Impact of Early Initiation of Renal Replacement Therapy on Renal Recovery and Mortality in Critically Ill Patients with Acute Kidney Injury: A Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Study Population and Inclusion and Exclusion Criteria
2.3. Data Collection and Surveys
2.4. Renal Replacement Therapy Membranes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Mortality and Renal Function Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AKI | acute kidney injury |
| AKI-D | dialysis-requiring acute kidney injury |
| CKD | chronic kidney disease |
| ESKD | end-stage kidney disease |
| ICU | intensive care unit |
| IRRT | intermittent renal replacement therapy |
| CRRT | continuous renal replacement therapy |
| KDIGO | Kidney Disease: Improving Global Outcomes |
| RRT | renal replacement therapy |
| SAPS 3 | Simplified Acute Physiology Score 3 |
| SOFA | Sequential Organ Failure Assessment |
| APACHE II | Acute Physiology and Chronic Health Evaluation II |
| ROC | receiver operating characteristic |
| SPSS | Statistical Package for the Social Sciences |
| STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
| COVID-19 | Coronavirus disease 2019 |
References
- Sanchidrián, S.G.; Lorenzo, J.L.D.; Bermejo, M.J.M.; Gómez, P.J.L.; Arroyo, J.R.G.M.; Aresu, S.; Tonini, E.; Armignacco, P.; Ronco, C. Survival and renal recovery after acute kidney injury requiring dialysis outside of intensive care units. Int. Urol. Nephrol. 2020, 52, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.J.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensiv. Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Shiao, C.-C.; Chang, Y.-H.; Yang, Y.-F.; Lin, E.-T.; Pan, H.-C.; Chang, C.-H.; Huang, C.-T.; Kao, M.-T.; Chuang, T.-F.; Chen, Y.-C.; et al. Association Between Regional Economic Status and Renal Recovery of Dialysis-Requiring Acute Kidney Injury Among Critically Ill Patients. Sci. Rep. 2020, 10, 14573. Available online: https://www.nature.com/articles/s41598-020-71540-7 (accessed on 1 April 2025). [CrossRef]
- Wang, Y.; Gallagher, M.; Li, Q.; Lo, S.; Cass, A.; Finfer, S.; Myburgh, J.; Bouman, C.; Faulhaber-Walter, R.; A Kellum, J.; et al. Renal replacement therapy intensity for acute kidney injury and recovery to dialysis independence: A systematic review and individual patient data meta-analysis. Nephrol. Dial. Transplant. 2017, 33, 1017–1024. [Google Scholar] [CrossRef]
- Kovacs, B.; Sullivan, K.J.; Hiremath, S.; Patel, R.V. Effect of sustained low efficient dialysis versus continuous renal replacement therapy on renal recovery after acute kidney injury in the intensive care unit: A systematic review and meta-analysis. Nephrology 2017, 22, 343–353. [Google Scholar] [CrossRef]
- Vijayan, A. Tackling AKI: Prevention, timing of dialysis and follow-up. Nat. Rev. Nephrol. 2021, 17, 87–88. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Darmon, M.; Ostermann, M.; Finkelstein, F.O.; Wald, R.; Tolwani, A.J.; Goldstein, S.L.; Gattas, D.J.; Uchino, S.; Hoste, E.A.; et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensiv. Care Med. 2017, 43, 841–854. [Google Scholar] [CrossRef]
- Barbar, S.D.; Clere-Jehl, R.; Bourredjem, A.; Hernu, R.; Montini, F.; Bruyère, R.; Lebert, C.; Bohé, J.; Badie, J.; Eraldi, J.-P.; et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. al. N. Engl. J. Med. 2018, 379, 1431–1442. [Google Scholar] [CrossRef]
- Fayad, A.I.I.; Buamscha, D.G.; Ciapponi, A. Timing of renal replacement therapy initiation for acute kidney injury. Cochrane Database Syst. Rev. 2018, 12, CD010612. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA 2016, 315, 2190–2199. [Google Scholar] [CrossRef]
- Gaudry, S.; Hajage, D.; Schortgen, F.; Martin-Lefevre, L.; Pons, B.; Boulet, E.; Boyer, A.; Chevrel, G.; Lerolle, N.; Carpentier, D.; et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N. Engl. J. Med. 2016, 375, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Gaudry, S.; Hajage, D.; Martin-Lefevre, L.; Lebbah, S.; Louis, G.; Moschietto, S.; Titeca-Beauport, D.; La Combe, B.; Pons, B.; de Prost, N.; et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): A multicentre, open-label, randomised, controlled trial. Lancet 2021, 397, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- The STARRT-AKI Investigators. Timing of initiation of renal-replacement therapy in acute kidney injury. N. Engl. J. Med. 2020, 383, 240–251. [Google Scholar] [CrossRef]
- Pan, H.-C.; Chen, Y.-Y.; Tsai, I.-J.; Shiao, C.-C.; Huang, T.-M.; Chan, C.-K.; Liao, H.-W.; Lai, T.-S.; Chueh, Y.; Wu, V.-C.; et al. Accelerated versus standard initiation of renal replacement therapy for critically ill patients with acute kidney injury: A systematic review and meta-analysis of RCT studies. Crit. Care. 2021, 25, 5. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Jia, L.; Li, R.; Zhang, Y.; Ji, H.; Faramand, A. Early versus late initiation of renal replacement therapy for acute kidney injury in critically ill patients: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0223493. [Google Scholar] [CrossRef]
- Annigeri, R.A.; Ostermann, M.; Tolwani, A.; Vazquez-Rangel, A.; Ponce, D.; Bagga, A.; Chakravarthi, R.; Mehta, R.L. Renal Support for Acute Kidney Injury in the Developing World. Kidney Int. Rep. 2017, 2, 559–578. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2468024917301018 (accessed on 1 March 2025). [CrossRef]
- Gaião, S.M.; Gomes, A.A.; Paiva, J.A.O.D.C. Prognostic Factors for Mortality and Renal Recovery in Critically Ill Patients with Acute Kidney Injury and Renal Replacement Therapy. Rev. Bras. Ter. Intensiva. 2016, 28, 70–77. Available online: https://criticalcarescience.org/article/prognostics-factors-for-mortality-and-renal-recovery-in-critically-ill-patients-with-acute-kidney-injury-and-renal-replacement-therapy/ (accessed on 1 April 2025). [CrossRef]
- Wald, R.; McArthur, E.; Adhikari, N.K.; Bagshaw, S.M.; Burns, K.E.; Garg, A.X.; Harel, Z.; Kitchlu, A.; Mazer, C.D.; Nash, D.M.; et al. Changing Incidence and Outcomes Following Dialysis-Requiring Acute Kidney Injury Among Critically Ill Adults: A Population-Based Cohort Study. Am. J. Kidney Dis. 2015, 65, 870–877. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0272638614013742 (accessed on 1 April 2025). [CrossRef]
- Araújo, L.K.R.P.D. Prevenção e Evolução de Lesão Renal Aguda. In Nefrologia no Dia a Dia, 1st ed.; Santos, D.R., Ed.; Rubio: Rio de Janeiro, Brazil, 2022; pp. 219–224. [Google Scholar]
- Reis, T.; Colares, V.S.; Rocha, E.; Younes-Ibrahim, M.; Lima, E.Q.D.; Andrade, L.D.C.; Ponce, D.; Suassuna, J.H.R.; Yu, L. Acute Kidney Injury and Renal Replacement Therapy: Terminology Standardization. Braz. J. Nephrol. 2022, 44, 434–442. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-28002022000300434&tlng=en (accessed on 1 April 2025). [CrossRef]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute Kidney Injury. Nat. Rev. Dis. Primers. 2021, 7, 52. Available online: https://www.nature.com/articles/s41572-021-00284-z (accessed on 1 April 2025). [CrossRef]
- Verma, S.; Kellum, J.A. Defining Acute Kidney Injury. Crit. Care Clin. 2021, 37, 251–266. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0749070420301068 (accessed on 1 April 2025). [CrossRef] [PubMed]
- Riella, M.C. Princípios de Nefrologia e Distúrbios Hidroeletrolíticos, 6th ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2018; p. 1136. [Google Scholar]
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138. Available online: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf (accessed on 1 April 2025).
- Forni, L.G.; Darmon, M.; Ostermann, M.; Straaten, H.M.O.-V.; Pettilä, V.; Prowle, J.R.; Schetz, M.; Joannidis, M. Recuperação renal após lesão renal aguda. Intensiv. Care Med. 2017, 43, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Lopes, D.; Schran, L.D.S.; De Oliveira, J.L.C.; Oliveira, R.B.S.R.; Fernandes, L.M. Fatores de Risco/Causais Para Insuficiência Renal Aguda em Adultos Internados em Terapia Intensiva. Enferm. Bras. 2018, 17, 336–345. Available online: https://convergenceseditorial.com.br/index.php/enfermagembrasil/article/view/1232 (accessed on 1 April 2025). [CrossRef]
- Fayad, A.I.; Buamscha, D.G.; Ciapponi, A. Momento do Início da Terapia de Substituição Renal Para Lesão Renal Aguda. In Cochrane Kidney and Transplant Group, Organizador. Cochrane Database Syst. Rev. 2022, 2022, CD010612. [Google Scholar]
- Gettings, L.G.; Reynolds, H.N.; Scalea, T. Outcome in post-traumatic acute renal failure when continuous renal replacement therapy is applied early vs. late. Intensiv. Care Med. 1999, 25, 805–813. [Google Scholar] [CrossRef]
- Demirkilic, U.; Kuralay, E.; Yenicesu, M.; Caglar, K.; Oz, B.S.; Cingoz, F.; Gunay, C.; Yildirim, V.; Ceylan, S.; Arslan, M.; et al. Timing of replacement therapy for acute renal failure after cardiac surgery. J. Card. Surg. 2004, 19, 17–20. [Google Scholar] [CrossRef]
- Elahi, M. Early hemofiltration improves survival in post-cardiotomy patients with acute renal failure. Eur. J. Cardiothorac. Surg. 2004, 26, 1027–1031. [Google Scholar] [CrossRef]
- Jiang, H.L. Influence of Continuous Veno-Venous Hemofiltration on the Course of Acute Pancreatitis. World J. Gastroenterol. 2005, 11, 4815. Available online: http://www.wjgnet.com/1007-9327/full/v11/i31/4815.htm (accessed on 1 March 2025). [CrossRef]
- Valdenebro, M.; Martín-Rodríguez, L.; Tarragón, B.; Sánchez-Briales, P.; Portolés, J. Una Visión Nefrológica del Tratamiento Sustitutivo Renal en el Paciente Crítico con Fracaso Renal Agudo: Horizonte 2020. Nefrología 2021, 41, 102–114. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0211699520301703 (accessed on 1 April 2025). [CrossRef]
- Mehta, R.L. Renal Recovery After Acute Kidney Injury and Long-Term Outcomes: Is Time of the Essence? JAMA Netw. Open. 2020, 3, e202676. Available online: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2764344 (accessed on 1 April 2025). [CrossRef] [PubMed]
- Dos Santos, R.P.; Carvalho, A.R.D.S.; Peres, L.A.B. Incidence and Risk Factors of Acute Kidney Injury in Critically Ill Patients from a Single Centre in Brazil: A Retrospective Cohort Analysis. Sci. Rep. 2019, 9, 18141. Available online: https://www.nature.com/articles/s41598-019-54674-1 (accessed on 1 March 2025). [CrossRef] [PubMed]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Agência Nacional de Saúde Suplementar. Média de Permanência UTI Adulto [Internet]. Ministério da Saúde. 2013. Available online: https://www.gov.br/ans/pt-br/arquivos/assuntos/prestadores/qualiss-programa-de-qualificacao-dos-prestadores-de-servicos-de-saude-1/versao-anterior-do-qualiss/e-efi-07.pdf (accessed on 1 April 2025).
- Siew, E.D.; Abdel-Kader, K.; Perkins, A.M.; Greevy, R.A.; Parr, S.K.; Horner, J.; Vincz, A.J.; Denton, J.; Wilson, O.D.; Hung, A.M.; et al. Timing of Recovery from Moderate to Severe AKI and the Risk for Future Loss of Kidney Function. Am. J. Kidney Dis. 2020, 75, 204–213. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0272638619308546 (accessed on 1 April 2025). [CrossRef]
- Ostermann, M.; Joannidis, M.; Pani, A.; Floris, M.; De Rosa, S.; Kellum, J.A.; Ronco, C.; 17th Acute Disease Quality Initiative (ADQI) Consensus Group. Patient selection and timing of continuous renal replacement therapy. Blood Purif. 2016, 42, 224–237. [Google Scholar] [CrossRef]
- Reis, T. Acute Kidney Injury. Rev. Assoc. Med. Bras. 2020, 66 (Suppl. S1), s68–s74. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-42302020001300068&tlng=en (accessed on 1 March 2025). [CrossRef]
- Moreira, F.T.; Palomba, H.; Chaves, R.C.D.F.; Bouman, C.; Schultz, M.J.; Serpa Neto, A. Early Versus Delayed Initiation of Renal Replacement Therapy for Acute Kidney Injury: An Updated Systematic Review, Meta-Analysis, Meta-Regression and Trial Sequential Analysis of Randomized Controlled Trials. Rev. Bras. Ter. Intensiva. 2018, 30, 376–384. Available online: https://criticalcarescience.org/article/early-versus-delayed-initiation-of-renal-replacement-therapy-for-acute-kidney-injury-an-updated-systematic-review-meta-analysis-meta-regression-and-trial-sequential-analysis-of-randomized-controlle/ (accessed on 1 April 2025). [CrossRef]
- Obando, E.; López, E.; Montoya, D.; Sarmiento, J.F. Continuous Renal Replacement Therapy: Understanding the Foundations Applied to Pediatric Patients. APIC 2018, 22 (Suppl. S1), S39–S45. Available online: http://www.apicareonline.com/index.php/APIC/article/view/1115 (accessed on 1 March 2025).
- Xia, Z.J.; He, L.Y.; Pan, S.Y.; Cheng, R.J.; Zhang, Q.P.; Liu, Y. Disease severity determines timing of initiating continuous renal replacement therapies: A systematic review and meta-analysis. Front. Med. 2021, 8, 580144. [Google Scholar] [CrossRef]
- Hou, H.; Li, L. Effects of Continuous Renal Replacement Therapy on APACHE II Score, Creatinine, and Urea Nitrogen Levels in Patients with Acute Kidney Injury. Pak. J. Med. Sci. 2023, 39, 50–54. Available online: https://pjms.org.pk/index.php/pjms/article/view/6591 (accessed on 1 April 2025). [CrossRef]
- Schoenfelder, T.; Chen, X.; Bleß, H.H. Effects of Continuous and Intermittent Renal Replacement Therapies Among Adult Patients with Acute Kidney Injury. GMS Health Technol. Assess. 2017, 13, Doc01. Available online: http://www.egms.de/en/journals/hta/2017-13/hta000127.shtml (accessed on 1 April 2025).
- Oliveira, M.A.d.S.; dos Santos, T.O.C.; Monte, J.C.M.; Batista, M.C.; Pereira, V.G., Jr.; dos Santos, B.F.C.; Santos, O.F.P.; Durãojr, M.d.S. The Impact of Continuous Renal Replacement Therapy on Renal Outcomes in Dialysis-Requiring Acute Kidney Injury may Be Related to the Baseline Kidney Function. BMC Nephrol. 2017, 18, 150. Available online: https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-017-0564-z (accessed on 1 March 2025).
- Premuzic, V.; Basic-Jukic, N.; Jelakovic, B.; Kes, P. Differences in CVVH vs. CVVHDF in the management of sepsis-induced acute kidney injury in critically ill patients. J. Artif. Organs. 2017, 20, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Neyra, J.A.; Echeverri, J.; Bronson-Lowe, D.; Plopper, C.; Harenski, K.; Murugan, R. Association of vasopressor use during renal replacement therapy and mortality. J. Crit. Care. 2025, 77, 155103. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Nadim, M.K.; Pickkers, P.; Gomez, H.; Bell, S.; Joannidis, M.; Kashani, K.; Koyner, J.L.; Pannu, N.; Meersch, M.; et al. Sepsis-associated acute kidney injury: Consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 2023, 19, 401–417. [Google Scholar] [CrossRef]
- Salahuddin, N.; Sammani, M.; Hamdan, A.; Joseph, M.; Al-Nemary, Y.; Alquaiz, R.; Dahli, R.; Maghrabi, K. Fluid overload is an independent risk factor for acute kidney injury in critically ill patients: Results of a cohort study. BMC Nephrol. 2017, 18, 45. [Google Scholar] [CrossRef]
- Scurt, F.G.; Bose, K.; Mertens, P.R.; Chatzikyrkou, C.; Herzog, C. Lesão renal aguda associada à cirurgia cardíaca. Kidney360 2024, 5, 909–926. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Mehta, R.L.; Asfar, P.; Boisramé-Helms, J.; Darmon, M.; Diehl, J.-L.; Duranteau, J.; Hoste, E.A.J.; Joannes-Boyau, O.; et al. Lesão renal aguda na UTI: Da lesão à recuperação: Relatórios da 5ª Conferência Internacional de Paris. Ann. Intensiv. Care. 2017, 7, 49. [Google Scholar] [CrossRef]



| Variables | All Patients (n = 119) | Early Strategy < 24 h (n = 39) | Delayed Strategy >24 h (n = 80) | p-Value |
|---|---|---|---|---|
| Demographics characteristics | ||||
| Age (years) | 71 [54–80] | 72 [59–80] | 68 [53–80] | 0.766 |
| Male, n (%) | 70 (58.8) | 23 (59.0) | 47 (58.8) | 0.571 |
| Patients + 60, n (%) | 85 (71.4) | 28 (71.8) | 57 (71.3) | 0.585 |
| BMI (kg/m2) | 27.6 ± 6.9 | 27.5 ± 6.2 | 27.8 ± 7.4 | 0.414 |
| Current smokers, n (%) | 17 (14.3) | 8 (20.5) | 9 (11.3) | 0.141 |
| Ethnicity, n (%) | ||||
| White | 64 (53.8) | 17 (43.6) | 47 (58.8) | |
| Black | 8 (6.7) | 4 (10.3) | 4 (5.0) | 0.231 |
| Others | 47 (39.5) | 18 (46.2) | 29 (36.3) | |
| Comorbidities, n (%) | ||||
| Diabetes | 44 (37.0) | 11 (28.1) | 33 (41.3) | 0.118 |
| Hypertension | 56 (47.1) | 20 (51.3) | 36 (45.0) | 0.327 |
| Heart failure | 59 (49.6) | 22 (56.4) | 37 (46.3) | 0.199 |
| COPD | 12 (10.1) | 4 (10.3) | 8 (10.0) | 0.599 |
| Cancer | 19 (16.0) | 3 (7.7) | 16 (20.0) | 0.069 |
| COVID-19 | 8 (6.7) | 5 (12.8) | 3 (3.8) | 0.075 |
| CKD 1–3 | 48 (40.3) | 14 (35.9) | 34 (42.5) | 0.313 |
| Admission category, n (%) | ||||
| Medical | 86 (72.3) | 26 (66.7) | 60 (75.0) | 0.230 |
| Surgery | 33 (27.7) | 13 (33.3) | 20 (25.0) | |
| Categories of ICU admission, n (%) | ||||
| Sepsis | 25 (21.0) | 10 (25.6) | 15 (18.7) | |
| Surgery | 8 (6.7) | 0 | 8 (10.0) | |
| Cardiovascular | 26 (21.8) | 8 (20.5) | 18 (22.5) | |
| GI | 11 (9.2) | 5 (12.8) | 6 (7.5) | |
| Pneumology | 14 (11.8) | 5 (12.8) | 9 (11.3) | |
| Neurological | 6 (5.0) | 0 | 6 (7.5) | |
| Oncology | 12 (10.1) | 2 (5.1) | 10 (12.5) | |
| Others | 17 (14.4) | 9 (23.2) | 8 (10.0) | |
| Cause of AKI, n (%) | ||||
| Sepsis | 60 (50.4) | 23 (59.0) | 37 (46.3) | |
| Hypovolemia | 35 (29.4) | 11 (28.1) | 24 (30.0) | |
| Obstructive nephropathy | 6 (5.0) | 1 (2.6) | 5 (6.2) | |
| Nephrotoxicity | 16 (13.4) | 3 (7.7) | 13 (16.3) | |
| Glomerulonephritis including NS | 2 (1.8) | 1 (2.6) | 1 (1.2) | |
| Clinical data | ||||
| Serum urea (mmol/L) | 79.6 [44.8–125.5] | 78.0 [39.6–147.0] | 79.6 [48.4–125.0] | 0.855 |
| Serum Cr basal (mg/dL) | 1.1 [0.9–1.4] | 1.2 [0.9–1.3] | 1.1 [0.9–1.4] | 0.668 |
| Clearance of Cr (mL/min) | ||||
| Basal | 70.0 ± 24.9 | 67.7 ± 23.8 | 71.5 ± 25.8 | 0.878 |
| Admission | 29 [20–58] | 30 [19–52] | 29 [20–61] | 0.861 |
| Discharge/death in the ICU | 33 [22–74] | 33 [22–69] | 35 [20–87] | 0.388 |
| Serum potassium (mmol/L) | 4.3 ± 1.0 | 4.4 ± 1.0 | 4.3 ± 1.0 | 0.933 |
| Serum sodium (mmol/L) | 138 [134–141] | 139 [135–143] | 137 [134–141] | 0.095 |
| Hematocrit (mL/dL) | 33.0 ± 8.5 | 33.2 ± 8.0 | 32.9 ± 8.8 | 0.444 |
| Renal replacement therapy | ||||
| IRRT, n (%) | 61 (51.3) | 16 (41.0) | 45 (56.2) | |
| CRRT, n (%) | 15 (12.6) | 9 (23.1) | 6 (7.5) | 0.044 |
| IRRT & CRRT, n (%) | 43 (36.1) | 14 (35.9) | 29 (36.3) | |
| Timing of initiation (days) | 1 [0–5] | 0 [0] | 3 [2–8] | <0.001 |
| Outcomes in the ICU, n (%) | ||||
| All-cause mortality, n (%) | ||||
| 20 days | 28 (23.5) | 11 (28.2) | 17 (21.3) | 0.268 |
| 30 days | 38 (31.9) | 13 (33.3) | 25 (31.3) | 0.489 |
| 76 days | 61 (51.3) | 20 (51.3) | 41 (51.2) | 0.576 |
| Recovery of renal function, n (%) | 62 (52.1) | 23 (59.0) | 39 (48.8) | 0.197 |
| At 3 days | 42 (35.3) | 20 (51.3) | 22 (27.5) | 0.010 |
| At 10 days | 18 (15.1) | 3 (7.7) | 15 (18.9) | 0.092 |
| At 30 days | 2 (1.7) | 0 | 2 (2.5) | 0.450 |
| Variables | All Patients (n = 119) | Early Strategy < 24 h (n = 39) | Delayed Strategy >24 h (n = 80) | p-Value |
|---|---|---|---|---|
| Length of ICU stay (days) | 24 [14–44] | 17 [13–40] | 28 [16 –50] | 0.838 |
| SAPS 3 at ICU admission (score) | 60.61 ± 18.75 | 60.0 ± 20.5 | 61.0 ± 17.8 | 0.952 |
| SAPS 3 mortality prediction (%) | 39.8 [9.9–61.3] | 28.7 [9.2–64.9] | 39.8 [13.3–60.4] | 0.919 |
| SOFA at first day (score) | 7 [3–12] | 10 [3–13] | 7 [3–11] | 0.016 |
| SOFA mortality prediction, n (%) | ||||
| <10% | 69 (58.0) | 16 (41.0) | 53 (66.2) | |
| 10–20% | 15 (12.6) | 5 (12.8) | 10 (12.5) | |
| 20–50% | 15 (12.6) | 7 (18.0) | 8 (10.0) | |
| 50–70% | 14 (11.8) | 8 (20.5) | 6 (7.5) | |
| >70% | 6 (5.0) | 3 (7.7) | 3 (3.8) | |
| APACHE II at first day (score) | 14 [11–18] | 13 [10–19] | 14 [11–19] | 0.887 |
| APACHE II mortality prediction (%) | 15.0 [14.8–29.2] | 15.0 [14.9–29.6] | 18.6 [14.6–32.2] | 0.755 |
| Respiratory support (yes), n (%) | 84 (70.6) | 34 (87.2) | 50 (62.5) | 0.004 |
| Duration of respiratory support (days) | 12 [7–24] | 10 [7–18] | 12 [67–26] | 0.399 |
| Vasoactive drugs (yes), n (%) | 97 (81.5) | 36 (92.3) | 61 (76.3) | 0.026 |
| Vasoconstriction, n (%) | 92 (77.3) | 33 (84.6) | 59 (73.8) | 0.042 |
| Risk Factors | Unadjusted | Multivariate | ||||
|---|---|---|---|---|---|---|
| Β | Odds Ratio (95% CI) | p-Value | Β | Odds Ratio (95% CI) | p-Value | |
| Early strategy < 24 h (yes) | 1.24 | 3.45 (1.37–8.69) | 0.008 | 1.81 | 3.26 (1.37–7.75) | 0.008 |
| Length of ICU stay (days) | 0.04 | 1.04 (1.01–1.06) | 0.004 | 0.04 | 1.03 (1.01–1.06) | 0.003 |
| Age (years) | 0.03 | 1.03 (1.00–1.06) | 0.046 | 0.03 | 1.03 (1.00–1.06) | 0.038 |
| Respiratory support (yes) | 0.53 | 0.59 (0.15–2.34) | 0.454 | |||
| Vasoactive drugs (yes) | 0.36 | 1.43 (0.32–6.47) | 0.641 | |||
| SOFA on first day (score) | 0.01 | 1.01 (0.91–1.12) | 0.854 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, R.A.; Borges, S.; Borges, S.L.d.S.; Magro, M.C.d.S. Impact of Early Initiation of Renal Replacement Therapy on Renal Recovery and Mortality in Critically Ill Patients with Acute Kidney Injury: A Prospective Cohort Study. Biomedicines 2025, 13, 2575. https://doi.org/10.3390/biomedicines13112575
Moreira RA, Borges S, Borges SLdS, Magro MCdS. Impact of Early Initiation of Renal Replacement Therapy on Renal Recovery and Mortality in Critically Ill Patients with Acute Kidney Injury: A Prospective Cohort Study. Biomedicines. 2025; 13(11):2575. https://doi.org/10.3390/biomedicines13112575
Chicago/Turabian StyleMoreira, Rayane Alves, Sheila Borges, Sarah Lopes da Silva Borges, and Marcia Cristina da Silva Magro. 2025. "Impact of Early Initiation of Renal Replacement Therapy on Renal Recovery and Mortality in Critically Ill Patients with Acute Kidney Injury: A Prospective Cohort Study" Biomedicines 13, no. 11: 2575. https://doi.org/10.3390/biomedicines13112575
APA StyleMoreira, R. A., Borges, S., Borges, S. L. d. S., & Magro, M. C. d. S. (2025). Impact of Early Initiation of Renal Replacement Therapy on Renal Recovery and Mortality in Critically Ill Patients with Acute Kidney Injury: A Prospective Cohort Study. Biomedicines, 13(11), 2575. https://doi.org/10.3390/biomedicines13112575

