Diagnostic Relevance of miR-185, miR-141, and miR-21 in Colon Carcinoma: Insights into Tumor Sidedness and Reference Gene Selection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection and RNA Analysis
2.3. Data Stratification and Follow-Up
2.4. RNA Isolation
2.5. Reverse Transcription (RT) and qPCR
2.6. Data Analysis
3. Results
3.1. Evaluation of Candidate Housekeeping miRNAs
3.2. MiRNA Expression Analysis
3.3. Association of miRNA Expression with Clinicopathological Features
3.3.1. Tumor Stage (T and N)
3.3.2. Histological Subtype and Grade
3.3.3. Lymphovascular Invasion and Lymphocytic Infiltration
3.3.4. Perineural Invasion
3.3.5. Tumor Size
3.4. Association of miRNA Expression with Clinical Outcomes
3.5. Correlation Analysis of miRNA Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRC | Colorectal cancer |
CC | Colon cancer |
CIN | Chromosomal instability |
MSI | Microsatellite instability |
MMR | Mismatch repair deficiency |
CIMP | CpG island methylator phenotype |
EMT | Epithelial–mesenchymal transition |
ZEB1/ZEB2 | Zinc finger E-box-binding homeobox 1/2 |
TRAF5 | TNF receptor-associated factor 5 |
SIRT1 | Sirtuin 1 |
ceRNA | Competing endogenous RNA |
NR2F2 | Nuclear receptor subfamily 2, group F, member 2 |
PTEN | Phosphatase and tensin homolog |
PDCD4 | Programmed cell death 4 |
SAV1 | Salvador family WW domain-containing protein 1 |
RhoB | Ras homolog family member B |
CDC42 | Cell division cycle 42 |
AQP5 | Aquaporin 5 |
RhoA | Ras homolog family member A |
IGF1R/IGF2 | Insulin-like growth factor 1 receptor/Insulin-like growth factor 2 |
c-Myc | Cellular myelocytomatosis oncogene |
FOxK1 | Forkhead box K1 |
PI3K/Akt/mTOR | Phosphatidylinositol-3-kinase/Protein kinase B/Mammalian target of rapamycin signaling pathway |
TGF-β | Transforming growth factor beta |
FFPE | Formalin-fixed, paraffin-embedded |
RT-qPCR | Reverse transcription quantitative polymerase chain reaction |
Ct | Cycle threshold |
AC | Adenocarcinoma |
ANOVA | Analysis of variance |
SD | Standard deviation |
N | Lymph node status (TNM classification) |
T | Tumor stage (TNM classification) |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.e15. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Zhao, Y.; Bai, J.; Wang, J.; Duan, X.; Luo, X.; Zhang, R.; Pu, Y.; Kou, M.; Lei, J.; et al. Colorectal Cancer: An Overview. In Gastrointestinal Cancers; Exon Publications: Brisbane, Australia, 2022; pp. 1–12. [Google Scholar]
- Dornblaser, D.; Young, S.; Shaukat, A. Colon polyps: Updates in classification and management. Curr. Opin. Gastroenterol. 2024, 40, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020, 158, 291–302. [Google Scholar] [CrossRef]
- Menon, G.; Recio-Boiles, A.; Lotfollahzadeh, S.; Cagir, B. Colon Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Huyghe, J.R.; Harrison, T.A.; Bien, S.A.; Hampel, H.; Figueiredo, J.C.; Schmit, S.L.; Conti, D.V.; Chen, S.; Qu, C.; Lin, Y.; et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 2021, 70, 1325–1334. [Google Scholar] [CrossRef]
- Paschke, S.; Jafarov, S.; Staib, L.; Kreuser, E.D.; Maulbecker-Armstrong, C.; Roitman, M.; Holm, T.; Harris, C.C.; Link, K.-H.; Kornmann, M. Are Colon and Rectal Cancer Two Different Tumor Entities? A Proposal to Abandon the Term Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 2577. [Google Scholar] [CrossRef]
- Lee, M.S.; Menter, D.G.; Kopetz, S. Right Versus Left Colon Cancer Biology: Integrating the Consensus Molecular Subtypes. J. Natl. Compr. Cancer Netw. 2017, 15, 411–419. [Google Scholar] [CrossRef]
- Eneh, S.; Heikkinen, S.; Hartikainen, J.M.; Kuopio, T.; Mecklin, J.P.; Kosma, V.M.; Mannermaa, A. MicroRNAs Associated With Biological Pathways of Left- and Right-sided Colorectal Cancer. Anticancer. Res. 2020, 40, 3713–3722. [Google Scholar] [CrossRef]
- Yang, S.Y.; Cho, M.S.; Kim, N.K. Difference between right-sided and left-sided colorectal cancers: From embryology to molecular subtype. Expert. Rev. Anticancer. Ther. 2018, 18, 351–358. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef]
- Fonseca, A.; Ramalhete, S.V.; Mestre, A.; Pires das Neves, R.; Marreiros, A.; Castelo-Branco, P.; Roberto, V.P. Identification of colorectal cancer associated biomarkers: An integrated analysis of miRNA expression. Aging 2021, 13, 21991–22029. [Google Scholar] [CrossRef]
- Danese, E.; Minicozzi, A.M.; Benati, M.; Paviati, E.; Lima-Oliveira, G.; Gusella, M.; Pasini, F.; Salvagno, G.L.; Montagnana, M.; Lippi, G. Reference miRNAs for colorectal cancer: Analysis and verification of current data. Sci. Rep. 2017, 7, 8413. [Google Scholar] [CrossRef]
- Chang, K.H.; Mestdagh, P.; Vandesompele, J.; Kerin, M.J.; Miller, N. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer 2010, 10, 173. [Google Scholar] [CrossRef] [PubMed]
- Burdiel, M.; Jiménez, J.; Rodríguez-Antolín, C.; García-Guede, Á.; Pernía, O.; Sastre-Perona, A.; Rosas-Alonso, R.; Colmenarejo, J.; Rodríguez-Jiménez, C.; Diestro, M.D.; et al. MiR-151a: A robust endogenous control for normalizing small extracellular vesicle cargo in human cancer. Biomark. Res. 2023, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xu, X.; Ke, H.; Pan, X.; Ai, J.; Xie, R.; Lan, G.; Hu, Y.; Wu, Y. microRNA-16-5p suppresses cell proliferation and angiogenesis in colorectal cancer by negatively regulating forkhead box K1 to block the PI3K/Akt/mTOR pathway. Eur. J. Histochem. 2022, 66, 3333. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Abdullah, S.T.; Taheri, M.; Samadian, M. A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell Int. 2022, 22, 342. [Google Scholar] [CrossRef]
- Babaeenezhad, E.; Naghibalhossaini, F.; Rajabibazl, M.; Jangravi, Z.; Hadipour Moradi, F.; Fattahi, M.D.; Hoheisel, J.D.; Sarabi, M.M.; Shahryarhesami, S. The Roles of microRNA miR-185 in Digestive Tract Cancers. Noncoding RNA 2022, 8, 67. [Google Scholar] [CrossRef]
- Dong-xu, W.; Jia, L.; Su-juan, Z. MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer. Indian J. Cancer 2015, 52, 182. [Google Scholar] [CrossRef]
- Akcakaya, P.; Ekelund, S.; Kolosenko, I.; Caramuta, S.; Ozata, D.M.; Xie, H.; Lindforss, U.; Olivecrona, H.; Lui, W.O. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int. J. Oncol. 2011, 39, 311–318. [Google Scholar]
- Zhang, W.; Sun, Z.; Su, L.; Wang, F.; Jiang, Y.; Yu, D.; Zhang, F.; Sun, Z.; Liang, W. miRNA-185 serves as a prognostic factor and suppresses migration and invasion through Wnt1 in colon cancer. Eur. J. Pharmacol. 2018, 825, 75–84. [Google Scholar] [CrossRef]
- Liu, M.; Lang, N.; Chen, X.; Tang, Q.; Liu, S.; Huang, J.; Zheng, Y.; Bi, F. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett. 2011, 301, 151–160. [Google Scholar] [CrossRef]
- Liao, J.M.; Lu, H. Autoregulatory Suppression of c-Myc by miR-185-3p. J. Biol. Chem. 2011, 286, 33901–33909. [Google Scholar] [CrossRef]
- Zhou, C.; Kong, W.; Ju, T.; Xie, Q.; Zhai, L. MiR-185-3p mimic promotes the chemosensitivity of CRC cells via AQP5. Cancer Biol. Ther. 2020, 21, 790–798. [Google Scholar] [CrossRef]
- Afshar, S.; Najafi, R.; Sedighi Pashaki, A.; Sharifi, M.; Nikzad, S.; Gholami, M.H.; Khoshghadam, A.; Amini, R.; Karimi, J.; Saidijam, M. MiR-185 enhances radiosensitivity of colorectal cancer cells by targeting IGF1R and IGF2. Biomed. Pharmacother. 2018, 106, 763–769. [Google Scholar] [CrossRef]
- Liang, Z.; Li, X.; Liu, S.; Li, C.; Wang, X.; Xing, J. MiR-141–3p inhibits cell proliferation, migration and invasion by targeting TRAF5 in colorectal cancer. Biochem. Biophys. Res. Commun. 2019, 514, 699–705. [Google Scholar] [CrossRef]
- Korpal, M.; Lee, E.S.; Hu, G.; Kang, Y. The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2. J. Biol. Chem. 2008, 283, 14910–14914. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.J.; Carter, J.V.; Burton, J.F.; Oxford, B.G.; Schmidt, M.N.; Hallion, J.C.; Galandiuk, S. The role of the miR--200 family in epithelial–mesenchymal transition in colorectal cancer: A systematic review. Int. J. Cancer 2018, 142, 2501–2511. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gu, F.; Lin, X. The role of miR-141/Sirt1 in colon cancer. J. Buon. 2020, 25, 2665–2671. [Google Scholar] [PubMed]
- Włodarczyk, M.; Maryńczak, K.; Burzyński, J.; Włodarczyk, J.; Basak, J.; Fichna, J.; Majsterek, I.; Ciesielski, P.; Spinelli, A.; Dziki, Ł. The role of miRNAs in the pathogenesis, diagnosis, and treatment of colorectal cancer and colitis-associated cancer. Clin. Exp. Med. 2025, 25, 86. [Google Scholar] [CrossRef]
- Schee, K.; Boye, K.; Abrahamsen, T.W.; Fodstad, Ø.; Flatmark, K. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer 2012, 12, 505. [Google Scholar] [CrossRef] [PubMed]
- Kjaer-Frifeldt, S.; Hansen, T.F.; Nielsen, B.S.; Joergensen, S.; Lindebjerg, J.; Soerensen, F.B.; Christensen, R.D.; Jakobsen, A. The prognostic importance of miR-21 in stage II colon cancer: A population-based study. Br. J. Cancer 2012, 107, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nie, L.; Wu, L.; Liu, Q.; Guo, X. NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-mesenchymal transition of CRC via transactivation of miR-21. Biochem. Biophys. Res. Commun. 2017, 485, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Asangani, I.A.; Rasheed, S.A.K.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27, 2128–2136. [Google Scholar] [CrossRef]
- Knudsen, K.N.; Lindebjerg, J.; Kalmár, A.; Molnár, B.; Sørensen, F.B.; Hansen, T.F.; Nielsen, B.S. miR-21 expression analysis in budding colon cancer cells by confocal slide scanning microscopy. Clin. Exp. Metastasis 2018, 35, 819–830. [Google Scholar] [CrossRef]
- Nielsen, B.S.; Jørgensen, S.; Fog, J.U.; Søkilde, R.; Christensen, I.J.; Hansen, U.; Brünner, N.; Baker, A.; Møller, S.; Nielsen, H.J. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin. Exp. Metastasis 2011, 28, 27–38. [Google Scholar] [CrossRef]
- Liu, X.; Meng, X.; Peng, X.; Yao, Q.; Zhu, F.; Ding, Z.; Sun, H.; Liu, X.; Li, D.; Lu, Y.; et al. Impaired AGO2/miR-185-3p/NRP1 axis promotes colorectal cancer metastasis. Cell Death Dis. 2021, 12, 390. [Google Scholar] [CrossRef]
Expression | Right Localization | Left Localization | p * (ω2) (Localization) | p * (ω2) (Tissue Type) | p * (ω2) (Interaction) | ||
---|---|---|---|---|---|---|---|
Tumor | Non-Tumor | Tumor | Non-Tumor | ||||
miR-185-5p | 0.972 ± 0.509 | 1.477 ± 0.053 | 0.820 ± 0.428 | 0.911 ± 0.437 | <0.001 (0.104) | <0.001 (0.082) | 0.010 (0.038) |
miR-141-5p | 0.133 ± 0.209 | 0.244 ± 0.170 | 0.068 ± 0.075 | 0.174 ± 0.175 | 0.027 (0.030) | <0.001 (0.094) | 0.930 (<0.001) |
miR-21-5p | 259.048 ± 230.018 | 146.862 ± 70.829 | 204.287 ± 185.379 | 108.899 ± 78.591 | 0.094 (0.014) | <0.001 (0.094) | 0.753 (<0.001) |
miR-16-5p | 22.521 ± 26.793 | 56.610 ± 36.948 | 13.279 ± 16.536 | 38.639 ± 36.771 | 0.012 (0.041) | <0.001 (0.190) | 0.403 (<0.001) |
Characteristics | N (%) | Relative Expression in Tumor Tissue (Mean ± SD) | |||
---|---|---|---|---|---|
miR-185-5p | miR-141-5p | miR-21-5p | miR-16-5p | ||
T stage | |||||
T1, T2 | 5 (7%) | 0.857 ± 0.258 | 0.062 ± 0.082 | 125.180 ± 116.361 | 7.927 ± 10.445 |
T3 | 58 (83%) | 0.923 ± 0.487 | 0.103 ± 0.166 | 237.725 ± 213.413 | 18.579 ± 22.998 |
T4 | 7 (10%) | 0.711 ± 0.441 | 0.096 ± 0.140 | 227.491 ± 228.848 | 16.942 ± 25.495 |
p * | 0.529 | 0.859 | 0.521 | 0.602 | |
Effect size ** | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
N stage | |||||
N0 | 54 (77%) | 0.850 ± 0.459 | 0.099 ± 0.171 | 209.331 ± 214.049 | 15.884 ± 21.660 |
N1 | 11 (16%) | 0.940 ± 0.389 | 0.103 ± 0.127 | 280.451 ± 179.025 | 24.738 ± 27.098 |
N2 | 5 (7%) | 1.291 ± 0.637 | 0.095 ± 0.079 | 317.833 ± 215.123 | 20.656 ± 22.229 |
p * | 0.126 | 0.994 | 0.367 | 0.478 | |
Effect size ** | 0.032 | <0.0001 | <0.0001 | <0.0001 |
Characteristics | N (%) | Relative Expression in Tumor Tissue (Median, Range) | |||
---|---|---|---|---|---|
miR-185-5p | miR-141-5p | miR-21-5p | miR-16-5p | ||
Histological type | |||||
AC | 50 (72%) | 0.789 (0.264–2.354) | 0.043 (0.0002–0.394) | 168.455 (13.594–670.301) | 7.346 (0.028–70.516) |
Micropapillary AC * | 1 (1%) | - | - | - | - |
Mucinous AC | 19 (27%) | 0.831 (0.334–1.630) | 0.036 (0.001–1.069) | 113.477 (17.682–729.997) | 4.307 (0.353–95.904) |
p ** | 0. 335 | 0.968 | 1.000 | 0.818 | |
Effect size *** | −0.154 | −0.008 | −0.001 | 0.038 | |
Histological grade | |||||
High | 7 (10%) | 0.874 (0.358–1.628) | 0.047 (0.003–0.397) | 87.236 (31.100–533.130) | 5.637 (1.025–70.640) |
Low | 63 (90%) | 0.785 (0.264–2.354) | 0.038 (0.0002–1.069) | 175.849 (13.594–729.997) | 7.128 (0.028–95.904) |
p ** | 0.531 | 0.788 | 0.976 | 0.835 | |
Effect size *** | −0.147 | −0.065 | 0.009 | −0.051 |
Characteristics | N (%) | Relative Expression in Tumor Tissue (Median, Range/Mean ± SD) | |||
---|---|---|---|---|---|
miR-185-5p | miR-141-5p | miR-21-5p | miR-16-5p | ||
Lymphovascular invasion | |||||
Yes | 54 (77%) | 0.764 (0.264–2.354) | 0.031 (0.0002–1.069) | 162.325 (13.594–729.997) | 6.910 (0.028–95.904) |
No | 16 (23%) | 0.903 (0.381–1.689) | 0.057 (0.0004–0.397) | 185.961 (15.296–670.301) | 7.810 (0.053–70.640) |
p ** | 0.289 | 0.175 | 0.352 | 0.509 | |
Effect size *** | −0.177 | −0.226 | −0.156 | −0.111 | |
Lymphocytic infiltration | |||||
Abundant | 22 (31%) | 1.040 ± 0.532 | 0.079 ± 0.104 | 235.873 ± 225.347 | 16.076 ± 19.781 |
Scarce | 21 (30%) | 0.855 ± 0.395 | 0.140 ± 0.239 | 238.351 ± 221.998 | 21.789 ± 28.446 |
Medium | 27 (39%) | 0.817 ± 0.464 | 0.083 ± 0.107 | 215.185 ± 192.943 | 15.633 ± 19.561 |
p + | 0.237 | 0.364 | 0.915 | 0.605 | |
Effect size ++ | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Perineural invasion * | |||||
Da | 4 (6%) | - | - | - | |
Ne | 66 (94%) | - | - | - |
Characteristics | N (%) | Relative Expression in Tumor Tissue (Median, Range) | |||
---|---|---|---|---|---|
miR-185-5p | miR-141-5p | miR-21-5p | miR-16-5p | ||
Progression | |||||
Yes | 9 (15%) | 1.158 (0.264–2.354) | 0.055 (0.0002–0.298) | 207.481 (13.687–533.130) | 9.981 (0.028–55.814) |
No | 59 (82%) | 0.800 (0.266–2.041) | 0.038 (0.0002–1.069) | 155.913 (13.594–729.997) | 6.871 (0.053–95.904) |
Unknown | 2 (3%) | - | - | - | |
p ** | 0.479 | 0.949 | 0.978 | 0.978 | |
Effect size *** | 0.149 | 0.015 | 0.008 | −0.008 | |
5-year survival | |||||
Yes | 54 (77%) | 0.831 (0.266–2.041) | 0.036 (0.0002–0.397) | 149.500 (13.594–729.997) | 6.832 (0.053–70.640) |
No | 15 (2%) | 0.764 (0.264–2.354) | 0.052 (0.0002–1.069) | 184.642 (13.687–658.571) | 8.889 (0.028–95.904) |
Unknown | 1 (1%) | - | - | - | - |
p ** | 0.871 | 0.690 | 0.451 | 0.657 | |
Effect size *** | 0.029 | 0.069 | 0.130 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kršul, D.; Prenc, E.; Požgaj, L.; Štefok, D.; Pongrac, P.; Podolski, M.; Radičević, A.P.; Karlović, D.; Jerković, A.; Golčić, M.; et al. Diagnostic Relevance of miR-185, miR-141, and miR-21 in Colon Carcinoma: Insights into Tumor Sidedness and Reference Gene Selection. Biomedicines 2025, 13, 2460. https://doi.org/10.3390/biomedicines13102460
Kršul D, Prenc E, Požgaj L, Štefok D, Pongrac P, Podolski M, Radičević AP, Karlović D, Jerković A, Golčić M, et al. Diagnostic Relevance of miR-185, miR-141, and miR-21 in Colon Carcinoma: Insights into Tumor Sidedness and Reference Gene Selection. Biomedicines. 2025; 13(10):2460. https://doi.org/10.3390/biomedicines13102460
Chicago/Turabian StyleKršul, Dorian, Ema Prenc, Lidija Požgaj, Dora Štefok, Paula Pongrac, Marija Podolski, Andrea Paravić Radičević, Damir Karlović, Ante Jerković, Marin Golčić, and et al. 2025. "Diagnostic Relevance of miR-185, miR-141, and miR-21 in Colon Carcinoma: Insights into Tumor Sidedness and Reference Gene Selection" Biomedicines 13, no. 10: 2460. https://doi.org/10.3390/biomedicines13102460
APA StyleKršul, D., Prenc, E., Požgaj, L., Štefok, D., Pongrac, P., Podolski, M., Radičević, A. P., Karlović, D., Jerković, A., Golčić, M., Dražić, I., Glavaš Kršul, S., Fučkar Čupić, D., Eraković Haber, V., & Zelić, M. (2025). Diagnostic Relevance of miR-185, miR-141, and miR-21 in Colon Carcinoma: Insights into Tumor Sidedness and Reference Gene Selection. Biomedicines, 13(10), 2460. https://doi.org/10.3390/biomedicines13102460