Machine Learning-Based Validation of LDHC and SLC35G2 Methylation as Epigenetic Biomarkers for Food Allergy
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
- 102 samples from individuals diagnosed with food allergies (“allergic” group),
- 62 samples from individuals whose food allergies had resolved over time (“resolved” group), and
- 41 control samples from individuals without food allergies (“control” group).
2.2. Differentially Methylated Regions (DMRs)
2.3. Machine Learning and Deep Learning Analytical Framework for Food Allergy Classification
2.3.1. Input Data Preparation and Target Variable Definition
2.3.2. Feature Engineering and Selection Strategy
- Statistical analysis performed using limma R package (version 3.48.3)
- Linear modeling applied to identify differentially methylated positions (DMPs) between allergic and control groups
- Multiple testing correction using Benjamini–Hochberg method (FDR < 0.05)
- Result: 1140 significantly associated CpG sites mapped to annotated genes
- These M-values served as direct input features for machine learning models
- Deep learning-based dimensionality reduction applied to the top-ranked DMPs
- Architecture: Three-layer encoder (100→150→200 neurons) with corresponding decoder
- Activation function: ReLU with L2 regularization (λ = 0.001)
- Sparse regularization parameter set to 1.0 to encourage feature selectivity
- Training objective: Minimize reconstruction error between input and output M-values
- Output: 200 compressed latent features representing non-linear methylation patterns
2.3.3. Machine Learning Algorithm Implementation
2.4. Data Preprocessing and Model Optimization
2.5. Model Configurations and Performance Metrics
3. Results
3.1. GEO Dataset Validation
3.2. Analysis of Differentially Methylated Positions and Regions (DMPs/DMRs)
3.3. Machine Learning and Experimental Evaluations
3.4. Gene Ontology and Disease Enrichment Analyses
3.5. Validation on Independent Dataset (GSE114135)
4. Discussion
4.1. Clinical Significance and Translational Applications of LDHC and SLC35G2
4.2. Cellular Communication Pathways and Immune System Control
4.3. Research Design Advantages and Constraints
4.4. Clinical Application and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, R.L.; Krawiec, M.; Koplin, J.J.; Santos, A.F. Update on food allergy. Pediatr. Allergy Immunol. 2021, 32, 647–657. [Google Scholar] [CrossRef]
- Barni, S.; Liccioli, G.; Sarti, L.; Giovannini, M.; Novembre, E.; Mori, F. Immunoglobulin E (IgE)-mediated food allergy in children: Epidemiology, pathogenesis, diagnosis, prevention, and management. Medicina 2020, 56, 111. [Google Scholar] [CrossRef]
- Morishima, Y.; Kawashima, H.; Takekuma, K.; Hoshika, A. Changes in serum lactate dehydrogenase activity in children with atopic dermatitis. Pediatr. Int. 2010, 52, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Sampson, H.A. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018, 141, 41–58. [Google Scholar] [CrossRef]
- Pervjakova, N.; Kasela, S.; Morris, A.P.; Kals, M.; Metspalu, A.; Lindgren, C.M.; Salumets, A.; Mägi, R. Imprinted Genes and Imprinting Control Regions Show Predominant Intermediate Methylation in Adult Somatic Tissues. Epigenomics 2016, 8, 789–799. [Google Scholar] [CrossRef]
- Li, S.; Tollefsbol, T.O. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2021, 187, 28–43. [Google Scholar] [CrossRef]
- Hong, X.; Ladd-Acosta, C.; Hao, K.; Sherwood, B.; Ji, H.; Keet, C.A.; Kumar, R.; Caruso, D.; Liu, X.; Wang, G. Epigenome-wide association study links site-specific DNA methylation changes with cow’s milk allergy. J. Allergy Clin. Immunol. 2016, 138, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Cañas, J.A.; Núñez, R.; Cruz-Amaya, A.; Gómez, F.; Torres, M.J.; Palomares, F.; Mayorga, C. Epigenetics in food allergy and immunomodulation. Nutrients 2021, 13, 4345. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, X.; Xie, Y.; Yuan, J.; Gao, J.; Chen, H.; Li, X. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics. J. Nutr. Biochem. 2024, 128, 109593. [Google Scholar] [CrossRef]
- Safar, R.; Oussalah, A.; Mayorga, L.; Vieths, S.; Barber, D.; Torres, M.J.; Guéant, J. Epigenome alterations in food allergy: A systematic review of candidate gene and epigenome-wide association studies. Clin. Exp. Allergy 2023, 53, 259–275. [Google Scholar] [CrossRef]
- Danielewicz, H.; Gurgul, A.; Dębińska, A.; Drabik-Chamerska, A.; Hirnle, L.; Boznański, A. Cord blood methylation at TNFRSF17 is associated with early allergic phenotypes. Immunol. Res. 2024, 72, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, N.; Scala, G.; Merid, S.K.; Frumento, P.; Bruhn, S.; Andersson, A.; Ogris, C.; Bottai, M.; Pershagen, G.; Koppelman, G.H. DNA methylation levels in mononuclear leukocytes from the mother and her child are associated with IgE sensitization to allergens in early life. Int. J. Mol. Sci. 2021, 22, 801. [Google Scholar] [CrossRef]
- Zhou, X.; Han, X.; Lyu, S.-C.; Bunning, B.; Kost, L.; Chang, I.; Cao, S.; Sampath, V.; Nadeau, K.C. Targeted DNA methylation profiling reveals epigenetic signatures in peanut allergy. JCI Insight 2021, 6, e143058. [Google Scholar] [CrossRef]
- Segal, E.; Wang, H.; Koller, D. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics-Oxford 2003, 19, 264–272. [Google Scholar] [CrossRef]
- Kilicarslan, S.; Adem, K.; Celik, M. Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network. Med. Hypotheses 2020, 137, 109577. [Google Scholar] [CrossRef]
- Kiliçarslan, S.; Dönmez, E. Improved multi-layer hybrid adaptive particle swarm optimization based artificial bee colony for optimizing feature selection and classification of microarray data. Multimed. Tools Appl. 2023, 83, 67259–67281. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Lin, Z.-J.; Li, C.-C.; Lin, X.; Shan, S.-K.; Guo, B.; Zheng, M.-H.; Li, F.; Yuan, L.-Q.; Li, Z. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, J.; Tang, X.; Li, Y.; Xia, P.; Gao, X. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J. Transl. Med. 2015, 13, 24. [Google Scholar] [CrossRef]
- Qin, X.; Karlsson, I.K.; Wang, Y.; Li, X.; Pedersen, N.; Reynolds, C.A.; Hägg, S. The epigenetic etiology of cardiovascular disease in a longitudinal Swedish twin study. Clin. Epigenet. 2021, 13, 129. [Google Scholar] [CrossRef]
- Algorabi, Ö.; Türkan, Y.S.; Ulu, M.; Namlı, E. A Bibliometric Analysis on Federated Learning. J. Adv. Res. Nat. Appl. Sci. 2024, 10, 875–898. [Google Scholar] [CrossRef]
- Martino, D.; Neeland, M.; Dang, T.; Cobb, J.; Ellis, J.; Barnett, A.; Tang, M.; Vuillermin, P.; Allen, K.; Saffery, R. Epigenetic dysregulation of naive CD4+ T-cell activation genes in childhood food allergy. Nat. Commun. 2018, 9, 3308. [Google Scholar] [CrossRef]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Jiang, T.; Huang, W.; Wu, X.Y.; Zhang, P.J.; Tian, Y.P. Genome-wide methylation profiling of early colorectal cancer using an Illumina Infinium MethylationEPIC BeadChip. World J. Gastrointest. Oncol. 2022, 14, 935. [Google Scholar] [CrossRef]
- Zhou, W.; Laird, P.W.; Shen, H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017, 45, e22. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- An-na, W.; Yue, Z.; Yun-tao, H.; Yun-lu, L.I. A novel construction of SVM compound kernel function. In Proceedings of the 2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM), Harbin, China, 9–10 January 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 3, pp. 1462–1465. [Google Scholar]
- Deng, N.Y.; Tian, Y.J. Support Vector Machines: A New Method in Data Mining; Science Press: Beijing, China, 2004. [Google Scholar]
- Müller, K.-R.; Mika, S.; Tsuda, K.; Schölkopf, K. An introduction to kernel-based learning algorithms. In Handbook of Neural Network Signal Processing; CRC Press: Boca Raton, FL, USA, 2018; pp. 181–201. [Google Scholar]
- Lin, H.-T.; Lin, C.-J. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Neural Comput. 2003, 3, 16. [Google Scholar]
- Breiman, L. Some Infinity Theory for Predictor Ensembles; Technical Report 579; Department of Statistics UCB: Berkeley, CA, USA, 2000. [Google Scholar]
- Kilicarslan, S.; Celik, M.; Sahin, Ş. Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification. Biomed. Signal Process. Control 2021, 63, 102231. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Zheng, X.; Wu, Z. Robust feature learning by stacked autoencoder with maximum correntropy criterion. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 6716–6720. [Google Scholar]
- Adem, K.; Kiliçarslan, S.; Cömert, O. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert. Syst. Appl. 2019, 115, 557–564. [Google Scholar] [CrossRef]
- Adem, K. Diagnosis of breast cancer with Stacked autoencoder and Subspace kNN. Phys. A Stat. Mech. Its Appl. 2020, 551, 124591. [Google Scholar] [CrossRef]
- Yu, C.H. Resampling methods: Concepts, applications, and justification. Pract. Assess. Res. Eval. 2002, 8, 19. [Google Scholar]
- Jin, Z.; Ying, Z.; Wei, L.J. A simple resampling method by perturbing the minimand. Biometrika 2001, 88, 381–390. [Google Scholar] [CrossRef]
- Chernick, M.R. Resampling methods. WIREs Data Min. Knowl. 2012, 2, 255–262. [Google Scholar] [CrossRef]
- Sanchez, L.E.; Moisan, S.; Rigault, J.-P. Metrics on feature models to optimize configuration adaptation at run time. In Proceedings of the 2013 1st International Workshop on Combining Modelling and Search-Based Software Engineering (CMSBSE), San Francisco, CA, USA, 20 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 39–44. [Google Scholar]
- Naik, A.; Thomas, R.; Al-Khalifa, A.; Qasem, H.; Decock, J. Immunomodulatory effects of tumor Lactate Dehydrogenase C (LDHC) in breast cancer. Cell Commun. Signal 2025, 23, 145. [Google Scholar] [CrossRef]
- Quelhas, D.; Correia, J.; Jaeken, J.; Azevedo, L.; Lopes-Marques, M.; Bandeira, A.; Keldermans, L.; Matthijs, G.; Sturiale, L.; Martins, E. SLC35A2-CDG: Novel variant and review. Mol. Genet. Metab. Rep. 2021, 26, 100717. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Li, P. Mutual regulation of lactate dehydrogenase and redox robustness. Front. Physiol. 2022, 13, 1038421. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Xing, M.-L.; Fang, H.-H.; Li, W.-D.; Wu, L.; Chen, Z.-P. Effects of lactate on metabolism and differentiation of CD4+ T cells. Mol. Immunol. 2023, 154, 96–107. [Google Scholar] [CrossRef]
- Dai, M.; Wang, L.; Yang, J.; Chen, J.; Dou, X.; Chen, R.; Ge, Y.; Lin, Y. LDHA as a regulator of T cell fate and its mechanisms in disease. Biomed. Pharmacother. 2023, 158, 114164. [Google Scholar] [CrossRef]
- Llibre, A.; Kucuk, S.; Gope, A.; Certo, M.; Mauro, C. Lactate: A key regulator of the immune response. Immunity 2025, 58, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, D.; Tao, L.; Luo, Q.; Chen, L. Solute carrier transporters: The metabolic gatekeepers of immune cells. Acta Pharm. Sin. B 2020, 10, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Leung, P.S.C.; Gershwin, M.E.; Song, J. New Mechanistic Advances in FcεRI-Mast Cell–Mediated Allergic Signaling. Clin. Rev. Allergy Immunol. 2022, 63, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Guntupalli, V.; Wan, R.; Liu, L.; Gu, W.; Xie, S.; Gao, P. Solute carrier family 26 member 4 (SLC26A4), a potential therapeutic target for asthma. J. Respir. Biol. Transl. Med. 2024, 1, 10011. [Google Scholar] [CrossRef]
- Hong, H.; Li, J.; Cheng, J.H. Targeting different signaling pathways for food allergy regulation and potential therapy: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 12860–12877. [Google Scholar]
- Sullivan, K.E.; Reddy, A.B.M.; Dietzmann, K.; Suriano, A.R.; Kocieda, V.P.; Stewart, M.; Bhatia, M. Epigenetic Regulation of Tumor Necrosis Factor Alpha. Mol. Cell. Biol. 2007, 27, 5147–5160. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Gu, Y.; Jiang, T.; Che, H. Inhibition effect of PPAR-γ signaling on mast cell-mediated allergic inflammation through down-regulation of PAK1/NF-κB activation. Int. Immunopharmacol. 2022, 108, 108692. [Google Scholar] [CrossRef] [PubMed]
- Beech, R.N.; Skuce, P.; Bartley, D.J.; Martin, R.J.; Prichard, R.K.; Gilleard, J.S. Anthelmintic resistance: Markers for resistance, or susceptibility? Parasitology 2011, 138, 160–174. [Google Scholar] [CrossRef] [PubMed]









| Algorithm | Hyperparameter | Value |
|---|---|---|
| SVM—Polynomial | C (Regularization) | 1.0 |
| Kernel | Polynomial | |
| Degree | 3 | |
| Gamma | ‘scale’ | |
| SVM—RBF | C (Regularization) | 1.0 |
| Kernel | RBF | |
| Gamma | ‘scale’ | |
| Random Forest | n_estimators | 100 |
| max_depth | None | |
| min_samples_split | 2 | |
| min_samples_leaf | 1 | |
| max_features | ‘sqrt’ | |
| Neural Network | Hidden layers | 1 (64 neurons) |
| Activation (hidden) | ReLU | |
| Activation (output) | Sigmoid | |
| Optimizer | Adam | |
| Learning rate | 0.001 | |
| Batch size | 32 | |
| k-NN | n_neighbors | 5 |
| Weights | Uniform | |
| Metric | Euclidean (Minkowski, p = 2) | |
| Stacked Autoencoder (SAE) | Layers | 3 (100–150–200 neurons) |
| Activation | ReLU | |
| Regularization | L2 = 0.001 | |
| Sparsity parameter | 1 |
| Method | Accuracy | Precision | Recall | F-Score |
|---|---|---|---|---|
| SVM-Poly | 0.7630 | 0.7806 | 0.7706 | 0.7770 |
| SVM-RBF | 0.8035 | 0.8064 | 0.8064 | 0.8064 |
| KNN | 0.6205 | 0.6153 | 0.6236 | 0.6214 |
| Random Forest | 0.8356 | 0.8403 | 0.8403 | 0.8403 |
| ANN | 0.8374 | 0.8396 | 0.8445 | 0.8405 |
| Method | Accuracy | Precision | Recall | F-Score |
|---|---|---|---|---|
| SVM-Poly | 0.8402 | 0.8601 | 0.8010 | 0.8380 |
| SVM-RBF | 0.8192 | 0.8381 | 0.8245 | 0.8336 |
| Decision tree | 0.8713 | 0.8710 | 0.8710 | 0.8710 |
| Random Forest | 0.8914 | 0.9010 | 0.8610 | 0.8700 |
| ANN | 0.8780 | 0.8515 | 0.9008 | 0.8698 |
| Gene Symbol | Location | Pearson Correlation | p Value |
|---|---|---|---|
| TNF | body | 0.13 | 9.49 × 10−3 |
| RGS12 | body | 0.132 | 8.76 × 10−3 |
| FRA10AC1 | promoter | −0.137 | 6.27 × 10−3 |
| MAD1L1 | body | −0.123 | 3.32 × 10−3 |
| RP4-735C1.4 | body | −0.255 | 2.85 × 10−3 |
| CTD-2535L24.2 | body | −0.169 | 2.13 × 10−3 |
| CSRP1 | body | −0.22 | 1.86 × 10−3 |
| HCG4B | promoter | −0.176 | 1.41 × 10−3 |
| CBR1 | body | −0.277 | 1.16 × 10−3 |
| GSTM3 | body | −0.278 | 1.10 × 10−3 |
| AP000688.14 | body | −0.197 | 3.40 × 10−4 |
| ZNF267 | body | −0.235 | 3.40 × 10−4 |
| RP4-583P15.15 | body | −0.147 | 1.72 × 10−4 |
| LIME1 | body | −0.208 | 1.50 × 10−4 |
| HLA-K | body | −0.221 | 5.58 × 10−5 |
| LDHC | promoter | −0.578 | 7.60 × 10−22 |
| CLECL1 | body | −0.411 | 7.17 × 10−7 |
| AXIN2 | body | −0.305 | 1.78 × 10−7 |
| SLC35G2 | promoter | 0.598 | 1.81 × 10−14 |
| SETD4 | body | 0.316 | 1.28 × 10−14 |
| RP11-134G8.7 | body | −0.442 | 4.74 × 10−17 |
| Biological Process (Gene Ontology) | Strength | False Discovery Rate |
|---|---|---|
| Regulation of calcidiol 1- monooxygenase activity | 2.54 | 0.0337 |
| Positive regulation of I-kappaB phosphorylation | 2.47 | 0.0381 |
| Cellular response to nicotine | 2.47 | 0.0381 |
| Regulation of vitamin D biosynthetic process | 2.47 | 0.0381 |
| Necroptotic signaling pathway | 2.47 | 0.0381 |
| Cellular Component (Gene Ontology) | Strength | False Discovery Rate |
| Tumor necrosis factor receptor superfamily complex | 2.71 | 0.0269 |
| Local Network Cluster (STRING) | Strength | False Discovery Rate |
| Beta-catenin destruction complex | 2.54 | 0.0112 |
| Defective RIPK1-mediated regulated necrosis and TRAF-type zinc finger | 2.54 | 0.0112 |
| TNFR1-induced signaling pathway | 2.35 | 0.00026 |
| KEGG Pathways | Strength | False Discovery Rate |
| Antifolate resistance | 1.83 | 0.0049 |
| Adipocytokine signaling pathway | 1.79 | 4.08 × 10−5 |
| RIG-I-like receptor signaling pathway | 1.78 | 4.08 × 10−5 |
| NF-kappa B signaling pathway | 1.71 | 1.50 × 10−5 |
| TNF signaling pathway | 1.67 | 1.50 × 10−5 |
| Reactome Pathways | Strength | False Discovery Rate |
| TNFR1-mediated ceramide production | 2.54 | 0.0093 |
| Defective RIPK1-mediated regulated necrosis | 2.47 | 0.01 |
| Dimerization of procaspase-8 | 2.28 | 0.02 |
| CASP8 activity is inhibited | 2.28 | 0.02 |
| Regulation by c-FLIP | 2.28 | 0.02 |
| Method | Accuracy | Precision | Recall | F-Score |
|---|---|---|---|---|
| Random Forest | 0.830 | 0.85 | 0.82 | 0.805 |
| SVM-RBF | 0.820 | 0.83 | 0.81 | 0.790 |
| ANN | 0.800 | 0.81 | 0.79 | 0.800 |
| SVM-Poly | 0.785 | 0.80 | 0.77 | 0.785 |
| k-NN | 0.750 | 0.74 | 0.72 | 0.735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiliçarslan, S.; Çiçekliyurt, M.M.H.; Kiliçarslan, S.; Hassan, D.S.M.; Samee, N.A.; Kurtoglu, A. Machine Learning-Based Validation of LDHC and SLC35G2 Methylation as Epigenetic Biomarkers for Food Allergy. Biomedicines 2025, 13, 2489. https://doi.org/10.3390/biomedicines13102489
Kiliçarslan S, Çiçekliyurt MMH, Kiliçarslan S, Hassan DSM, Samee NA, Kurtoglu A. Machine Learning-Based Validation of LDHC and SLC35G2 Methylation as Epigenetic Biomarkers for Food Allergy. Biomedicines. 2025; 13(10):2489. https://doi.org/10.3390/biomedicines13102489
Chicago/Turabian StyleKiliçarslan, Sabire, Meliha Merve Hiz Çiçekliyurt, Serhat Kiliçarslan, Dina S. M. Hassan, Nagwan Abdel Samee, and Ahmet Kurtoglu. 2025. "Machine Learning-Based Validation of LDHC and SLC35G2 Methylation as Epigenetic Biomarkers for Food Allergy" Biomedicines 13, no. 10: 2489. https://doi.org/10.3390/biomedicines13102489
APA StyleKiliçarslan, S., Çiçekliyurt, M. M. H., Kiliçarslan, S., Hassan, D. S. M., Samee, N. A., & Kurtoglu, A. (2025). Machine Learning-Based Validation of LDHC and SLC35G2 Methylation as Epigenetic Biomarkers for Food Allergy. Biomedicines, 13(10), 2489. https://doi.org/10.3390/biomedicines13102489

