe, A. Susceptibility to 6-MP Toxicity Conferred by a NUDT15 Variant in Japanese Children with Acute Lymphoblastic Leukaemia. Br. J. Haematol. 2015, 171, 109–115. [Google Scholar] [CrossRef]
- Zhou, H.; Li, L.; Yang, P.; Yang, L.; Zheng, J.E.; Zhou, Y.; Han, Y. Optimal Predictor for 6-Mercaptopurine Intolerance in Chinese Children with Acute Lymphoblastic Leukemia: NUDT15, TPMT, or ITPA Genetic Variants? BMC Cancer 2018, 18, 516. [Google Scholar] [CrossRef]
- Ramalingam, R.; Kaur, H.; Scott, J.X.; Sneha, L.M.; Arunkumar, G.; Srinivasan, A.; Paul, S.F.D. Evaluation of Cytogenetic and Molecular Markers with MTX-Mediated Toxicity in Pediatric Acute Lymphoblastic Leukemia Patients. Cancer Chemother. Pharmacol. 2022, 89, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Huang, X.; He, X.; Mao, M.; Chen, M.; Zhang, R.; Shao, H.; Lv, Z.; Liu, X.; Chuan, J. Association of NUDT15 Gene Polymorphism with Adverse Reaction, Treatment Efficacy, and Dose of 6-Mercaptopurine in Patients with Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Haematologica 2024, 109, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Hawwa, A.F.; Millership, J.S.; Collier, P.S.; Vandenbroeck, K.; McCarthy, A.; Dempsey, S.; Cairns, C.; Collins, J.; Rodgers, C.; McElnay, J.C. Pharmacogenomic Studies of the Anticancer and Immunosuppressive Thiopurines Mercaptopurine and Azathioprine. Br. J. Clin. Pharmacol. 2008, 66, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.; Szumlanski, C.; Weinshilboum, R.; Schmiegelow, K. Pharmacokinetics, Dose Adjustments, and 6-Mercaptopurine/ Methotrexate Drug Interactions in Two Patients with Thiopurine Methyltransferase Deficiency. Acta Paediatr. 1998, 87, 108–111. [Google Scholar] [CrossRef]
- Karas-Kuzelicki, N.; Jazbec, J.; Milek, M.; Mlinaric-Rascan, I. Heterozygosity at the TPMT Gene Locus, Augmented by Mutated MTHFR Gene, Predisposes to 6-MP Related Toxicities in Childhood ALL Patients. Leukemia 2009, 23, 971–974. [Google Scholar] [CrossRef]
- Lennard, L.; Cartwright, C.S.; Wade, R.; Vora, A. Thiopurine Dose Intensity and Treatment Outcome in Childhood Lymphoblastic Leukaemia: The Influence of Thiopurine Methyltransferase Pharmacogenetics. Br. J. Haematol. 2015, 169, 228–240. [Google Scholar] [CrossRef]
- Voelz, K.; Miller, G.; Lee-Miller, C. 6-Mercaptopurine-Associated Sinusoidal Obstructive Syndrome During Interim Maintenance I: A Case Report. J. Pediatr. Hematol. Oncol. 2024, 46, 317–321. [Google Scholar] [CrossRef]
- Krynetski, E.Y.; Schuetz, J.D.; Galpin, A.J.; Pui, C.H.; Relling, M.V.; Evans, W.E. A Single Point Mutation Leading to Loss of Catalytic Activity in Human Thiopurine S-Methyltransferase. Proc. Natl. Acad. Sci. USA 1995, 92, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Correa-Jimenez, O.; Yunis, J.J.; Linares-Ballesteros, A.; Sarmiento-Urbina, I. Susceptibility to Thiopurine Toxicity by TPMT and NUDT15 Variants in Colombian Children with Acute Lymphoblastic Leukemia. Colomb. Med. 2021, 52, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Soler, A.M.; Olano, N.; Méndez, Y.; Lopes, A.; Silveira, A.; Dabezies, A.; Castillo, L.; da Luz, J.A. TPMT and NUDT15 Genes Are Both Related to Mercaptopurine Intolerance in Acute Lymphoblastic Leukaemia Patients from Uruguay. Br. J. Haematol. 2018, 181, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Esmaili, M.A.; Kazemi, A.; Faranoush, M.; Mellstedt, H.; Zaker, F.; Safa, M.; Mehrvar, N.; Rezvany, M.R. Polymorphisms within Methotrexate Pathwaygenes: Relationship between Plasma Methotrexate Levels, Toxicity Experienced and Outcome in Pediatric Acute Lymphoblastic Leukemia. Iran. J. Basic Med. Sci. 2020, 23, 800–809. [Google Scholar] [CrossRef]
- Shimasaki, N.; Mori, T.; Torii, C.; Sato, R.; Shimada, H.; Tanigawara, Y.; Kosaki, K.; Takahashi, T. Influence of MTHFR and RFC1 Polymorphisms on Toxicities during Maintenance Chemotherapy for Childhood Acute Lymphoblastic Leukemia or Lymphoma. J. Pediatr. Hematol. Oncol. 2008, 30, 347–352. [Google Scholar] [CrossRef]
- Zgheib, N.K.; Akra-Ismail, M.; Aridi, C.; Mahfouz, R.; Abboud, M.R.; Solh, H.; Muwakkit, S.A. Genetic Polymorphisms in Candidate Genes Predict Increased Toxicity with Methotrexate Therapy in Lebanese Children with Acute Lymphoblastic Leukemia. Pharmacogenet. Genom. 2014, 24, 387–396. [Google Scholar] [CrossRef]
- Tan, Y.; Kong, Q.; Li, X.; Tang, Y.; Mai, H.; Zhen, Z.; Zhou, D.; Chen, H. Relationship between Methylenetetrahydrofolate Reductase Gene Polymorphisms and Methotrexate Drug Metabolism and Toxicity. Transl. Pediatr. 2023, 12, 31–45. [Google Scholar] [CrossRef]
- Aráoz, H.V.; D’Aloi, K.; Foncuberta, M.E.; Sanchez La Rosa, C.G.; Alonso, C.N.; Chertkoff, L.; Felice, M. Pharmacogenetic Studies in Children with Acute Lymphoblastic Leukemia in Argentina. Leuk. Lymphoma 2015, 56, 1370–1378. [Google Scholar] [CrossRef]
- EL-Khodary, N.M.; EL-Haggar, S.M.; Eid, M.A.; Ebeid, E.N. Study of the Pharmacokinetic and Pharmacogenetic Contribution to the Toxicity of High-Dose Methotrexate in Children with Acute Lymphoblastic Leukemia. Med. Oncol. 2012, 29, 2053–2062. [Google Scholar] [CrossRef]
- Salazar, J.; Altés, A.; del Río, E.; Estella, J.; Rives, S.; Tasso, M.; Navajas, A.; Molina, J.; Villa, M.; Vivanco, J.L.; et al. Methotrexate Consolidation Treatment According to Pharmacogenetics of MTHFR Ameliorates Event-Free Survival in Childhood Acute Lymphoblastic Leukaemia. Pharmacogenom. J. 2012, 12, 379–385. [Google Scholar] [CrossRef]
- Liu, S.-G.; Li, Z.-G.; Cui, L.; Gao, C.; Li, W.-J.; Zhao, X.-X. Effects of Methylenetetrahydrofolate Reductase Gene Polymorphisms on Toxicities during Consolidation Therapy in Pediatric Acute Lymphoblastic Leukemia in a Chinese Population. Leuk. Lymphoma 2011, 52, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Sun, J.-L.; Li, R.; Li, X. Involvement of the ABCB1 C3435T Variant but Not the MTHFR C677T or MTHFR A1298C Variant in High-Dose Methotrexate-Induced Toxicity in Pediatric Acute Lymphoblastic Leukemia Patients in China. Int. J. Gen. Med. 2024, 17, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.D.; Taylor, O.A.; Gramatges, M.M.; Hughes, A.E.; Zobeck, M.; Pruitt, S.; Bernhardt, M.B.; Chavana, A.; Huynh, V.; Ludwig, K.; et al. Evaluation of Methotrexate Pharmacogenomic Variation to Predict Acute Neurotoxicity in Children with Acute Lymphoblastic Leukemia. Pharmacotherapy 2025, 45, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Suthandiram, S.; Gan, G.G.; Zain, S.M.; Bee, P.C.; Lian, L.H.; Chang, K.M.; Ong, T.C.; Mohamed, Z. Effect of Polymorphisms within Methotrexate Pathway Genes on Methotrexate Toxicity and Plasma Levels in Adults with Hematological Malignancies. Pharmacogenomics 2014, 15, 1479–1494. [Google Scholar] [CrossRef]
- Gregers, J.; Christensen, I.J.; Dalhoff, K.; Lausen, B.; Schroeder, H.; Rosthoej, S.; Carlsen, N.; Schmiegelow, K.; Peterson, C. The Association of Reduced Folate Carrier 80G>A Polymorphism to Outcome in Childhood Acute Lymphoblastic Leukemia Interacts with Chromosome 21 Copy Number. Blood 2010, 115, 4671–4677. [Google Scholar] [CrossRef]
- Lin, C.; Ma, R.; Zeng, X.; Zhang, B.; Cao, T.; Jiao, S.; Chen, H.; He, Y.; Liu, M.; Cai, H. Integration of Genomics, Clinical Characteristics and Baseline Biological Profiles to Predict the Risk of Liver Injury Induced by High-Dose Methotrexate. Front. Pharmacol. 2024, 15, 1423214. [Google Scholar] [CrossRef]
- Gong, Y.; Luo, L.; Wang, L.; Chen, J.; Chen, F.; Ma, Y.; Xu, Z.; Sun, Y.; Luo, L.; Shi, C.; et al. Association of MTHFR and ABCB1 Polymorphisms with MTX-Induced Mucositis in Chinese Paediatric Patients with Acute Lymphoblastic Leukaemia, Lymphoma or Osteosarcoma—A Retrospective Cohort Study. J. Clin. Pharm. Ther. 2021, 46, 1557–1563. [Google Scholar] [CrossRef]
- Gurieva, O.D.; Savelyeva, M.I.; Valiev, T.T.; Sozaeva, Z.A.; Kondratenko, S.N.; Ilyin, M.V. Pharmacogenetic Aspects of Efficacy and Safety of Methotrexate Treatment in Pediatric Acute Lymphoblastic Leukemia. Drug Metab. Pers. Ther. 2023, 38, 349–357. [Google Scholar] [CrossRef]
- Dorababu, P.; Naushad, S.M.; Linga, V.G.; Gundeti, S.; Nagesh, N.; Kutala, V.K.; Reddanna, P.; Digumarti, R. Genetic Variants of Thiopurine and Folate Metabolic Pathways Determine 6-MP-Mediated Hematological Toxicity in Childhood ALL. Pharmacogenomics 2012, 13, 1001–1008. [Google Scholar] [CrossRef]
- Garcia-Bournissen, F.; Moghrabi, A.; Krajinovic, M. Therapeutic Responses in Childhood Acute Lymphoblas—Tic Leukemia (ALL) and Haplotypes of Gamma Glutamyl Hydrolase (GGH) Gene. Leuk. Res. 2007, 31, 1023–1025. [Google Scholar] [CrossRef]
- Li, M.; Wang, S.M.; Wu, W.S.; Yan, D.; Zhang, L.P.; Zheng, H.Y. Frequency Distribution of Five SNPs in Human GGH Gene and Their Effects on Clinical Outcomes of Chinese Pediatric Patients with Acute Lymphoblastic Leukemia. Pharmazie 2020, 75, 142–146. [Google Scholar] [CrossRef]
- Kishi, S.; Cheng, C.; French, D.; Pei, D.; Das, S.; Cook, E.H.; Hijiya, N.; Rizzari, C.; Rosner, G.L.; Frudakis, T.; et al. Ancestry and Pharmacogenetics of Antileukemic Drug Toxicity. Blood 2007, 109, 4151–4157. [Google Scholar] [CrossRef] [PubMed]
- Franca, R.; Rebora, P.; Bertorello, N.; Fagioli, F.; Conter, V.; Biondi, A.; Colombini, A.; Micalizzi, C.; Zecca, M.; Parasole, R.; et al. Pharmacogenetics and Induction/Consolidation Therapy Toxicities in Acute Lymphoblastic Leukemia Patients Treated with AIEOP-BFM ALL 2000 Protocol. Pharmacogenom. J. 2017, 17, 4–10. [Google Scholar] [CrossRef]
- Kim, H.; Kang, H.J.; Kim, H.J.; Jang, M.K.; Kim, N.H.; Oh, Y.; Han, B.D.; Choi, J.Y.; Kim, C.W.; Lee, J.W.; et al. Pharmacogenetic Analysis of Pediatric Patients with Acute Lymphoblastic Leukemia: A Possible Association between Survival Rate and ITPA Polymorphism. PLoS ONE 2012, 7, e45558. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Adam, H.; Hailu, D.; Engidawork, E.; Howe, R.; Abula, T.; Coenen, M.J.H. Genetic Variants of Genes Involved in Thiopurine Metabolism Pathway Are Associated with 6-Mercaptopurine Toxicity in Pediatric Acute Lymphoblastic Leukemia Patients from Ethiopia. Front. Pharmacol. 2023, 14, 1159307. [Google Scholar] [CrossRef] [PubMed]
- Stocco, G.; Cheok, M.; Crews, K.; Dervieux, T.; French, D.; Pei, D.; Yang, W.; Cheng, C.; Pui, C.-H.; Relling, M.; et al. Genetic Polymorphism of Inosine Triphosphate Pyrophosphatase Is a Determinant of Mercaptopurine Metabolism and Toxicity During Treatment for Acute Lymphoblastic Leukemia. Clin. Pharmacol. Ther. 2009, 2385, 164–172. [Google Scholar] [CrossRef]
- Hareedy, M.S.; El Desoky, E.S.; Woillard, J.B.; Thabet, R.H.; Ali, A.M.; Marquet, P.; Picard, N. Genetic Variants in 6-Mercaptopurine Pathway as Potential Factors of Hematological Toxicity in Acute Lymphoblastic Leukemia Patients. Pharmacogenomics 2015, 16, 1119–1134. [Google Scholar] [CrossRef]
- Erčulj, N.; Kotnik, B.F.; Debeljak, M.; Jazbec, J.; Dolžan, V. Influence of Folate Pathway Polymorphisms on High-Dose Methotrexate-Related Toxicity and Survival in Childhood Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2012, 53, 1096–1104. [Google Scholar] [CrossRef]
- Krajinovic, M.; Lemieux-Blanchard, É.; Chiasson, S.; Primeau, M.; Costea, I.; Moghrabi, A. Role of Polymorphism in MTHFR and MTHFD1 Genes in the Outcome of Childhood Acute Lymphoblastic Leukemia. Pharmacogenom. J. 2004, 4, 66–72. [Google Scholar] [CrossRef]
- Hao, Q.; Song, Y.; Fang, Q.; Lin, Y.; Chen, L.; Wang, X.; Zhang, P.; Wang, Z.; Gong, X.; Liu, K.; et al. Effects of Genetic Polymorphisms on Methotrexate Levels and Toxicity in Chinese Patients with Acute Lymphoblastic Leukemia. Blood Sci. 2023, 5, 32–38. [Google Scholar] [CrossRef]
- Huang, L.; Tissing, W.J.E.; de Jonge, R.; van Zelst, B.D.; Pieters, R. Polymorphisms in Folate-Related Genes: Association with Side Effects of High-Dose Methotrexate in Childhood Acute Lymphoblastic Leukemia. Leukemia 2008, 22, 1798–1800. [Google Scholar] [CrossRef]
- Yang, W.; Karol, S.E.; Hoshitsuki, K.; Lee, S.; Larsen, E.C.; Winick, N.; Carroll, W.L.; Loh, M.L.; Raetz, E.A.; Hunger, S.P.; et al. Association of Inherited Genetic Factors with Drug-Induced Hepatic Damage among Children with Acute Lymphoblastic Leukemia. JAMA Netw. Open 2022, 5, E2248803. [Google Scholar] [CrossRef]
- Liu, S.G.; Gao, C.; Zhang, R.D.; Zhao, X.X.; Cui, L.; Li, W.J.; Chen, Z.P.; Yue, Z.X.; Zhang, Y.Y.; Wu, M.Y.; et al. Polymorphisms in Methotrexate Transporters and Their Relationship to Plasma Methotrexate Levels, Toxicity of High-Dose Methotrexate, and Outcome of Pediatric Acute Lymphoblastic Leukemia. Oncotarget 2017, 8, 37761–37772. [Google Scholar] [CrossRef]
- Gutierrez-Camino, A.; Martin-Guerrero, I.; Garcia-Orad, A. PNPLA3 Rs738409 and Hepatotoxicity in Children with B-Cell Acute Lymphoblastic Leukemia: A Validation Study in a Spanish Cohort. Clin. Pharmacol. Ther. 2017, 102, 906. [Google Scholar] [CrossRef] [PubMed]
- Radtke, S.; Zolk, O.; Renner, B.; Paulides, M.; Zimmermann, M.; Möricke, A.; Stanulla, M.; Schrappe, M.; Langer, T. Germline Genetic Variations in Methotrexate Candidate Genes Are Associated with Pharmacokinetics, Toxicity, and Outcome in Childhood Acute Lymphoblastic Leukemia. Blood 2013, 121, 5145–5153. [Google Scholar] [CrossRef] [PubMed]
- Braidotti, S.; Zudeh, G.; Franca, R.; Kiren, V.; Colombini, A.; Bettini, L.R.; Brivio, E.; Locatelli, F.; Vinti, L.; Bertorello, N.; et al. The Role of Candidate Polymorphisms in Drug Transporter Genes on High-Dose Methotrexate in the Consolidation Phase of the AIEOP-BFM ALL 2009 Protocol. Clin. Transl. Sci. 2025, 18, e70136. [Google Scholar] [CrossRef]
- Wu, S.; Wang, M.; Alqahtani, A.; Lou, M.; Stock, W.; Bhojwani, D.; Alachkar, H. Hispanic Ethnicity and the Rs4880 Variant in SOD2 Are Associated with Elevated Liver Enzymes and Bilirubin Levels in Children Receiving Asparaginase-Containing Chemotherapy for Acute Lymphoblastic Leukemia. Biomed. Pharmacother. 2022, 150, 113000. [Google Scholar] [CrossRef]
- Alachkar, H.; Fulton, N.; Sanford, B.; Malnassy, G.; Mutonga, M.; Larson, R.A.; Bloomfield, C.D.; Marcucci, G.; Nakamura, Y.; Stock, W. Expression and Polymorphism (Rs4880) of Mitochondrial Superoxide Dismutase (SOD2) and Asparaginase Induced Hepatotoxicity in Adult Patients with Acute Lymphoblastic Leukemia. Pharmacogenom. J. 2017, 17, 274–279. [Google Scholar] [CrossRef]
- Costea, I.; Moghrabi, A.; Laverdiere, C.; Graziani, A.; Krajinovic, M. Folate Cycle Gene Variants and Chemotherapy Toxicity in Pediatric Patients with Acute Lymphoblastic Leukemia. Haematologica 2006, 91, 1113–1116. [Google Scholar]
- Costea, I.; Moghrabi, A.; Krajinovic, M. The Influence of Cyclin D1 (CCND1) 870A>G Polymorphism and CCND1-Thymidylate Synthase (TS) Gene-Gene Interaction on the Outcome of Childhood Acute Lymphoblastic Leukaemia. Pharmacogenetics 2003, 13, 577–580. [Google Scholar] [CrossRef]
- Liu, C.; Yang, W.; Devidas, M.; Cheng, C.; Pei, D.; Smith, C.; Carroll, W.L.; Raetz, E.A.; Bowman, W.P.; Larsen, E.C.; et al. Clinical and Genetic Risk Factors for Acute Pancreatitis in Patients with Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2016, 34, 2133–2140. [Google Scholar] [CrossRef]
- Karol, S.E.; Mattano, L.A.; Yang, W.; Maloney, K.W.; Smith, C.; Liu, C.C.; Ramsey, L.B.; Fernandez, C.A.; Chang, T.Y.; Neale, G.; et al. Genetic Risk Factors for the Development of Osteonecrosis in Children under Age 10 Treated for Acute Lymphoblastic Leukemia. Blood 2016, 127, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Tong, H.F.; Li, Y.; Qian, J.C.; Wang, J.X.; Wang, Z.; Ruan, J.C. Effect of the Polymorphism of Folylpolyglutamate Synthetase on Treatment of High-Dose Methotrexate in Pediatric Patients with Acute Lymphocytic Leukemia. Med. Sci. Monit. 2016, 22, 4967–4973. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Pei, D.; Yang, W.; Cheng, C.; Jeha, S.; Cox, N.J.; Evans, W.E.; Pui, C.-H.; Relling, M.V. Genetic Variations in GRIA1 on Chromosome 5q33 Related to Asparaginase Hypersensitivity. Clin. Pharmacol. Ther. 2010, 88, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cheng, C.; Yang, W.; Pei, D.; Cao, X.; Fan, Y.; Pounds, S.; Treviño, L.R.; French, D.; Campana, D.; et al. Genome-Wide Interrogation of Germline Genetic Variation Associated with Treatment Response in Childhood Acute Lymphoblastic Leukemia. Jama 2009, 301, 393–403. [Google Scholar] [CrossRef]
- Ceppi, F.; Langlois-Pelletier, C.; Gagné, V.; Rousseau, J.; Ciolino, C.; Lorenzo, S.D.; Kevin, K.M.; Cijov, D.; Sallan, S.E.; Silverman, L.B.; et al. Polymorphisms of the Vincristine Pathway and Response to Treatment in Children with Childhood Acute Lymphoblastic Leukemia. Pharmacogenomics 2014, 15, 1105–1116. [Google Scholar] [CrossRef]
- Lopez-Lopez, E.; Ballesteros, J.; Piñan, M.A.; Sanchez De Toledo, J.; Garcia De Andoin, N.; Garcia-Miguel, P.; Navajas, A.; Garcia-Orad, A. Polymorphisms in the Methotrexate Transport Pathway: A New Tool for MTX Plasma Level Prediction in Pediatric Acute Lymphoblastic Leukemia. Pharmacogenet. Genom. 2013, 23, 53–61. [Google Scholar] [CrossRef]
- Den Hoed, M.A.H.; Lopez-Lopez, E.; Te Winkel, M.L.; Tissing, W.; De Rooij, J.D.E.; Gutierrez-Camino, A.; Garcia-Orad, A.; Den Boer, E.; Pieters, R.; Pluijm, S.M.F.; et al. Genetic and Metabolic Determinants of Methotrexate-Induced Mucositis in Pediatric Acute Lymphoblastic Leukemia. Pharmacogenom. J. 2015, 15, 248–254. [Google Scholar] [CrossRef]
- Zobeck, M.C.; Bernhardt, M.B.; Kamdar, K.Y.; Rabin, K.R.; Lupo, P.J.; Scheurer, M.E. Novel Risk Factors for Glucarpidase Use in Pediatric Acute Lymphoblastic Leukemia: Hispanic Ethnicity, Age, and the ABCC4 Gene. Pediatr. Blood Cancer 2021, 68, e29036. [Google Scholar] [CrossRef]
- Razali, R.H.; Noorizhab, M.N.F.; Jamari, H.; James, R.J.; Teh, K.H.; Ibrahim, H.M.; Teh, L.K.; Salleh, M.Z. Association of ABCC2 with Levels and Toxicity of Methotrexate in Malaysian Childhood Acute Lymphoblastic Leukemia (ALL). Pediatr. Hematol. Oncol. 2020, 37, 185–197. [Google Scholar] [CrossRef]
- Rajić, V.; Aplenc, R.; Debeljak, M.; Prestor, V.V.; Karas-Kuželicki, N.; Mlinarič-Raščan, I.; Jazbec, J. Influence of the Polymorphism in Candidate Genes on Late Cardiac Damage in Patients Treated Due to Acute Leukemia in Childhood. Leuk. Lymphoma 2009, 50, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Ceppi, F.; Gagné, V.; Douyon, L.; Quintin, C.J.; Colombini, A.; Parasole, R.; Buldini, B.; Basso, G.; Conter, V.; Cazzaniga, G.; et al. DNA Variants in DHFR Gene and Response to Treatment in Children with Childhood B ALL: Revisited in AIEOP-BFM Protocol. Pharmacogenomics 2018, 19, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lee, C.H.; Park, H.S.; Lee, J.H.; Kang, Y.A.; Kim, S.K.; Chang, J.; Kim, D.J.; Rha, S.Y.; Kim, J.H.; et al. Pharmacogenomic Assessment of Outcomes of Pemetrexed-Treated Patients with Adenocarcinoma of the Lung. Yonsei Med. J. 2013, 54, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Kodidela, S.; Pradhan, S.C.; Dubashi, B.; Basu, D. Influence of Dihydrofolate Reductase Gene Polymorphisms Rs408626 (-317A>G) and Rs442767 (-680C>A) on the Outcome of Methotrexate-Based Maintenance Therapy in South Indian Patients with Acute Lymphoblastic Leukemia. Eur. J. Clin. Pharmacol. 2015, 71, 1349–1358. [Google Scholar] [CrossRef]
- Ongaro, A.; De Mattei, M.; Della Porta, M.G.; Rigolin, G.; Ambrosio, C.; Di Raimondo, F.; Pellati, A.; Masieri, F.F.; Caruso, A.; Catozzi, L.; et al. Gene Polymorphisms in Folate Metabolizing Enzymes in Adult Acute Lymphoblastic Leukemia: Effects on Methotrexate-Related Toxicity and Survival. Haematologica 2009, 94, 1391–1398. [Google Scholar] [CrossRef]
- Yousef, A.M.; Farhad, R.; Alshamaseen, D.; Alsheikh, A.; Zawiah, M.; Kadi, T. Folate Pathway Genetic Polymorphisms Modulate Methotrexate-Induced Toxicity in Childhood Acute Lymphoblastic Leukemia. Cancer Chemother. Pharmacol. 2019, 83, 755–762. [Google Scholar] [CrossRef]
- López-López, E.; Gutiérrez-Camino, Á.; Piñán, M.Á.; Sánchez-Toledo, J.; Uriz, J.J.; Ballesteros, J.; García-Miguel, P.; Navajas, A.; García-Orad, Á. Pharmacogenetics of MicroRNAs and MicroRNAs Biogenesis Machinery in Pediatric Acute Lymphoblastic Leukemia. PLoS ONE 2014, 9, e91261. [Google Scholar] [CrossRef]
- Fernandez, C.A.; Smith, C.; Yang, W.; Mullighan, C.G.; Qu, C.; Larsen, E.; Bowman, W.P.; Liu, C.; Ramsey, L.B.; Chang, T.; et al. Genome-Wide Analysis Links NFATC2 with Asparaginase Hypersensitivity. Blood 2015, 126, 69–75. [Google Scholar] [CrossRef]
- Franca, R.; Stocco, G.; Favretto, D.; Giurici, N.; del Rizzo, I.; Locatelli, F.; Vinti, L.; Biondi, A.; Colombini, A.; Fagioli, F.; et al. PACSIN2 Rs2413739 Influence on Thiopurine Pharmacokinetics: Validation Studies in Pediatric Patients. Pharmacogenom. J. 2020, 20, 415–425. [Google Scholar] [CrossRef]
- Stocco, G.; Yang, W.; Crews, K.R.; Thierfelder, W.E.; Decorti, G.; Londero, M.; Franca, R.; Rabusin, M.; Valsecchi, M.G.; Pei, D.; et al. PACSIN2 Polymorphism Influences TPMT Activity and Mercaptopurine-Related Gastrointestinal Toxicity. Hum. Mol. Genet. 2012, 21, 4793–4804. [Google Scholar] [CrossRef]
- Smid, A.; Karas-Kuzelicki, N.; Jazbec, J.; Mlinaric-Rascan, I. PACSIN2 Polymorphism Is Associated with Thiopurine-Induced Hematological Toxicity in Children with Acute Lymphoblastic Leukaemia Undergoing Maintenance Therapy. Sci. Rep. 2016, 6, 30244. [Google Scholar] [CrossRef]
- Franca, R.; Stocco, G.; Kiren, V.; Tessitore, A.; Fagioli, F.; Quarello, P.; Bertorello, N.; Rizzari, C.; Colombini, A.; Bettini, L.R.; et al. Impact of Mercaptopurine Metabolites on Disease Outcome in the AIEOP-BFM ALL 2009 Protocol for Acute Lymphoblastic Leukemia. Clin. Pharmacol. Ther. 2023, 114, 1082–1092. [Google Scholar] [CrossRef]
- Yang, J.J.; Cheng, C.; Devidas, M. Genome-Wide Association Study Identifies Germline Polymorphisms Associated with Relapse of Childhood Acute Lymphoblastic Leukemia. Transfuze A Hematol. Dnes. 2013, 19, 54. [Google Scholar] [CrossRef]
- Treviño, L.R.; Shimasaki, N.; Yang, W.; Panetta, J.C.; Cheng, C.; Pei, D.; Chan, D.; Sparreboom, A.; Giacomini, K.M.; Pui, C.H.; et al. Germline Genetic Variation in an Organic Anion Transporter Polypeptide Associated with Methotrexate Pharmacokinetics and Clinical Effects. J. Clin. Oncol. 2009, 27, 5972–5978. [Google Scholar] [CrossRef]
- Ramsey, L.B.; Panetta, J.C.; Smith, C.; Yang, W.; Fan, Y.; Winick, N.J.; Martin, P.L.; Cheng, C.; Devidas, M.; Pui, C.H.; et al. Genome-Wide Study of Methotrexate Clearance Replicates SLCO1B1. Blood 2013, 121, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Sauty, G.; Labuda, M.; Gagné, V.; Rousseau, J.; Moghrabi, A.; Laverdière, C.; Sinnett, D.; Krajinovic, M. Polymorphism in Multidrug Resistance-Associated Protein Gene 3 Is Associated with Outcomes in Childhood Acute Lymphoblastic Leukemia. Pharmacogenom. J. 2012, 12, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Shendy, K.; Abdelkawy, K.; Ali, A.A.; Belal, F.; Abdelhakiem, M.; Magdy, G.; Anber, N.; Elbarbry, F. The Effects of Genetic Polymorphism on Toxicity and Pharmacokinetics of Methotrexate in Egyptian Adult Patients with Leukaemia or Lymphoma. Xenobiotica 2024, 54, 95–105. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, Y.; Sheng, Q.; Lu, X.; Wang, F.; Lin, Z.; Tian, H.; Xu, A.; Zhang, J. Association of ABCC2 -24C>T Polymorphism with High-Dose Methotrexate Plasma Concentrations and Toxicities in Childhood Acute Lymphoblastic Leukemia. PLoS ONE 2014, 9, e82681. [Google Scholar] [CrossRef]
- Al-Shakfa, F.; Dulucq, S.; Brukner, I.; Milacic, I.; Ansari, M.; Beaulieu, P.; Moghrabi, A.; Laverdière, C.; Sallan, S.E.; Silverman, L.B.; et al. DNA Variants in Region for Noncoding Interfering Transcript of Dihydrofolate Reductase Gene and Outcome in Childhood Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2009, 15, 6931–6938. [Google Scholar] [CrossRef]
- Kotur, N.; Lazic, J.; Ristivojevic, B.; Stankovic, B.; Gasic, V.; Dokmanovic, L.; Krstovski, N.; Milosevic, G.; Janic, D.; Zukic, B.; et al. Pharmacogenomic Markers of Methotrexate Response in the Consolidation Phase of Pediatric Acute Lymphoblastic Leukemia Treatment. Genes 2020, 11, 468. [Google Scholar] [CrossRef]
- Nguyen, M.L.; Hoang, A.V.; Duong, B.T.; Phung, N.T.N. The Influence of NUDT15 Variants on 6-Mercaptopurine-Induced Neutropenia in Vietnamese Pediatric Acute Lymphoblastic Leukemia. Hum. Genet. Genom. Adv. 2023, 4, 100183. [Google Scholar] [CrossRef]
- French, D.; Hamilton, L.H.; Mattano, L.A.; Sather, H.N.; Devidas, M.; Nachman, J.B.; Relling, M.V. A PAI-1 (SERPINEI) Polymorphism Predicts Osteonecrosis in Children with Acute Lymphoblastic Leukemia: A Report from the Children’s Oncology Group. Blood 2008, 111, 4496–4499. [Google Scholar] [CrossRef]
- Gregers, J.; Green, H.; Christensen, I.J.; Dalhoff, K.; Schroeder, H.; Carlsen, N.; Rosthoej, S.; Lausen, B.; Schmiegelow, K.; Peterson, C. Polymorphisms in the ABCB1 Gene and Effect on Outcome and Toxicity in Childhood Acute Lymphoblastic Leukemia. Pharmacogenom. J. 2015, 15, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Roy Moulik, N.; Kumar, A.; Agrawal, S.; Awasthi, S.; Mahdi, A.A.; Kumar, A. Role of Folate Status and Methylenetetrahydrofolate Reductase Genotype on the Toxicity and Outcome of Induction Chemotherapy in Children with Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2015, 56, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H.; Fukushima, T.; Sakai, A.; Suzuki, R.; Nakajima-Yamaguchi, R.; Kobayashi, C.; Iwabuchi, A.; Saito, M.; Yoshimi, A.; Nakao, T.; et al. Polymorphisms of MTHFR Associated with Higher Relapse/Death Ratio and Delayed Weekly MTX Administration in Pediatric Lymphoid Malignancies. Leuk. Res. Treat. 2013, 2013, 238528. [Google Scholar] [CrossRef]
- Laverdière, C.; Chiasson, S.; Costea, I.; Moghrabi, A.; Krajinovic, M. Polymorphism G80A in the Reduced Folate Carrier Gene and Its Relationship to Methotrexate Plasma Levels and Outcome of Childhood Acute Lymphoblastic Leukemia. Blood 2002, 100, 3832–3834. [Google Scholar] [CrossRef] [PubMed]
- Imanishi, H.; Okamura, N.; Yagi, M.; Noro, Y.; Moriya, Y.; Nakamura, T.; Hayakawa, A.; Takeshima, Y.; Sakaeda, T.; Matsuo, M.; et al. Genetic Polymorphisms Associated with Adverse Events and Elimination of Methotrexate in Childhood Acute Lymphoblastic Leukemia and Malignant Lymphoma. J. Hum. Genet. 2007, 52, 166–171. [Google Scholar] [CrossRef]
- Health, N.I. of National Cancer Institute: Survaillance, Epidemiology, and End Results Program. Available online: https://seer.cancer.gov/statistics-network/explorer/ (accessed on 3 September 2025).
- Albuquerque, K.M.C.; de Joventino, C.B.; Moreira, L.C.; Rocha, H.A.L.; Gurgel, L.A.; Oliveira, D.d.S.; Rodrigues, C.E.M. Clinical Outcome and Prognosis of Patients with Acute Myeloid Leukemia Submitted to Chemotherapy with 5 Years of Follow-Up. Hematol. Transfus. Cell Ther. 2024, 46, 8–13. [Google Scholar] [CrossRef]
- Jaime-Pérez, J.C.; Hernández-Coronado, M.; Hernández-De Los Santos, J.A.; Marfil-Rivera, L.J.; Gómez-Almaguer, D. Monthly Variation in Diagnosis of Acute Lymphoblastic Leukemia and Survival Outcome in Children and Adults: 15-Year Trends at a Single Center. Hematol. Transfus. Cell Ther. 2022, 44, 314–320. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Yi, M.; Zhou, L.; Li, A.; Luo, S.; Wu, K. Global Burden and Trend of Acute Lymphoblastic Leukemia from 1990 to 2017. Aging 2020, 12, 22869–22891. [Google Scholar] [CrossRef] [PubMed]
- Paugh, S.W.; Bonten, E.J.; Savic, D.; Ramsey, L.B.; Thierfelder, W.E.; Gurung, P.; Malireddi, R.K.S.; Actis, M.; Mayasundari, A.; Min, J.; et al. NALP3 Inflammasome Upregulation and CASP1 Cleavage of the Glucocorticoid Receptor Cause Glucocorticoid Resistance in Leukemia Cells. Nat. Genet. 2015, 47, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Miñana, B.; Valcárcel, J.; Gabaldón, T.; Lehner, B. Synonymous Mutations Frequently Act as Driver Mutations in Human Cancers. Cell 2014, 156, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M. Drug Transport Mechanism of P-Glycoprotein Monitored by Single Molecule Fluorescence Resonance Energy Transfer. Multiphot. Microsc. Biomed. Sci. XI 2011, 7903, 790328. [Google Scholar] [CrossRef]
- Ankathil, R. ABCB1 Genetic Variants in Leukemias: Current Insights into Treatment Outcomes. Pharmgenom. Pers. Med. 2017, 10, 169–181. [Google Scholar] [CrossRef]
- Han, J.; Liu, L.; Meng, L.; Guo, H.; Zhang, J.; Han, Z.Q.; Hong, Z.Y. Effect of Polymorphisms of ABCB1 and MTHFR on Methotrexate-Related Toxicities in Adults with Hematological Malignancies. Front. Oncol. 2021, 11, 759805. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Solana-Altabella, A.; Poveda, J.L.; Montesinos, P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022, 14, 878. [Google Scholar] [CrossRef]
- Ferguson, P.J.; Cheng, Y.C. Phenotypic Instability of Drug Sensitivity in a Human Colon Carcinoma Cell Line. Cancer Res. 1989, 49, 1148–1153. [Google Scholar]
- Jamroziak, K.; Robak, T. Pharmacogenomics of MDR1/ABCB1 Gene: The Influence on Risk and Clinical Outcome of Haemotological Malignancies. Hematology 2004, 9, 91–105. [Google Scholar] [CrossRef]
- Pallis, M.; Russell, N. P-Glycoprotein Plays a Drug-Efflux-Independent Role in Augmenting Cell Survival in Acute Myeloblastic Leukemia and Is Associated with Modulation of a Sphingomyelin-Ceramide Apoptotic Pathway. Blood 2000, 95, 2897–2904. [Google Scholar] [CrossRef]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the Role of Efflux Pumps in Multidrug-Resistant Cancer. Nat. Rev. Cancer 2019, 18, 452–464. [Google Scholar] [CrossRef]
- Sharom, F.J. The P-Glycoprotein Multidrug Transporter. Essays Biochem. 2011, 50, 161–178. [Google Scholar] [CrossRef]
- Relling, M.V.; Klein, T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [Google Scholar] [CrossRef]
- Moriyama, T.; Nishii, R.; Perez-Andreu, V.; Yang, W.; Klussmann, F.A.; Zhao, X.; Lin, T.N.; Nersting, J. NUDT15 Polymorphisms Alter Thiopurine Metabolism and Hematopoietic Toxicity HHS Public Access Author Manuscript. Nat. Genet. 2016, 48, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.; Kane, M.; Pratt, V.M.; Scott, S.A.; Pirmohamed, M.; Esquivel, B.; Kattman, B.L.; Malheiro, A.J. Mercaptopurine Therapy and TPMT and NUDT15 Genotype. In Medical Genetics Summaries; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK100660/ (accessed on 13 October 2025).
- Daly, A.K. Pharmacogenetics: A General Review on Progress to Date. Br. Med. Bull. 2017, 124, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Driest, S.L. Van Pharmacogenomics. Lancet 2019, 394, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, S.; Deng, Y.; Yi, P.; Yu, J. Targeting the RNA M6A Modification for Cancer Immunotherapy. Mol. Cancer 2022, 21, 76. [Google Scholar] [CrossRef]
- Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, Writing and Erasing MRNA Methylation. Nat. Rev. Mol. Cell Biol. 2019, 20, 608–624. [Google Scholar] [CrossRef]
- Jonkhout, N.; Tran, J.; Smith, M.A.; Schonrock, N.; Mattick, J.S.; Novoa, E.M. The RNA Modification Landscape in Human Disease. Rna 2017, 23, 1754–1769. [Google Scholar] [CrossRef]
- Yoshida, K.; Sanada, M.; Shiraishi, Y.; Nowak, D.; Nagata, Y.; Yamamoto, R.; Sato, Y.; Sato-Otsubo, A.; Kon, A.; Nagasaki, M.; et al. Frequent Pathway Mutations of Splicing Machinery in Myelodysplasia. Nature 2011, 478, 64–69. [Google Scholar] [CrossRef]
- Jung, H.; Lee, D.; Lee, J.; Park, D.; Kim, Y.J.; Park, W.Y.; Hong, D.; Park, P.J.; Lee, E. Intron Retention Is a Widespread Mechanism of Tumor-Suppressor Inactivation. Nat. Genet. 2015, 47, 1242–1248. [Google Scholar] [CrossRef]
- Gotea, V.; Gartner, J.J.; Qutob, N.; Elnitski, L.; Samuels, Y. The Functional Relevance of Somatic Synonymous Mutations in Melanoma and Other Cancers. Pigment Cell Melanoma Res. 2015, 28, 673–684. [Google Scholar] [CrossRef]
- Cheok, M.H.; Lugthart, S.; Evans, W.E. Pharmacogenomics of Acute Leukemia. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 317–353. [Google Scholar] [CrossRef] [PubMed]
- Maamari, D.; El-Khoury, H.; Saifi, O.; Muwakkit, S.A.; Zgheib, N.K. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenom. Pers. Med. 2020, 13, 295–317. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, S.; Kotur, N.; Stankovic, B.; Zukic, B.; Gasic, V.; Dokmanovic, L. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblastic Leukemia: Paving the Way to Personalized Treatment. Genes 2019, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.J.; Doody, D.R.; Wilkes, J.J.; Becker, L.K.; Chennupati, S.; Morin, P.E.; Winestone, L.E.; Henk, H.J.; Lyman, G.H. Adverse Events among Chronic Myelogenous Leukemia Patients Treated with Tyrosine Kinase Inhibitors: A Real-World Analysis of Health Plan Enrollees. Leuk. Lymphoma 2021, 62, 1203–1210. [Google Scholar] [CrossRef]
- Escherich, C.; Chen, W.; Miyamoto, S.; Namikawa, Y.; Yang, W.; Teachey, D.T.; Li, Z.; Raetz, E.A.; Larsen, E.; Devidas, M.; et al. Identification of TCF3 Germline Variants in Pediatric B-Cell Acute Lymphoblastic Leukemia. Blood Adv. 2023, 7, 2177–2180. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Ingelman-Sundberg, M. Prediction of Drug Response and Adverse Drug Reactions: From Twin Studies to Next Generation Sequencing. Eur. J. Pharm. Sci. 2019, 130, 65–77. [Google Scholar] [CrossRef]


| Gene | dbSNP150 | Ref | Alt | Annotation | LOE * | Phenotype Categories | Variant Frequencies * (%) | Drugs | Efficacy Association | Toxicity Association | References |
|---|---|---|---|---|---|---|---|---|---|---|---|
| ABCB1 | rs2032582 | A | C | nsSNV | 3 | Efficacy, Toxicity | AFR: 97.96 | cytarabine, daunorubicin, dexrazoxane, idarubicin | Genotype CC is associated with decreased OS, increased likelihood of CR and increased likelihood of 3-year EFS. | Genotype CC is associated with increased likelihood of vomiting. | [14,15,16,17] |
| AMR: 57.20 | |||||||||||
| EAS: 46.83 | |||||||||||
| EUR: 57.26 | |||||||||||
| SAS: 35.79 | |||||||||||
| CD33 | rs35112940 | G | A | nsSNV | 3 | Efficacy | AFR: 2.50 | gemtuzumab ozogamicin | Genotype GG is associated with increased OS. | - | [18] |
| AMR: 10.95 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 21.17 | |||||||||||
| SAS: 3.58 | |||||||||||
| NOS3 | rs1799983 | T | G | nsSNV | 3 | Efficacy | AFR: 92.97 | daunorubicin | Genotype GG is associated with increased OS. | - | [19] |
| AMR: 78.53 | |||||||||||
| EAS: 87.00 | |||||||||||
| EUR: 65.61 | |||||||||||
| SAS: 83.23 | |||||||||||
| RRM2 | rs1130609 | T | G | nsSNV | 3 | Efficacy | AFR: 95.16 | cladribine, cytarabine | Allele T is associated with decreased response to treatment in children. | - | [20] |
| AMR: 54.76 | |||||||||||
| EAS: 33.93 | |||||||||||
| EUR: 73.26 | |||||||||||
| SAS: 55.93 | |||||||||||
| SLCO1B1 | rs4149056 | T | C | nsSNV | 3 | Toxicity | AFR: 1.36 | cytarabine, fludarabine, gemtuzumab ozogamicin, idarubicin | - | Allele C is associated with increased likelihood of toxic liver disease. | [21] |
| AMR: 13.40 | |||||||||||
| EAS: 12.30 | |||||||||||
| EUR: 16.10 | |||||||||||
| SAS: 4.29 | |||||||||||
| ABCB1 | rs1045642 | A | G | sSNV | 3 | Efficacy, Toxicity | AFR: 85.02 | cytarabine | Genotype GG is associated with increased likelihood of CR and 3-year EFS. Allele A is associated with increased OS. | Genotype GG is associated with increased likelihood of vomiting and elevated liver enzymes. | [15,16,17,22] |
| AMR: 57.20 | |||||||||||
| EAS: 60.22 | |||||||||||
| EUR: 48.21 | |||||||||||
| SAS: 42.54 | |||||||||||
| ABCB1 | rs1128503 | A | G | sSNV | 3 | Efficacy, Toxicity | AFR: 86.38 | cytarabine | Genotype GG is associated with decreased OS. Allele A is associated with increased OS. | Genotype GG is associated with increased likelihood of cardiotoxicity. | [14,17,22] |
| AMR: 59.65 | |||||||||||
| EAS: 37.30 | |||||||||||
| EUR: 58.45 | |||||||||||
| SAS: 41.31 | |||||||||||
| CYP2E1 | rs2515641 | C | T | sSNV | 3 | Toxicity | AFR: 66.11 | cytarabine, fludarabine, gemtuzumab, ozogamicin, idarubicin | - | Allele T is associated with decreased likelihood of toxic liver disease. | [21] |
| AMR: 17.87 | |||||||||||
| EAS: 20.54 | |||||||||||
| EUR: 12.82 | |||||||||||
| SAS: 16.77 | |||||||||||
| NT5C3A | rs3750117 | A | G | sSNV | 3 | Efficacy | AFR: 81.39 | cytarabine, idarubicin | Genotype GG is associated with increased risk of induction failure. | - | [23] |
| AMR: 71.76 | |||||||||||
| EAS: 46.13 | |||||||||||
| EUR: 70.87 | |||||||||||
| SAS: 60.12 | |||||||||||
| RRM2 | rs5030743 | C | G | sSNV | 3 | Efficacy | AFR: 9.91 | cladribine, cytarabine | Allele G is associated with decreased response to treatment in children. | - | [20] |
| AMR: 0.58 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 0.00 | |||||||||||
| SAS: 0.00 | |||||||||||
| SLC22A12 | rs11231825 | T | C | sSNV | 3 | Toxicity | AFR: 9.53 | cytarabine, fludarabine, gemtuzumab ozogamicin, idarubicin | - | Genotype TT is associated with increased likelihood of fever. | [21] |
| AMR: 43.23 | |||||||||||
| EAS: 22.12 | |||||||||||
| EUR: 70.58 | |||||||||||
| SAS: 58.69 | |||||||||||
| SLCO1B1 | rs2291075 | C | T | sSNV | 3 | Efficacy | AFR: 55.98 | cytarabine, daunorubicin, etoposide, mitoxantrone | Allele T is associated with increased EFS and OS. | - | [24] |
| AMR: 33.14 | |||||||||||
| EAS: 51.09 | |||||||||||
| EUR: 39.66 | |||||||||||
| SAS: 20.14 | |||||||||||
| SULT2B1 | rs2302948 | C | T | sSNV | 3 | Toxicity | AFR: 19.14 | cytarabine, fludarabine, gemtuzumab ozogamicin, idarubicin | - | Allele T is associated with decreased likelihood of fever. | [21] |
| AMR: 16.71 | |||||||||||
| EAS: 8.83 | |||||||||||
| EUR: 24.06 | |||||||||||
| SAS: 14.11 | |||||||||||
| CDA | rs532545 | C | T | uSNV | 3 | Efficacy, Toxicity | AFR: 5.90 | cytarabine | Genotype TT is associated with decreased 5-year survival and increased risk of death. | Genotype TT is associated with increased cytotoxicity. | [22,25,26] |
| AMR: 30.84 | |||||||||||
| EAS: 11.71 | |||||||||||
| EUR: 30.32 | |||||||||||
| SAS: 22.19 | |||||||||||
| CYP2E1 | rs2070673 | A | T | uSNV | 3 | Toxicity | AFR: 23.98 | cytarabine, fludarabine, gemtuzumab ozogamicin, idarubicin | - | Allele A is associated with decreased likelihood of toxic liver disease. | [21] |
| AMR: 66.71 | |||||||||||
| EAS: 54.07 | |||||||||||
| EUR: 81.61 | |||||||||||
| SAS: 61.86 | |||||||||||
| DCK | rs80143932 | C | G | uSNV | 3 | Efficacy | AFR: 1.59 | cytarabine, idarubicin | Allele G is associated with increased response to treatment. | - | [27] |
| AMR: 5.19 | |||||||||||
| EAS: 15.77 | |||||||||||
| EUR: 1.09 | |||||||||||
| SAS: 5.32 | |||||||||||
| DCK | rs2306744 | C | T | 5′UTR SNV | 3 | Efficacy | AFR: 1.66 | cytarabine, idarubicin | Allele T is associated with increased response to treatment. | - | [27] |
| AMR: 5.19 | |||||||||||
| EAS: 15.77 | |||||||||||
| EUR: 1.09 | |||||||||||
| SAS: 5.21 | |||||||||||
| STIM1 | rs1561876 | G | A | 3′UTR SNV | 3 | Efficacy | AFR: 29.50 | cladribine, cytarabine | Genotype GG is associated with decreased response to treatment in children. | - | [20] |
| AMR: 77.67 | |||||||||||
| EAS: 76.69 | |||||||||||
| EUR: 88.37 | |||||||||||
| SAS: 90.49 | |||||||||||
| RRM1 | rs1042919 | A | T | 3′UTR SNV | 3 | Efficacy | AFR: 79.65 | cladribine, cytarabine | Genotype AT is associated with decreased response to treatment in children. | - | [20] |
| AMR: 82.56 | |||||||||||
| EAS: 75.99 | |||||||||||
| EUR: 92.94 | |||||||||||
| SAS: 92.64 | |||||||||||
| GSTM5 | rs3754446 | A | C | igSNV | 3 | Toxicity | AFR: 1.74 | bulsufan | - | Allele C is associated with increased likelihood of GI toxicity in children. | [28,29] |
| AMR: 46.97 | |||||||||||
| EAS: 68.85 | |||||||||||
| EUR: 33.70 | |||||||||||
| SAS: 37.01 | |||||||||||
| RRM2B | rs1265138 | A | G | igSNV | 3 | Efficacy | AFR: 13.39 | cladribine, cytarabine | Genotype AA is associated with increased response to treatment in children. | - | [20] |
| AMR: 8.36 | |||||||||||
| EAS: 31.45 | |||||||||||
| EUR: 4.57 | |||||||||||
| SAS: 25.56 | |||||||||||
| NCF4-AS1 | rs1883112 | G | A | ncRNA_iSNV | 3 | Efficacy, Toxicity | AFR: 12.93 | idarubicin | Allele A is associated with increased response to idarubicin. | Allele A is associated with increased risk of cardiotoxicity. | [30] |
| AMR: 51.59 | |||||||||||
| EAS: 66.57 | |||||||||||
| EUR: 42.25 | |||||||||||
| SAS: 45.81 | |||||||||||
| RAC2 | rs13058338 | T | A | iSNV | 3 | Efficacy, Toxicity | AFR: 8.55 | idarubicin | Allele A is associated with increased response to idarubicin. | Allele A is associated with decreased risk of drug toxicity. | [30] |
| AMR: 24.78 | |||||||||||
| EAS: 6.94 | |||||||||||
| EUR: 26.44 | |||||||||||
| SAS: 18.40 | |||||||||||
| STIM1 | rs2898950 | A | C | iSNV | 3 | Efficacy | AFR: 47.96 | cladribine, cytarabine | Allele C is associated with increased response to treatment in children | - | [20] |
| AMR: 90.63 | |||||||||||
| EAS: 96.03 | |||||||||||
| EUR: 91.95 | |||||||||||
| SAS: 93.35 |
| Gene | dbSNP150 | Ref | Alt | Annotation | LOE * | Phenotype Categories | Variant Frequencies * (%) | Drugs | Efficacy Association | Toxicity Association | References |
|---|---|---|---|---|---|---|---|---|---|---|---|
| NUDT15 | rs116855232 | C | T | nsSNV | 1A | Toxicity | AFR: 0.08 | mercaptopurine | - | Allele T is associated with increased likelihood of leukopenia. Genotype CT is associated with increased likelihood of severe myelosuppression, anemia, neutropenia, and thrombocytopenia. | [31,32,33,34,35,36] |
| AMR: 4.47 | |||||||||||
| EAS: 9.52 | |||||||||||
| EUR: 0.20 | |||||||||||
| SAS: 6.95 | |||||||||||
| TPMT | rs1800460 | C | T | nsSNV | 1A | Toxicity | AFR: 0.30 | thioguanine | - | TPMT*3A is associated with increased severity of hepatic veno-occlusive disease, myelosuppression, elevated liver enzymes, drug toxicity, infection, stomatitis, neutropenia, and thrombocytopenia. TPMT3C is associated with increased likelihood of leukopenia, neutropenia, and severe pancytopenia. | [37,38,39,40,41] |
| AMR: 4.03 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 2.78 | |||||||||||
| SAS: 0.41 | |||||||||||
| TPMT | rs1142345 | T | C | nsSNV | 1A | Toxicity | AFR: 6.66 | mercaptopurine, tioguanine | |||
| AMR: 5.76 | |||||||||||
| EAS: 2.18 | |||||||||||
| EUR: 2.88 | |||||||||||
| SAS: 1.74 | |||||||||||
| TPMT | rs1800462 | C | G | eSNV | 1A | Toxicity | AFR: 0.08 | mercaptopurine, tioguanine, methotrexate | - | TPMT2 is associated with increased risk of drug toxicity, neutropenia and thrombocytopenia, and decreased likelihood of febrile neutropenia. | [40,42,43,44] |
| AMR: 0.58 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 0.60 | |||||||||||
| SAS: 0.00 | |||||||||||
| MTHFR | rs1801133 | G | A | nsSNV | 2A | Efficacy, Toxicity | AFR: 9.00 | methotrexate | Genotype GG is associated with increased EFS. Genotype AA is associated with increased likelihood of relapse. | Allele A is associated with increased likelihood of drug toxicity, treatment interruption, mucositis, thrombocytopenia, leukopenia, neutropenia, and myelosuppression. | [45,46,47,48,49,50,51,52] |
| AMR: 47.41 | |||||||||||
| EAS: 29.56 | |||||||||||
| EUR: 36.48 | |||||||||||
| SAS: 11.86 | |||||||||||
| ABCB1 | rs1045642 | A | G | sSNV | 3 | Toxicity | AFR: 85.02 | vincristine, methotrexate, etoposide | - | Genotype AA is associated with increased likelihood of leukopenia, neutropenia or mucositis, toxic liver disease, anemia, thrombocytopenia, and toxicity. Allele A is associated with decreased likelihood of neurotoxicity syndromes. | [45,47,53,54,55,56] |
| AMR: 57.20 | |||||||||||
| EAS: 60.22 | |||||||||||
| EUR: 48.21 | |||||||||||
| SAS: 42.54 | |||||||||||
| ABCB1 | rs1128503 | A | G | sSNV | 3 | Toxicity | AFR: 86.38 | methotrexate | - | Allele G is associated with increased likelihood of drug-induced liver injury and severe mucositis. | [47,57,58,59] |
| AMR: 59.65 | |||||||||||
| EAS: 37.30 | |||||||||||
| EUR: 58.45 | |||||||||||
| SAS: 41.31 | |||||||||||
| ABCB1 | rs2229109 | C | T | nsSNV | 3 | Efficacy | AFR: 0.30 | doxorubicin, methotrexate, prednisolone, vincristine | Genotype CT is associated with increased resistance. | - | [56] |
| AMR: 2.45 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 3.28 | |||||||||||
| SAS: 0.92 | |||||||||||
| FOLH1 | rs61886492 | G | A | nsSNV | 3 | Toxicity | AFR: 3.33 | mercaptopurine, methotrexate | - | Allele A is associated with increased risk of drug toxicity. | [60] |
| AMR: 2.74 | |||||||||||
| EAS: 0.10 | |||||||||||
| EUR: 5.07 | |||||||||||
| SAS: 3.07 | |||||||||||
| GGH | rs11545078 | G | A | nsSNV | 3 | Toxicity | AFR: 5.60 | methotrexate | - | Allele A is associated with increased likelihood of thrombocytopenia. | [61] |
| AMR: 4.03 | |||||||||||
| EAS: 8.73 | |||||||||||
| EUR: 9.24 | |||||||||||
| SAS: 14.83 | |||||||||||
| GGH | rs11545077 | C | T | nsSNV | 3 | Efficacy | AFR: 10.51 | methotrexate | Allele C is associated with increased response to treatment. | - | [62] |
| AMR: 20.46 | |||||||||||
| EAS: 21.83 | |||||||||||
| EUR: 25.05 | |||||||||||
| SAS: 25.77 | |||||||||||
| GSTP1 | rs1695 | A | G | nsSNV | 3 | Toxicity | AFR: 48.03 | mercaptopurine, methotrexate | - | Genotype GG is associated with increased likelihood of drug toxicity. | [63] |
| AMR: 47.55 | |||||||||||
| EAS: 17.86 | |||||||||||
| EUR: 33.10 | |||||||||||
| SAS: 29.45 | |||||||||||
| ITPA | rs1127354 | C | A | nsSNV | 3 | Efficacy, Toxicity | AFR: 4.46 | methotrexate | Genotype CC is associated with increased EFS. | Allele A is associated with increased risk of GI toxicity, neurotoxicity syndromes, neutropenia, and severe myelosuppression. Genotype AC is associated with increased severity of febrile neutropenia. Genotype CC is associated with increased risk of leukopenia. | [32,64,65,66,67,68] |
| AMR: 4.18 | |||||||||||
| EAS: 16.87 | |||||||||||
| EUR: 7.06 | |||||||||||
| SAS: 12.17 | |||||||||||
| MTHFD1 | rs2236225 | G | A | nsSNV | 3 | Efficacy, Toxicity | AFR: 15.81 | methotrexate | Allele A is associated with decreased likelihood of EFS. | Allele A is associated with decreased risk of toxic liver disease. | [69,70] |
| AMR: 54.47 | |||||||||||
| EAS: 19.84 | |||||||||||
| EUR: 42.94 | |||||||||||
| SAS: 50.41 | |||||||||||
| MTRR | rs1801394 | A | G | nsSNV | 3 | Toxicity | AFR: 24.58 | methotrexate | - | Allele G is associated with decreased likelihood of toxic liver disease and increased likelihood of mucositis. | [71,72] |
| AMR: 28.10 | |||||||||||
| EAS: 26.29 | |||||||||||
| EUR: 52.29 | |||||||||||
| SAS: 52.45 | |||||||||||
| PNPLA3 | rs738409 | C | G | nsSNV | 3 | Toxicity | AFR: 11.80 | asparaginase, cyclophosphamide, daunorubicin, prednisolone, vincristine | - | Allele G is associated with increased likelihood of elevated liver enzymes and toxic liver disease. | [73,74,75] |
| AMR: 48.41 | |||||||||||
| EAS: 35.02 | |||||||||||
| EUR: 22.56 | |||||||||||
| SAS: 24.64 | |||||||||||
| SHMT1 | rs1979277 | G | A | nsSNV | 3 | Toxicity | AFR: 33.13 | methotrexate | - | Genotype AG is associated with decreased likelihood of toxic liver disease. | [72] |
| AMR: 26.95 | |||||||||||
| EAS: 6.05 | |||||||||||
| EUR: 30.82 | |||||||||||
| SAS: 14.83 | |||||||||||
| SLCO1B1 | rs4149056 | T | C | nsSNV | 3 | Efficacy, Toxicity | AFR: 1.36 | methotrexate | Genotypes Allele C is associated with decreased likelihood of relapse. | Allele C is associated with increased likelihood of mucositis, thrombocytopenia, and neutropenia. Genotype TT is associated with increased severity of infection. | [59,71,73,76,77] |
| AMR: 13.40 | |||||||||||
| EAS: 12.30 | |||||||||||
| EUR: 16.10 | |||||||||||
| SAS: 4.29 | |||||||||||
| SOD2 | rs4880 | A | G | nsSNV | 3 | Toxicity | AFR: 42.36 | asparaginase | - | Genotype GG is associated with increased concentrations of bilirubin and risk of toxic liver disease. | [78,79] |
| AMR: 58.36 | |||||||||||
| EAS: 12.50 | |||||||||||
| EUR: 46.62 | |||||||||||
| SAS: 50.82 | |||||||||||
| CCND1 | rs9344 | G | A | eSNV | 3 | Efficacy, Toxicity | AFR: 18.76 | methotrexate | Genotype AA is associated with decreased EFS. | Genotype AA is associated with decreased severity of drug toxicity. | [80,81] |
| AMR: 34.87 | |||||||||||
| EAS: 57.14 | |||||||||||
| EUR: 49.70 | |||||||||||
| SAS: 51.64 | |||||||||||
| CPA2 | rs199695765 | C | T | eSNV | 3 | Toxicity | NR | asparaginase | - | Allele T is associated with increased risk of pancreatitis. | [82] |
| BMP7 | rs79085477 | C | T | igSNV | 3 | Toxicity | AFR: 5.82 | Protocol * | - | Allele T is associated with increased risk of osteonecrosis. | [83] |
| AMR: 0.72 | |||||||||||
| EAS: 6.85 | |||||||||||
| EUR: 0.80 | |||||||||||
| SAS: 3.48 | |||||||||||
| DOK5 | rs117532069 | G | A | igSNV | 3 | Toxicity | AFR: 0.23 | Protocol * | - | Allele A is associated with increased risk of osteonecrosis. | [83] |
| AMR: 1.15 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 1.79 | |||||||||||
| SAS: 0.00 | |||||||||||
| FPGS | rs1544105 | C | T | igSNV | 3 | Efficacy, Toxicity | AFR: 61.95 | methotrexate | Genotype TT is associated with increased response to treatment. | Genotype TT is associated with decreased likelihood of GI toxicity. | [29,84] |
| AMR: 48.13 | |||||||||||
| EAS: 69.05 | |||||||||||
| EUR: 39.66 | |||||||||||
| SAS: 40.08 | |||||||||||
| GRIA1 | rs4958381 | T | C | igSNV | 3 | Toxicity | AFR: 11.65 | asparaginase | - | Allele T is associated with increased risk of allergy. | [85] |
| AMR: 8.79 | |||||||||||
| EAS: 12.40 | |||||||||||
| EUR: 4.08 | |||||||||||
| SAS: 13.80 | |||||||||||
| LINC00251 | rs141059755 | A | G | igSNV | 3 | Toxicity | AFR: 0.00 | Protocol * | - | Allele G is associated with increased risk of osteonecrosis. | [83] |
| AMR: 0.72 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 0.10 | |||||||||||
| SAS: 0.00 | |||||||||||
| NUDT15 | rs80223967 | A | G | igSNV | 3 | Toxicity | AFR: 4.99 | Protocol ** | - | Allele G is associated with increased risk of osteonecrosis. | [83] |
| AMR: 3.46 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 6.16 | |||||||||||
| SAS: 1.64 | |||||||||||
| SLC22A1 | rs1891059 | G | A | igSNV | 3 | Toxicity | AFR: 2.57 | Protocol ** | - | Allele A is associated with increased risk of osteonecrosis. | [83] |
| AMR: 3.31 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 5.86 | |||||||||||
| SAS: 1.64 | |||||||||||
| ABCB1 | rs17021408 | T | C | igSNV | 3 | Toxicity | AFR: 6.13 | Protocol ** | - | Allele C is associated with increased risk of osteonecrosis. | [83] |
| AMR: 3.89 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 5.96 | |||||||||||
| SAS: 1.64 | |||||||||||
| IL6R | rs4888024 | A | G | igSNV | 3 | Efficacy | AFR: 30.56 | methotrexate | Allele G is associated with end-of-induction MRD. | - | [86] |
| AMR: 58.21 | |||||||||||
| EAS: 86.31 | |||||||||||
| EUR: 38.87 | |||||||||||
| SAS: 55.11 | |||||||||||
| ABCB1 | rs4728709 | G | A | iSNV | 3 | Toxicity | AFR: 40.70 | vincristine | - | Allele A is associated with decreased risk of neurotoxicity syndromes. | [87] |
| AMR: 13.98 | |||||||||||
| EAS: 13.00 | |||||||||||
| EUR: 6.06 | |||||||||||
| SAS: 6.03 | |||||||||||
| ABCC2 | rs3740065 | A | G | iSNV | 3 | Toxicity | AFR: 21.71 | methotrexate | Allele G is associated with increased risk of toxicity. | [88] | |
| AMR: 9.94 | |||||||||||
| EAS: 30.95 | |||||||||||
| EUR: 11.83 | |||||||||||
| SAS: 22.49 | |||||||||||
| ABCC4 | rs7317112 | A | G | iSNV | 3 | Toxicity | AFR: 67.02 | methotrexate | - | Genotype AA is associated with increased risk of mucositis. | [77,89,90] |
| AMR: 29.83 | |||||||||||
| EAS: 36.61 | |||||||||||
| EUR: 25.94 | |||||||||||
| SAS: 24.64 | |||||||||||
| ARID5B | rs4948496 | T | C | iSNV | 3 | Toxicity | AFR: 70.50 | methotrexate | - | Allele C is associated with increased risk of leukopenia. | [91] |
| AMR: 59.08 | |||||||||||
| EAS: 63.49 | |||||||||||
| EUR: 49.70 | |||||||||||
| SAS: 61.25 | |||||||||||
| CAT | rs10836235 | C | T | iSNV | 3 | Toxicity | AFR: 9.23 | anthracyclines and related substances | - | Genotype CC is associated with increased risk of cardiac damage. | [92] |
| AMR: 10.52 | |||||||||||
| EAS: 30.36 | |||||||||||
| EUR: 9.44 | |||||||||||
| SAS: 3.27 | |||||||||||
| MSH3 | rs442767 | G | T | iSNV | 3 | Toxicity | AFR: 3.18 | methotrexate | Genotype GG is associated with decreased EFS | Allele G is associated with increased risk of fatigue and leukopenia. | [93,94,95] |
| AMR: 39.91 | |||||||||||
| EAS: 58.53 | |||||||||||
| EUR: 31.91 | |||||||||||
| SAS: 2 2.80 | |||||||||||
| DHFR | rs70991108 | - | TGGCGCGTCCCGCCCAGGT | Fs-ins | 3 | Toxicity | NR | methotrexate | - | Allele del is associated with increased risk of drug-induced liver injury; Altered allele is associated with increased severity of leukopenia and thrombocytopenia. | [51,96,97] |
| MSH3 | rs408626 | T | C | iSNV | 3 | Efficacy, Toxicity | AFR: 56.20 | methotrexate | Genotype CC is associated with decreased EFS and OS. | Genotype TT is associated with increased risk of leukopenia. | [93,95] |
| AMR: 51.01 | |||||||||||
| EAS: 60.22 | |||||||||||
| EUR: 45.03 | |||||||||||
| SAS: 29.96 | |||||||||||
| DROSHA | rs639174 | C | T | iSNV | 3 | Toxicity | AFR: 56.88 | cyclophosphamide, cytarabine, daunorubicin, mercaptopurine, methotrexate, prednisone, vincristine | - | Allele T is associated with increased risk of drug toxicity. | [98] |
| AMR: 33.14 | |||||||||||
| EAS: 69.44 | |||||||||||
| EUR: 27.44 | |||||||||||
| SAS: 33.64 | |||||||||||
| ITPA | rs7270101 | A | C | iSNV | 3 | Toxicity | AFR: 7.11 | mercaptopurine, methotrexate | - | Allele C is associated with increased likelihood of thrombocytopenia, leukopenia, and neutropenia. | [37,68] |
| AMR: 8.21 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 12.92 | |||||||||||
| SAS: 1.53 | |||||||||||
| NFATC2 | rs6021191 | A | T | iSNV | 3 | Toxicity | AFR: 17.10 | asparaginase | - | Allele T is associated with increased risk of hypersensitivity. | [99] |
| AMR: 3.75 | |||||||||||
| EAS: 10.42 | |||||||||||
| EUR: 0.00 | |||||||||||
| SAS: 3.58 | |||||||||||
| PACSIN2 | rs2413739 | C | T | iSNV | 3 | Efficacy, Toxicity | AFR: 48.49 | mercaptopurine, methotrexate | Allele T is associated with increased risk of relapse. | Genotype TT is associated with increased risk of adverse events and GI toxicity. | [100,101,102,103] |
| AMR: 35.01 | |||||||||||
| EAS: 7.24 | |||||||||||
| EUR: 43.74 | |||||||||||
| SAS: 42.84 | |||||||||||
| PYGL | rs7142143 | T | C | iSNV | 3 | Efficacy | AFR: 11.20 | asparaginase, dexamethasone, methotrexate | Allele C is associated with increased risk of relapse. | - | [104] |
| AMR: 0.14 | |||||||||||
| EAS: 0.00 | |||||||||||
| EUR: 0.20 | |||||||||||
| SAS: 0.00 | |||||||||||
| SLC19A1 | rs2838958 | G | A | iSNV | 3 | Efficacy | AFR: 17.40 | methotrexate | Genotype AA is associated with decreased response to treatment. | - | [74] |
| AMR: 42.36 | |||||||||||
| EAS: 44.44 | |||||||||||
| EUR: 52.88 | |||||||||||
| SAS: 59.92 | |||||||||||
| SLCO1B1 | rs4149081 | G | A | iSNV | 3 | Toxicity | AFR: 18.84 | methotrexate | - | Allele G is associated with increased risk of GI toxicity. | [105,106] |
| AMR: 17.15 | |||||||||||
| EAS: 45.34 | |||||||||||
| EUR: 18.99 | |||||||||||
| SAS: 8.18 | |||||||||||
| SLCO1B1 | rs11045879 | T | C | iSNV | 3 | Toxicity | AFR: 18.91 | mercaptopurine; methotrexate | - | Allele T is associated with increased risk of mucositis and GI toxicity. | [73,101,105,106] |
| AMR: 17.29 | |||||||||||
| EAS: 45.34 | |||||||||||
| EUR: 18.99 | |||||||||||
| SAS: 8.18 | |||||||||||
| TSG1 | rs9345389 | A | G | ncRNA_iSNV | 3 | Efficacy, Toxicity | AFR: 12.78 | methotrexate | Allele G is associated with end-of-induction MRD in children. | Allele G is associated with increased risk of nephrotoxicity. | [86,90] |
| AMR: 15.56 | |||||||||||
| EAS: 22.22 | |||||||||||
| EUR: 0.70 | |||||||||||
| SAS: 6.54 | |||||||||||
| ABCC3 | rs9895420 | T | A | uSNV | 3 | Efficacy, Toxicity | AFR: 21.03 | methotrexate | Allele A is associated with increased risk of relapse in the CNS and decreased EFS. | Allele A is associated with decreased likelihood of thrombocytopenia. | [107] |
| AMR: 6.20 | |||||||||||
| EAS: 8.43 | |||||||||||
| EUR: 12.23 | |||||||||||
| SAS: 11.25 | |||||||||||
| GGH | rs3758149 | G | A | uSNV | 3 | Efficacy, Toxicity | AFR: 16.7 | methotrexate | Allele A is associated with increased response to treatment. | Genotype AA is associated with increased likelihood of anemia. | [62,108] |
| AMR: 22.77 | |||||||||||
| EAS: 21.92 | |||||||||||
| EUR: 27.83 | |||||||||||
| SAS: 28.63 | |||||||||||
| ABCC2 | rs717620 | C | T | 5′UTR SNV | 3 | Toxicity | AFR: 3.10 | methotrexate | - | Allele T is associated with increased likelihood of drug toxicity and leukopenia. | [77,91,109] |
| AMR: 16.57 | |||||||||||
| EAS: 21.73 | |||||||||||
| EUR: 20.68 | |||||||||||
| SAS: 9.51 | |||||||||||
| DHFR | rs1105525 | C | T | 5′UTR SNV | 3 | Efficacy | AFR: 3.10 | methotrexate | Allele T is associated with decreased EFS. | - | [110] |
| AMR: 11.53 | |||||||||||
| EAS: 7.44 | |||||||||||
| EUR: 16.30 | |||||||||||
| SAS: 26.18 | |||||||||||
| GGH | rs11545076 | A | C | 5′UTR SNV | 3 | Efficacy | AFR: 16.72 | methotrexate | Allele C is associated with increased response to treatment. | - | [62] |
| AMR: 22.77 | |||||||||||
| EAS: 21.92 | |||||||||||
| EUR: 27.93 | |||||||||||
| SAS: 28.63 | |||||||||||
| TYMS | rs11280056 | TTAAAG | - | ifdel | 3 | Toxicity | NR | methotrexate | - | Reference allele is associated with increased likelihood of GI toxicity and neutropenia. | [97,111] |
| NUDT15 | rs746071566 | GGAGTC | - | ifdel | 3 | Toxicity | NR | mercaptopurine | - | NUDT151/4 (assigned as intermediate metabolizer phenotype) is associated with increased risk of leukopenia and neutropenia. | [44,112] |
| ABCB1 | rs1045642 | A | G | sSNV | 4 | Efficacy | AFR: 85.02 | vincristine, methotrexate, etoposide | Allele A is associated with decreased response to treatment. | - | [45,47,53,54,55,113,114] |
| AMR: 57.20 | |||||||||||
| EAS: 60.22 | |||||||||||
| EUR: 48.21 | |||||||||||
| SAS: 42.54 | |||||||||||
| MTHFR | rs1801131 | T | G | nsSNV | 4 | Efficacy, Toxicity | AFR: 15.13 | methotrexate | Genotype TT is associated with increased EFS and with decreased response to treatment. | Allele G is associated with increased severity of neutropenia and risk of mucositis, decreased risk of skin disorder, and myelosuppression. | [51,52,72,97,115,116] |
| AMR: 15.13 | |||||||||||
| EAS: 21.92 | |||||||||||
| EUR: 31.31 | |||||||||||
| SAS: 41.72 | |||||||||||
| SLC19A1 | rs1051266 | T | C | nsSNV | 4 | Efficacy, Toxicity | AFR: 32.68 | methotrexate | Genotype TT is associated with increased likelihood of staying in remission. | Genotype CC is associated with increased severity of mucositis; Genotype TT is associated with increased likelihood of toxic liver disease, mucositis, neutropenia, pancreatitis, vomiting and myelosuppression. | [35,51,55,56,117,118] |
| AMR: 58.21 | |||||||||||
| EAS: 47.42 | |||||||||||
| EUR: 54.87 | |||||||||||
| SAS: 59.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, F.M.C.d.P.; Farias, I.M.; Nogueira, B.M.D.; Machado, C.B.; Barreto, I.V.; Machado, A.K.d.C.; de Morais, G.P.; da Cunha, L.S.; de Sousa Oliveira, D.; Thé, A.P.; et al. Pharmacogenomics Applied to Acute Leukemias: Identifying Clinically Relevant Genetic Variants. Biomedicines 2025, 13, 2581. https://doi.org/10.3390/biomedicines13112581
Pessoa FMCdP, Farias IM, Nogueira BMD, Machado CB, Barreto IV, Machado AKdC, de Morais GP, da Cunha LS, de Sousa Oliveira D, Thé AP, et al. Pharmacogenomics Applied to Acute Leukemias: Identifying Clinically Relevant Genetic Variants. Biomedicines. 2025; 13(11):2581. https://doi.org/10.3390/biomedicines13112581
Chicago/Turabian StylePessoa, Flávia Melo Cunha de Pinho, Isabelle Magalhães Farias, Beatriz Maria Dias Nogueira, Caio Bezerra Machado, Igor Valentim Barreto, Anna Karolyna da Costa Machado, Guilherme Passos de Morais, Leidivan Sousa da Cunha, Deivide de Sousa Oliveira, André Pontes Thé, and et al. 2025. "Pharmacogenomics Applied to Acute Leukemias: Identifying Clinically Relevant Genetic Variants" Biomedicines 13, no. 11: 2581. https://doi.org/10.3390/biomedicines13112581
APA StylePessoa, F. M. C. d. P., Farias, I. M., Nogueira, B. M. D., Machado, C. B., Barreto, I. V., Machado, A. K. d. C., de Morais, G. P., da Cunha, L. S., de Sousa Oliveira, D., Thé, A. P., Ribeiro, R. M., Thé, P. M. P., Moraes Filho, M. O. d., Moraes, M. E. A. d., & Moreira-Nunes, C. A. (2025). Pharmacogenomics Applied to Acute Leukemias: Identifying Clinically Relevant Genetic Variants. Biomedicines, 13(11), 2581. https://doi.org/10.3390/biomedicines13112581

