Reevaluating C-Reactive Protein for Perioperative Risk Stratification: The Overlooked Role of Sleep Apnea in Cardiac Surgery Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Patient Selection and Eligibility Criteria
2.3. Preoperative Spirometry, Sleep Study and OSA Classification
2.4. Laboratory Testing and Biochemical Assays
2.5. Ventilatory Management and Clinical Outcomes
2.6. Sample Size and Statistical Power
2.7. Clinical Endpoints
2.8. Bias Minimization and Blinding
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.1.1. Full Cohort Overview
3.1.2. Descriptive Statistics with IQRs for Key Variables
3.2. Core Associations Between Sleep Apnea Severity and Outcomes
3.2.1. AHI and Postoperative Atrial Fibrillation
3.2.2. AHI and Intubation Time
3.2.3. AHI and CPAP/AIRVO Use
3.3. CRP as an Independent Predictor
3.4. Composite and Interaction Models
Combined Risk Score (AHI + BMI + CRP)
3.5. Propensity Score-Matching Analyses
3.5.1. Moderate vs. No/Mild OSA
3.5.2. Severe vs. No/Mild OSA
4. Discussion
4.1. Summary of Key Findings
4.2. Comparison with Prior Literature
4.3. Mechanistic Interpretations
4.4. Clinical Implications
4.5. Strengths and Limitations
4.6. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OSA | Obstructive Sleep Apnea |
CRP | C-Reactive Protein |
BMI | Body Mass Index |
CPAP | Continuous Positive Airway Pressure |
PSM | Propensity Score Matching |
CABG | Coronary Artery Bypass Grafting |
AVR | Aortic Valve Replacement |
MVR | Mitral Valve Replacement |
EF | Ejection Fraction |
HDL | High-Density Lipoprotein |
LDL | Low-Density Lipoprotein |
IOT | Intubation Time |
IPPV | Intermittent Positive Pressure Ventilation |
SIMV | Synchronized Intermittent Mandatory Ventilation |
AIRVO | High-flow nasal therapy system by Fisher & Paykel |
POAF | Postoperative Atrial Fibrillation |
AUC | Area Under the Curve |
ROC | Receiver Operating Characteristic |
ΔCRP | Change in CRP (Postoperative–Preoperative) |
SMD | Standardized Mean Difference |
SAP | Statistical Analysis Plan |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
AASM | American Academy of Sleep Medicine |
CV | Coefficient of Variation |
hsCRP | High-Sensitivity C-Reactive Protein |
SD | Standard Deviation |
IQR | Interquartile Range |
OR | Odds Ratio |
VIF | Variance Inflation Factor |
RCRP | CRP Extended Range Assay (Dimension Clinical Chemistry System) |
References
- McNicholas, W.T.; Pevernagie, D. Obstructive sleep apnea: Transition from pathophysiology to an integrative disease model. J. Sleep Res. 2022, 31, e13616. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K.; et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Liu, X.; Zhang, Y.; Dong, N.; Wang, X.; He, Y.; Yue, H.; Yin, Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target Ther. 2023, 8, 218. [Google Scholar] [CrossRef]
- Pinto, J.A.; Ribeiro, D.K.; Da Silva Cavallini, A.F.; Duarte, C.; Freitas, G.S. Comorbidities associated with obstructive sleep apnea: A retrospective study. Int. Arch. Otorhinolaryngol. 2016, 20, 145–150. [Google Scholar] [CrossRef]
- Peker, Y.; Akdeniz, B.; Altay, S.; Balcan, B.; Başaran, Ö.; Baysal, E.; Çelik, A.; Dursunoğlu, D.; Dursunoğlu, N.; Fırat, S.; et al. Obstructive Sleep Apnea and Cardiovascular Disease: Where Do We Stand? Anatol. J. Cardiol. 2023, 27, 375–389. [Google Scholar] [CrossRef]
- Bakare, A.B.; Smith, D.; Mohamed, Z.S.; Mohammed, T.; Liao, M.; Le, B.; Aslam, R. Demographic and modifiable risk factors impacting obstructive sleep apnea comorbidities: A New Orleans case–control study. Sleep Breath. 2025, 29, 204. [Google Scholar] [CrossRef]
- Batta, A.; Hatwal, J.; Batta, A.; Verma, S.; Sharma, Y.P. Atrial fibrillation and coronary artery disease: An integrative review focusing on therapeutic implications of this relationship. World J. Cardiol. 2023, 15, 229–243. [Google Scholar] [CrossRef]
- Redline, S. Evidence of the need for better sleep apnea phenotyping. Ann. Am. Thorac. Soc. 2023, 20, 955–957. [Google Scholar] [CrossRef]
- Manzur, A.R.; Negru, A.G.; Florescu, A.-R.; Lascu, A.; Munteanu, I.R.; Novaconi, R.C.; Bertici, N.S.; Popa, A.M.; Mihaicuta, S. Obstructive Sleep Apnea and Outcomes in Cardiac Surgery: A Systematic Review with Meta-Analytic Synthesis (PROSPERO CRD420251049574). Biomedicines 2025, 13, 1579. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, A.; Ramachandran, S.K. Perioperative Risk Modification in Patients with Obstructive Sleep Apnea. Curr. Anesthesiol. Rep. 2014, 4, 28–36. [Google Scholar] [CrossRef]
- Titu, I.-M.; Vulturar, D.M.; Chis, A.F.; Oprea, A.; Manea, A.; Todea, D.A. Impact of Obstructive Sleep Apnea in Surgical Patients: A Systematic Review. J. Clin. Med. 2025, 14, 5095. [Google Scholar] [CrossRef]
- Bignami, E.; Saglietti, F.; Di Lullo, A. Mechanical ventilation management during cardiothoracic surgery: An open challenge. Ann. Transl. Med. 2018, 6, 380. [Google Scholar] [CrossRef]
- Chen, P.S.; Chiu, W.T.; Hsu, P.L.; Lin, S.C.; Peng, I.C.; Wang, C.Y.; Tsai, S.-J. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 2020, 27, 63. [Google Scholar] [CrossRef]
- Chiu, C.Z.; Wang, B.W.; Shyu, K.G. Molecular regulation of the expression of leptin by hypoxia in human coronary artery smooth muscle cells. J. Biomed. Sci. 2015, 22, 5. [Google Scholar] [CrossRef]
- Surma, A.; Parafianowicz, A. Anesthetic Management in Obstructive Sleep Apnea: A Narrative Review. J. Educ. Health Sport 2024, 70, 55814. [Google Scholar] [CrossRef]
- Chaudhry, R.A.; Zarmer, L.; West, K.; Chung, F. Obstructive Sleep Apnea and Risk of Postoperative Complications after Non-Cardiac Surgery. J. Clin. Med. 2024, 13, 2538. [Google Scholar] [CrossRef] [PubMed]
- Fishberger, G.; Mhaskar, R.; Cobb, J.; Strang, H.E.; Heide, M.; Bagos-Estevez, A.; West, W.; Chase, C.B.; Varadhan, A.; Dolorit, M.; et al. New-onset postoperative atrial fibrillation is associated with perioperative inflammatory response and longer hospital stay after robotic-assisted pulmonary lobectomy. Surg. Pract. Sci. 2023, 12, 100153. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative atrial fibrillation: From mechanisms to treatment. Eur. Heart J. 2023, 44, 1020–1039. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Chahil, V.; Battisha, A.; Haq, S.; Kalra, D.K. Postoperative Atrial Fibrillation: A Review. Biomedicines 2024, 12, 1968. [Google Scholar] [CrossRef]
- Zhu, S.; Che, H.; Fan, Y.; Jiang, S. Prediction of new onset postoperative atrial fibrillation using a simple Nomogram. J. Cardiothorac. Surg. 2023, 18, 139. [Google Scholar] [CrossRef]
- Bonilla-Bonilla, D.M.; Osorio-Toro, L.M.; Daza-Arana, J.E.; Quintana-Ospina, J.H.; Ávila-Valencia, J.C.; Lozada-Ramos, H. Risk Factors for Postoperative Atrial Fibrillation in Myocardial Revascularization Surgery: A 15-Year Experience. J. Clin. Med. 2024, 13, 5171. [Google Scholar] [CrossRef]
- Popadic, V.; Brajkovic, M.; Klasnja, S.; Milic, N.; Rajovic, N.; Lisulov, D.P.; Divac, A.; Ivankovic, T.; Manojlovic, A.; Nikolic, N.; et al. Correlation of dyslipidemia and inflammation with obstructive sleep apnea. Front. Pharmacol. 2022, 13, 897279. [Google Scholar] [CrossRef] [PubMed]
- May, A.M.; Van Wagoner, D.R.; Mehra, R. OSA and Cardiac Arrhythmogenesis: Mechanistic Insights. Chest 2017, 151, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Maniaci, A.; Lavalle, S.; Parisi, F.M.; Barbanti, M.; Cocuzza, S.; Iannella, G.; Magliulo, G.; Pace, A.; Lentini, M.; Masiello, E.; et al. Impact of Obstructive Sleep Apnea and Sympathetic Nervous System on Cardiac Health: A Comprehensive Review. J. Cardiovasc. Dev. Dis. 2024, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Kasai, T.; Bradley, T.D. Obstructive sleep apnea and heart failure: Pathophysiologic and therapeutic implications. J. Am. Coll. Cardiol. 2011, 57, 119–127. [Google Scholar] [CrossRef]
- Menon, T.; Ogbu, I.; Kalra, D.K. Sleep-Disordered Breathing and Cardiac Arrhythmias. J. Clin. Med. 2024, 13, 6635. [Google Scholar] [CrossRef]
- Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Javaheri, S.; Malhotra, A.; Martinez-Garcia, M.A.; Mehra, R.; Pack, A.I.; et al. Sleep Apnea Types, Mechanisms, and Clinical Cardiovascular Consequences. J. Am. Coll. Cardiol. 2017, 69, 841–858. [Google Scholar] [CrossRef]
- Bain, C.R.; Myles, P.S.; Corcoran, T.; Dieleman, J.M. Postoperative systemic inflammatory dysregulation and corticosteroids: A narrative review. Anaesthesia 2023, 78, 356–370. [Google Scholar] [CrossRef]
- Al-Waeli, H.; Nicolau, B.; Stone, L.; Abu Nada, L.; Gao, Q.; Abdallah, M.; Abdulkader, E.; Suzuki, M.; Mansour, A.; Al Subaie, A.; et al. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci. Rep. 2020, 10, 468. [Google Scholar] [CrossRef]
- Margraf, A.; Ludwig, N.; Zarbock, A.; Rossaint, J. Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth. Analg. 2020, 131, 1693–1707. [Google Scholar] [CrossRef]
- Chang, J.L.; Goldberg, A.N.; Alt, J.A.; Mohammed, A.; Ashbrook, L.; Auckley, D.; Ayappa, I.; Bakhtiar, H.; Barrera, J.E.; Bartley, B.L.; et al. International Consensus Statement on Obstructive Sleep Apnea. Int. Forum Allergy Rhinol. 2023, 13, 1061–1482. [Google Scholar] [CrossRef]
- Kezirian, E.J.; Weaver, E.M.; Criswell, M.A.; De Vries, N.; Woodson, B.T.; Piccirillo, J.F. Reporting results of obstructive sleep apnea syndrome surgery trials. Otolaryngol. Head Neck Surg. 2011, 144, 496–499. [Google Scholar] [CrossRef]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; John Kimoff, R.; Patel, S.R.; Harrod, C.G. Treatment of adult obstructive sleep apnea with positive airway pressure: An American academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2019, 15, 301–334. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.-J.; Kim, J.-M.; Choi, E.-S.; Lee, S.-U.; Ryu, J.S. Evaluating the Association Between Risk Factors of Obstructive Sleep Apnea with Oral Dysfunction and Lifestyle Behavior in Korean Adults Using Data from the Eighth Cycle of the National Health and Nutrition Examination Survey: A Cross-Sectional Study. Healthcare 2025, 13, 1448. [Google Scholar] [CrossRef] [PubMed]
- Abu, K.; Khraiche, M.L.; Amatoury, J. Obstructive sleep apnea diagnosis and beyond using portable monitors. Sleep Med. 2024, 113, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Pintilie, A.L.; Zabara Antal, A.; Ciuntu, B.M.; Toma, D.; Tiron, R.; Stirbu, R.; Zabara, M.L.; Dabija, R.C. A Possible Missing Link Between Obstructive Sleep Apnea Syndrome (OSA) Associated with Tobacco Use and Inflammation Biomarkers. Healthcare 2025, 13, 1777. [Google Scholar] [CrossRef]
- Bouloukaki, I. Obstructive sleep apnea syndrome and cardiovascular disease: The influence of C-reactive protein. World J. Exp. Med. 2015, 5, 77. [Google Scholar] [CrossRef]
- Katanasaka, Y.; Sunagawa, Y.; Sakurai, R.; Tojima, M.; Naruta, R.; Hojo, Y.; Kawase, Y.; Hamabe-Horiike, T.; Mori, K.; Hasegawa, K.; et al. Cardiac-specific overexpression of PRMT5 exacerbates pressure overload-induced hypertrophy and heart failure. J. Biomed. Sci. 2025, 32, 61. [Google Scholar]
- Lascu, A.; Ionică, L.N.; Merce, A.P.; Dănilă, M.D.; Petrescu, L.; Sturza, A.; Muntean, D.-M.; Streian, C.G. Metformin Acutely Mitigates Oxidative Stress in Human Atrial Tissue: A Pilot Study in Overweight Non- Diabetic Cardiac Patients. Life 2022, 12, 2058. [Google Scholar] [CrossRef]
- Arnautu, S.F.; Arnautu, D.A.; Lascu, A.; Hajevschi, A.A.; Rosca, C.I.; Sharma, A.; Jianu, D.C. A Review of the Role of Transthoracic and Transesophageal Echocardiography, Computed Tomography, and Magnetic Resonance Imaging in Cardioembolic Stroke. Med. Sci. Monit. 2022, 28, e936365-1–e936365-9. [Google Scholar] [CrossRef]
- Matei, S.-C.; Matei, M.; Anghel, F.M.; Derban, M.D.; Olariu, A.; Olariu, S. Impact of statin treatment on patients diagnosed with chronic venous disease. Morphological analysis of the venous wall and clinical implications. Phlebology 2022, 37, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, M.; Channon, K.M.; Antoniades, C. Statins as regulators of redox state in the vascular endothelium: Beyond lipid lowering. Antioxid. Redox Signal. 2014, 20, 1198–1215. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, S.; Maric, G.; Cvetinovic, N.; Lepojevic-Stefanovic, D.; Bozic Cvijan, B. Anti-Inflammatory Effects of Lipid- Lowering Drugs and Supplements—A Narrative Review. Nutrients 2023, 15, 1517. [Google Scholar] [CrossRef]
- Nassar, J.E.; Singh, M.; Knebel, A.; Daher, M.; Alsoof, D.; Diebo, B.G.; Daniels, A.H. The correlation of sleep disorders with postoperative outcomes in spine surgery: A narrative review. N. Am. Spine Soc. J. 2025, 21, 100586. [Google Scholar] [CrossRef]
- Sabeel, S.; Motaung, B.; Nguyen, K.A.; Ozturk, M.; Mukasa, S.L.; Wolmarans, K.; Blom, D.J.; Sliwa, K.; Nepolo, E.; Günther, G.; et al. Impact of statins as immune-modulatory agents on inflammatory markers: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0323749. [Google Scholar] [CrossRef]
- Petrascu, F.M.; Matei, S.C.; Margan, M.M.; Ungureanu, A.M.; Olteanu, G.E.; Murariu, M.S.; Olariu, S.; Marian, C. The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease. Biomedicines 2024, 12, 2524. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBEInitiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 53, 1801516. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.L.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; Version 2.6. American Academy of Sleep Medicine: Darien, IL, USA, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Van Rossum, G.; Drake, F.L. Python 3.10 Reference Manual; Python Software Foundation: Wilmington, DE, USA, 2023. [Google Scholar]
- May, A.M. Sleep-disordered Breathing and Inpatient Outcomes in Nonsurgical Patients Analysis of the Nationwide Inpatient Cohort. Ann. Am. Thorac. Soc. 2023, 20, 1784–1790. [Google Scholar] [CrossRef]
- D’Cruz, R.F.; Murphy, P.B.; Kaltsakas, G. Sleep disordered breathing and chronic obstructive pulmonary disease: A narrative review on classification, pathophysiology and clinical outcomes. J. Thorac. Dis. 2020, 12, S202–S216. [Google Scholar] [CrossRef]
- Marulanda-Londoño, E.; Chaturvedi, S. The interplay between obstructive sleep apnea and atrial fibrillation. Front. Neurol. 2017, 8, 668. [Google Scholar] [CrossRef]
- Latina, J.M.; Estes, N.A.M.; Garlitski, A.C. The relationship between obstructive sleep apnea and atrial fibrillation: A complex interplay. Pulm. Med. 2013, 2013, 621736. [Google Scholar] [CrossRef]
- Moula, A.I.; Parrini, I.; Tetta, C.; Lucà, F.; Parise, G.; Rao, C.M.; Mauro, E.; Parise, O.; Matteucci, F.; Gulizia, M.M.; et al. Obstructive Sleep Apnea and Atrial Fibrillation. J. Clin. Med. 2022, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Zheng, P.; Zhu, X.; Wang, L.; Zhang, F.; Liu, H.; Li, H.; Zhou, L.; Liu, W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med. 2024, 119, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Birză, M.R.; Negru, A.G.; Frent Ștefan, M.; Florescu, A.R.; Popa, A.M.; Manzur, A.R.; Lascu, A.; Mihaicuța, S. New Insights of Cardiac Arrhythmias Associated with Sleep-Disordered Breathing: From Mechanisms to Clinical Implications—A Narrative Review. J. Clin. Med. 2025, 14, 1922. [Google Scholar] [CrossRef] [PubMed]
- Staicu, R.-E.; Cozlac, A.-R.; Sintean, M.E.; Negru, A.G.; Gorun, F.; Ciurescu, S.; Vernic, C.; Lascu, A.; Deutsch, P.; Horhat, F.; et al. Inflammatory biomarkers for predicting postoperative atrial fibrillation in cardiac surgery. J. Med. Life 2025, 18, 494–508. [Google Scholar] [CrossRef]
- Patel, S.V.; Gill, H.; Shahi, D.; Rajabalan, A.; Patel, P.; Sonani, R.; Bhatt, P.; Rodriguez, R.D.; Bautista, M.; Deshmukh, A.; et al. High risk for obstructive sleep apnea hypopnea syndrome predicts new onset atrial fibrillation after cardiac surgery: A retrospective analysis. Sleep Breath. 2018, 22, 1117–1124. [Google Scholar] [CrossRef]
- Rivas, M.; Ratra, A.; Nugent, K. Obstructive sleep apnea and its effects on cardiovascular diseases: A narrative review. Anatol. J. Cardiol. 2015, 15, 944–950. [Google Scholar] [CrossRef]
- Brgdar, A.; Yi, J.; Awan, A.; Taha, M.; Ogunti, R.; Gharbin, J.; Prafulla, M.; Opoku, I. Impact of Obstructive Sleep Apnea on In-Hospital Outcomes in Patients With Atrial Fibrillation: A Retrospective Analysis of the National Inpatient Sample. Cureus 2021, 13, e20770. [Google Scholar] [CrossRef]
- Staicu, R.E.; Vernic, C.; Ciurescu, S.; Lascu, A.; Aburel, O.M.; Deutsch, P.; Rosca, E.C. Postoperative Delirium and Cognitive Dysfunction After Cardiac Surgery: The Role of Inflammation and Clinical Risk Factors. Diagnostics 2025, 15, 844. [Google Scholar] [CrossRef]
- Li, Y.E.; Ren, J. Association between obstructive sleep apnea and cardiovascular diseases. Acta Biochim. Biophys. Sin. 2022, 54, 882–892. [Google Scholar] [CrossRef]
- Matei, S.-C.; Matei, M.; Anghel, F.; Carabenciov, E.; Murariu, M.-S.; Olariu, S. Utility of routine laboratory tests in the assessment of chronic venous disease progression in female patients. Exp. Ther. Med. 2022, 24, 571. [Google Scholar] [CrossRef]
- Zota, I.M.; Adam, C.A.; Marcu, D.T.M.; Stătescu, C.; Sascău, R.; Anghel, L.; Boișteanu, D.; Roca, M.; Cozma, C.L.D.; Maștaleru, A.; et al. CPAP influence on readily available inflammatory biomarkers in obstructive sleep apnea patients. Int. J. Mol. Sci. 2022, 23, 12431. [Google Scholar] [CrossRef]
- Mehra, R.; Tjurmina, O.A.; Ajijola, O.A.; Arora, R.; Bolser, D.C.; Chapleau, M.W.; Chen, P.S.; Clancy, C.E.; Delisle, B.P.; Gold, M.R.; et al. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation: A Report From the National Heart, Lung, and Blood Institute and the National Institutes of Health Office of the Director Workshop. JACC Basic Transl Sci. 2022, 7, 265–293. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Pinsky, M.R. Heart-lung interactions during mechanical ventilation: The basics. Ann. Transl. Med. 2018, 6, 349. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | No Sleep Apnea | Mild | Moderate | Severe |
---|---|---|---|---|---|
Smoking History | 78 (54.9%) | 0 (0.0%) | 16 (51.6%) | 34 (58.6%) | 28 (56.0%) |
Male Sex | 102 (71.8%) | 1 (33.3%) | 23 (74.2%) | 41 (70.7%) | 37 (74.0%) |
Female Sex | 40 (28.2%) | 2 (66.7%) | 8 (25.8%) | 17 (29.3%) | 13 (26.0%) |
Known AF (pre-op) | 22 (15.5%) | 0 (0.0%) | 4 (12.9%) | 9 (15.5%) | 9 (18.0%) |
Post-op AF | 64 (45.1%) | 1 (33.3%) | 6 (19.4%) | 27 (46.6%) | 30 (60.0%) |
Normal Spirometry | 88 (62.0%) | 3 (100.0%) | 21 (67.7%) | 35 (60.3%) | 29 (58.0%) |
Bypass Surgery | 63 (44.4%) | 1 (33.3%) | 16 (51.6%) | 23 (39.7%) | 23 (46.0%) |
AVR Surgery | 32 (22.5%) | 1 (33.3%) | 2 (6.5%) | 18 (31.0%) | 11 (22.0%) |
MVR Surgery | 24 (16.9%) | 0 (0.0%) | 4 (12.9%) | 10 (17.2%) | 10 (20.0%) |
Complex Procedures | 62 (43.7%) | 2 (66.7%) | 12 (38.7%) | 28 (48.3%) | 20 (40.0%) |
Diabetes | 51 (35.9%) | 1 (33.3%) | 12 (38.7%) | 18 (31.0%) | 20 (40.0%) |
Hypertension | 129 (90.8%) | 2 (66.7%) | 28 (90.3%) | 52 (89.7%) | 47 (94.0%) |
Post-extubation CPAP/AIRVO Use | 15 (10.6%) | 0 (0.0%) | 1 (3.2%) | 4 (6.9%) | 10 (20.0%) |
Statin Use | 122 (85.9%) | 3 (100.0%) | 26 (83.9%) | 51 (87.9%) | 42 (84.0%) |
Bypass Time (min) | 107.0 ± 36.1 | 104.7 ± 8.5 | 95.8 ± 22.7 | 112.7 ± 39.2 | 107.5 ± 39.0 |
Intubation Time (hrs) | 15.5 ± 5.4 | 13.7 ± 3.8 | 13.2 ± 2.6 | 15.7 ± 4.7 | 16.9 ± 7.0 |
Pre-op CRP (mg/dL) | 3.7 ± 7.2 | 1.0 ± 0.7 | 2.6 ± 2.9 | 2.7 ± 5.1 | 5.7 ± 10.4 |
HDL Cholesterol (mg/dL) | 41.5 ± 15.9 | 44.5 ± 7.7 | 41.8 ± 17.6 | 42.1 ± 16.2 | 40.5 ± 15.2 |
LDL Cholesterol (mg/dL) | 75.8 ± 34.4 | 124.0 ± 41.9 | 74.1 ± 41.8 | 71.6 ± 29.7 | 78.8 ± 32.6 |
Total Cholesterol (mg/dL) | 141.0 ± 46.2 | 190.3 ± 49.0 | 139.5 ± 54.3 | 135.6 ± 41.7 | 145.1 ± 44.9 |
Ejection Fraction (%) | 47.3 ± 7.5 | 45.0 ± 13.2 | 48.7 ± 5.9 | 47.2 ± 8.2 | 46.5 ± 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzur, A.R.; Streian, C.G.; Lascu, A.; Lupu, M.A.; Feier, H.B.; Mihaicuta, S. Reevaluating C-Reactive Protein for Perioperative Risk Stratification: The Overlooked Role of Sleep Apnea in Cardiac Surgery Outcomes. Biomedicines 2025, 13, 2546. https://doi.org/10.3390/biomedicines13102546
Manzur AR, Streian CG, Lascu A, Lupu MA, Feier HB, Mihaicuta S. Reevaluating C-Reactive Protein for Perioperative Risk Stratification: The Overlooked Role of Sleep Apnea in Cardiac Surgery Outcomes. Biomedicines. 2025; 13(10):2546. https://doi.org/10.3390/biomedicines13102546
Chicago/Turabian StyleManzur, Andrei Raul, Caius Glad Streian, Ana Lascu, Maria Alina Lupu, Horea Bogdan Feier, and Stefan Mihaicuta. 2025. "Reevaluating C-Reactive Protein for Perioperative Risk Stratification: The Overlooked Role of Sleep Apnea in Cardiac Surgery Outcomes" Biomedicines 13, no. 10: 2546. https://doi.org/10.3390/biomedicines13102546
APA StyleManzur, A. R., Streian, C. G., Lascu, A., Lupu, M. A., Feier, H. B., & Mihaicuta, S. (2025). Reevaluating C-Reactive Protein for Perioperative Risk Stratification: The Overlooked Role of Sleep Apnea in Cardiac Surgery Outcomes. Biomedicines, 13(10), 2546. https://doi.org/10.3390/biomedicines13102546