Preoperative Albumin–Bilirubin (ALBI) Score Is the Strongest Predictor of Mortality After LVAD Implantation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Data
2.3. Echocardiographic Assessment
2.4. Pharmacological Treatment and Device Implantation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cameli, M.; Pastore, M.C.; Campora, A.; Lisi, M.; Mandoli, G.E. Donor shortage in heart transplantation: How can we overcome this challenge? Front. Cardiovasc. Med. 2022, 9, 1001002. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.J.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device—Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Mehra, M.R.; Canter, C.E.; Hannan, M.M.; Semigran, M.J.; Uber, P.A.; Baran, D.A.; Danziger-Isakov, L.; Kirklin, J.K.; Kirk, R.; Kushwaha, S.S.; et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J. Heart Lung Transplant. 2016, 35, 1–23. [Google Scholar] [CrossRef]
- Nayak, A.; Hall, S.A.; Uriel, N.; Goldstein, D.J.; Cleveland, J.C., Jr.; Cowger, J.A.; Salerno, C.T.; Naka, Y.; Horstmanshof, D.; Crandall, D.; et al. Predictors of 5-Year Mortality in Patients Managed with a Magnetically Levitated Left Ventricular Assist Device. J. Am. Coll. Cardiol. 2023, 82, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Sciaccaluga, C.; Ghionzoli, N.; Mandoli, G.E.; D’Ascenzi, F.; Focardi, M.; Valente, S.; Cameli, M. Biomarkers in patients with left ventricular assist devices: Current evidence and future directions. Biomolecules 2022, 12, 334. [Google Scholar] [CrossRef]
- Alvarez, A.M.; Mukherjee, D. Liver abnormalities in cardiac diseases and heart failure. Int. J. Angiol. 2011, 20, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Johnson, P.J. The ALBI score: A simple measure of liver function—From HCC to broader clinical use. JHEP Rep. 2022, 4, 100557. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz, M.; Szczurek-Wasilewicz, W.; Skrzypek, M.; Krych, S.; Gąsior, M.; Szyguła-Jurkiewicz, B. Albumin-Bilirubin (ALBI) Score Predicts Long-Term Survival in Elderly Patients with Decompensated Heart Failure. J. Clin. Med. 2025, 14, 808. [Google Scholar] [CrossRef]
- Kawata, T.; Ikeda, A.; Masuda, H.; Komatsu, S. Association Between Albumin-Bilirubin Score at Admission and In-Hospital Mortality in Patients with Acute Heart Failure. Int. Heart J. 2021, 62, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, Y.C.; Muslem, R.; Veen, K.M.; Soliman, O.I.; Manintveld, O.C.; Darwish Murad, S.; Kilic, A.; Constantinescu, A.A.; Brugts, J.J.; Alkhunaizi, F.; et al. Impact of preoperative liver dysfunction on outcomes in patients with left ventricular assist devices. Eur. J. Cardiothorac. Surg. 2020, 57, 920–928. [Google Scholar] [CrossRef]
- Yang, J.A.; Kato, T.S.; Shulman, B.P.; Takayama, H.; Farr, M.; Jorde, U.P.; Mancini, D.M.; Naka, Y.; Schulze, P.C. Liver dysfunction as a predictor of outcomes in patients with advanced heart failure requiring ventricular assist device support: Use of the Model of End-Stage Liver Disease (MELD) and MELD Excluding INR (MELD-XI) scoring system. J. Heart Lung Transplant. 2012, 31, 601–610. [Google Scholar] [CrossRef]
- Allen, L.A.; Felker, G.M.; Pocock, S.; McMurray, J.J.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; Granger, C.B.; et al. Liver function abnormalities and outcome in patients with chronic heart failure: Data from the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Eur. J. Heart Fail. 2009, 11, 170–177. [Google Scholar] [CrossRef]
- Horwich, T.B.; Kalantar-Zadeh, K.; MacLellan, R.W.; Fonarow, G.C. Albumin levels predict survival in patients with systolic heart failure. Am. Heart J. 2008, 155, 883–889. [Google Scholar] [CrossRef]
- Samsky, M.D.; Patel, C.B.; DeWald, T.A.; Smith, A.D.; Felker, G.M.; Rogers, J.G.; Hernandez, A.F. Cardiohepatic interactions in heart failure: An overview and clinical implications. J. Am. Coll. Cardiol. 2013, 61, 2397–2405. [Google Scholar] [CrossRef]
- Kato, T.S.; Kitada, S.; Yang, J.; Wu, C.; Takayama, H.; Naka, Y.; Farr, M.; Mancini, D.M.; Schulze, P.C. Relation of preoperative serum albumin levels to survival in patients undergoing left ventricular assist device implantation. Am. J. Cardiol. 2013, 112, 1484–1488. [Google Scholar] [CrossRef] [PubMed]
- Gopal, D.J.; Hanff, T.C.; Mazurek, J.A.; Grandin, W.E.; Howard, J.; Forde-McLean, R.; Wald, J.; King, K.; Acker, M.A.; Goldberg, L.R.; et al. Prognostic Implications of Changes in Albumin Following Left Ventricular Assist Device Implantation in Patients with Severe Heart Failure. Am. J. Cardiol. 2017, 120, 2003–2007. [Google Scholar] [CrossRef]
- Shiga, T.; Kinugawa, K.; Hatano, M.; Yao, A.; Nishimura, T.; Endo, M.; Kato, N.; Hirata, Y.; Kyo, S.; Ono, M.; et al. Age and preoperative total bilirubin level can stratify prognosis after extracorporeal pulsatile left ventricular assist device implantation. Circ. J. 2011, 75, 121–128. [Google Scholar] [CrossRef]
- Qing, P.; Zhao, S.; Zhou, X.; Du, J.; Zou, L.; Duan, F.; Chen, H.; Wang, X.; Hu, S. A Predictive Marker for Right Heart Failure After Left Ventricular Assist Device Implantation: The Direct Bilirubin to Total Bilirubin Ratio. ASAIO J. 2025, 71, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, A.N.; Ternus, B.W.; Pahwa, S.; Stulak, J.M.; Clavell, A.L.; Schettle, S.D.; Behfar, A.; Jentzer, J.C. Risk of Liver Dysfunction After Left Ventricular Assist Device Implantation. Ann. Thorac. Surg. 2021, 111, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- Cowger, J.; Shah, P.; Stulak, J.; Maltais, S.; Aaronson, K.D.; Kirklin, J.K.; Pagani, F.D.; Salerno, C. INTERMACS profiles and modifiers: Heterogeneity of patient classification and the impact of modifiers on predicting patient outcome. J. Heart Lung Transplant. 2016, 35, 440–448. [Google Scholar] [CrossRef]
- Cowger, J.; Sundareswaran, K.; Rogers, J.G.; Park, S.J.; Pagani, F.D.; Bhat, G.; Jaski, B.; Farrar, D.J.; Slaughter, M.S. Predicting survival in patients receiving continuous flow left ventricular assist devices: The HeartMate II risk score. J. Am. Coll. Cardiol. 2013, 61, 313–321. [Google Scholar] [CrossRef]
- Adamo, L.; Nassif, M.; Tibrewala, A.; Novak, E.; Vader, J.; Silvestry, S.C.; Itoh, A.; Ewald, G.A.; Mann, D.L.; LaRue, S.J. The Heartmate Risk Score predicts morbidity and mortality in unselected left ventricular assist device recipients and risk stratifies INTERMACS class 1 patients. JACC Heart Fail. 2015, 3, 283–290. [Google Scholar] [CrossRef]
- Vincent, J.D.; Ramsay, A.; Lambert, D.S.; Deych, E.; Pico, A.M.; Coglianese, E.; Vader, J.M.; Yang, B.Q. Predictive Accuracy of HeartMate 3 Risk Score After the Heart Transplant Allocation Change. ASAIO J. 2025, 71, e104–e106. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Testani, J.M.; Martens, P.; Mueller, C.; Lassus, J.; Tang, W.H.W.; Skouri, H.; Verbrugge, F.H.; Orso, F.; et al. Evaluation of kidney function throughout the heart failure trajectory—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 584–603. [Google Scholar] [CrossRef]
- Critsinelis, A.; Kurihara, C.; Volkovicher, N.; Kawabori, M.; Sugiura, T.; Manon, M.; Wang, S.; Civitello, A.B.; Morgan, J.A. Model of End-Stage Liver Disease-eXcluding International Normalized Ratio (MELD-XI) Scoring System to Predict Outcomes in Patients Who Undergo Left Ventricular Assist Device Implantation. Ann. Thorac. Surg. 2018, 106, 513–519. [Google Scholar] [CrossRef]
- George, T.J.; Van Dinter, T.; Rawitscher, D.; DiMaio, J.M.; Kabra, N.; Afzal, A. Impact of Preoperative Liver Function on Short-Term HeartMate 3 Outcomes. Am. J. Cardiol. 2022, 183, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Saint Croix, G.R.; Lacy, S.; Chaparro, S. Impact of Renal Dysfunction on Outcomes after Left Ventricular Assist Device: A Systematic Review. Int. J. Heart Fail. 2020, 3, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Naftel, D.C.; Kormos, R.L.; Pagani, F.D.; Myers, S.L.; Stevenson, L.W.; Givertz, M.M.; Young, J.B. Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. J. Heart Lung Transplant. 2013, 32, 1205–1213. [Google Scholar] [CrossRef]
- Quader, M.; Goodreau, A.M.; Johnson, R.M.; Wolfe, L.G.; Feldman, G.M. Impact of renal function recovery utilizing left ventricular assist device support. J. Card. Surg. 2020, 35, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Hasin, T.; Topilsky, Y.; Schirger, J.A.; Li, Z.; Zhao, Y.; Boilson, B.A.; Clavell, A.L.; Rodeheffer, R.J.; Frantz, R.P.; Edwards, B.S.; et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J. Am. Coll. Cardiol. 2012, 59, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Kovvuru, K.; Kanduri, S.R.; Thongprayoon, C.; Bathini, T.; Vallabhajosyula, S.; Kaewput, W.; Mao, M.A.; Cheungpasitporn, W.; Kashani, K.B. Recovery after acute kidney injury requiring kidney replacement therapy in patients with left ventricular assist device: A meta-analysis. World J. Crit. Care Med. 2021, 10, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, D.; Sakaguchi, T.; Saito, S.; Miyagawa, S.; Nishi, H.; Yoshikawa, Y.; Fukushima, S.; Saito, T.; Daimon, T.; Ueno, T.; et al. Predictor of early mortality for severe heart failure patients with left ventricular assist device implantation: Significance of INTERMACS level and renal function. Circ. J. 2012, 76, 1631–1638. [Google Scholar] [CrossRef]
- Tromp, T.R.; de Jonge, N.; Joles, J.A. Left ventricular assist devices: A kidney’s perspective. Heart Fail. Rev. 2015, 20, 519–532. [Google Scholar] [CrossRef]
- Ross, D.W.; Stevens, G.R.; Wanchoo, R.; Majure, D.T.; Jauhar, S.; Fernandez, H.A.; Merzkani, M.; Jhaveri, K.D. Left Ventricular Assist Devices and the Kidney. Clin. J. Am. Soc. Nephrol. 2018, 13, 348–355. [Google Scholar] [CrossRef]
- Krishnan, M. Preoperative care of patients with kidney disease. Am. Fam. Physician 2002, 66, 1471–1476. [Google Scholar] [PubMed]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tănase, C. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J. Immunol. Res. 2018, 2018, 2180373. [Google Scholar] [CrossRef] [PubMed]
- Lakhdar, S.; Nassar, M.; Buttar, C.; Guzman Perez, L.M.; Akbar, S.; Zafar, A.; Munira, M. Outcomes with Left Ventricular Assist Device in End-Stage Renal Disease: A Systematic Review. Cureus 2022, 14, e24227. [Google Scholar] [CrossRef]
- Radhoe, S.P.; Veenis, J.F.; Jakus, N.; Timmermans, P.; Pouleur, A.C.; Rubís, P.; Van Craenenbroeck, E.M.; Gaizauskas, E.; Barge-Caballero, E.; Paolillo, S.; et al. How does age affect outcomes after left ventricular assist device implantation: Results from the PCHF-VAD registry. ESC Heart Fail. 2023, 10, 884–894. [Google Scholar] [CrossRef]
- Flint, K.M.; Matlock, D.D.; Lindenfeld, J.; Allen, L.A. Frailty and the selection of patients for destination therapy left ventricular assist device. Circ. Heart Fail. 2012, 5, 286–293. [Google Scholar] [CrossRef]
- Emerson, D.; Chikwe, J.; Catarino, P.; Hassanein, M.; Deng, L.; Cantor, R.S.; Roach, A.; Cole, R.; Esmailian, F.; Kobashigawa, J.; et al. Contemporary Left Ventricular Assist Device Outcomes in an Aging Population: An STS INTERMACS Analysis. J. Am. Coll. Cardiol. 2021, 78, 883–894. [Google Scholar] [CrossRef]
- Goldstein, D.J.; Mehra, M.R.; Naka, Y.; Salerno, C.T.; Uriel, N.; Dean, D.; Itoh, A.; Pagani, F.D.; Skipper, E.R.; Bhat, G.; et al. The impact of age, sex, therapeutic intent, race, and severity of advanced heart failure on short-term principal outcomes in the MOMENTUM 3 trial. J. Heart Lung Transplant. 2020, 39, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Nayak, A.; Morris, A.A.; Lanfear, D.E.; Nemeh, H.; Desai, S.; Bansal, A.; Guerrero-Miranda, C.; Hall, S.; Cleveland, J.C., Jr.; et al. Prediction of Survival After Implantation of a Fully Magnetically Levitated Left Ventricular Assist Device. JACC Heart Fail. 2022, 10, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Akin, S.; Soliman, O.; de By, T.M.M.H.; Muslem, R.; Tijssen, J.G.P.; Schoenrath, F.; Meyns, B.; Gummert, J.F.; Mohacsi, P.; Caliskan, K.; et al. Causes and predictors of early mortality in patients treated with left ventricular assist device implantation in the European Registry of Mechanical Circulatory Support (EUROMACS). Intensive Care Med. 2020, 46, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
All Included Patients N = 95 | Nonsurvival N = 46 1 | Survival N = 49 1 | p 2 | |
---|---|---|---|---|
Baseline data | ||||
Age, years | 57.9 (47.2–63.8) | 53.3 (40.2–61.3) | 61.5 (56.3–65.0) | 0.006 |
Male, n (%) | 87 (91.6%) | 42 (91.3%) | 45 (91.8%) | 0.9 |
Ischemic etiology of HF, n (%) | 55 (57.9%) | 20 (43.5%) | 35 (71.4%) | 0.006 |
nsVT before LVAD, n (%) | 34 (35.8%) | 15 (32.6%) | 19 (38.8%) | 0.5 |
nsVT after LVAD, n (%) | 17 (17.9%) | 8 (17.4%) | 9 (18.4%) | 0.9 |
Electrical storm in the interview, n (%) | 10 (10.5%) | 4 (8.7%) | 6 (12.2%) | 0.7 |
ASA resistance, n (%) | 26 (27.4%) | 12 (26.1%) | 14 (28.6%) | 0.8 |
BMI, kg/m2 | 29.0 (24.6–32.7) | 27.6 (23.9–32.7) | 29.2 (25.2, 33.1) | 0.4 |
NYHA III, n (%) | 24 (25.3%) | 9 (19.6%) | 15 (30.6%) | 0.2 |
NYHA IV, n (%) | 71 (74.7%) | 37 (80.4%) | 34 (69.4%) | 0.2 |
Comorbidities | ||||
Hypertension, n (%) | 33 (34.7%) | 10 (21.7%) | 23 (46.9%) | 0.010 |
Type 2 diabetes, n (%) | 39 (41.1%) | 13 (28.3%) | 26 (53.1%) | 0.014 |
AF, n (%) | 47 (49.5%) | 17 (37.0%) | 30 (61.2%) | 0.018 |
COPD, n (%) | 7 (7.4%) | 2 (4.3%) | 5 (10.2%) | 0.4 |
Stroke after LVAD, n (%) | 11 (11.6%) | 6 (13.0%) | 5 (10.2%) | 0.7 |
Device infection, n (%) | 3 (3.2%) | 2 (4.3%) | 1 (2.0%) | 0.6 |
Laboratory findings | ||||
WBC, × 109/L | 8.8 (7.2–11.3) | 8.6 (7.3–9.8) | 9.5 (7.2, 12.5) | 0.2 |
Lymphocyte, × 109/L | 1.4 (1.1–2.1) | 1.6 (1.2–2.2) | 1.3 (1.0–1.8) | 0.016 |
RLC, % | 16.9 (10.7–21.8) | 18.9 (13.6–24.4) | 14.4 (8.8–20.2) | 0.008 |
Platelets, × 109/L | 198.0 (151.0–250.0) | 198.5 (161.0–257.0) | 198.0 (134.0–243.0) | 0.2 |
Hemoglobin, mmol/L | 13.0 (2.22) | 13.3 (2.2) | 12.8 (2.3) | 0.3 |
Glucose, mmol/L | 106.3 (93.7–136.9) | 106.3 (92.8–127.9) | 106.3 (95.5–140.6) | 0.5 |
HBA1c, % | 5.7 (5.4–6.7) | 5.6 (5.4–6.5) | 5.9 (5.4–6.7) | 0.5 |
Creatinine on admission, mg/dL | 1.4 (1.1–1.7) | 1.3 (1.0–1.9) | 1.5 (1.1–1.9) | 0.3 |
Creatinine on discharge, mg/dL | 0.9 (0.8–1.2) | 0.8 (0.8–1.2) | 1.0 (0.8–1.6) | 0.023 |
Bilirubin on admission, μmol/L | 25.4 (15.2–38.0) | 28.0 (19.3–37.3) | 20.2 (13.9–38.2) | 0.2 |
Bilirubin on discharge, μmol/L | 10.7 (6.9–16.4) | 10.7 (7.4–14.8) | 11.6 (6.9–20.4) | 0.4 |
Preoperative ALBI score | −2.7 (−2.54–(−1.9) | −2.4 (−2.7)–(−2.1) | −2.1 (−2.42)–(−1.7) | 0.006 |
Albumin on admission, g/L | 44.0 (41.0–46.0) | 39.5 (35.0–43.0) | 40.0 (34.0–45.0) | 0.5 |
Albumin on discharge, g/L | 34.0 (31.0–38.0) | 36.0 (33.0–39.0) | 33.0 (27.0–36.0) | 0.005 |
CRP/bilirubin on discharge | 0.4 (0.2–0.95) | 0.4 (0.2–1.1) | 0.4 (0.2–0.7) | 0.3 |
Urea, µmol/L | 11.3 (8.1–16.8) | 9.6 (6.2–16.3) | 12.9 (9.6–16.8) | 0.061 |
AST, U/L | 34.0 (25.0–47.0) | 39.5 (27.0–49.0) | 31.0 (25.0–41.0) | 0.2 |
ALT, U/L | 28.0 (19.0–51.0) | 37.5 (21.0–61.0) | 23.0 (17.0–34.0) | 0.043 |
Cholesterol, mmol/L | 4.3 (3.9–4.9) | 3.3 (2.6–4.1) | 3.3 (2.6–4.6) | 0.4 |
hs-CRP, mg/L | 2.3 (1.9–5.1) | 5.9 (1.8–13.5) | 4.9 (3.2–9.6) | 0.7 |
Sodium, mmol/L | 135.0 (133.0–138.0) | 134.5 (131.0–138.0) | 135.0 (132.0–139.0) | 0.6 |
LogNTproBNP, pg/mL | 8.23 (0.84) | 8.07 (0.77) | 8.38 (0.88) | 0.067 |
Echocardiographic parameters | ||||
LA, mm | 52.4 (9.1) | 54.4 (8.9) | 50.7 (8.9) | 0.085 |
RVEDd 4CH, mm | 41.0 (39.0–44.0) | 41.0 (39.0–44.0) | 40.0 (38.0–44.0) | 0.2 |
RVEDd M-mode, mm | 33.0 (31.0–40.0) | 33.0 (30.5–45.0) | 33.0 (31.0–39.0) | 0.5 |
TAPSE, mm | 14.0 (9.0–17.0) | 16.4 (3.9) | 16.0 (3.6) | 0.6 |
RVSP, mmHg | 43.4 (14.8) | 44.5 (32.5–54.0) | 40.0 (30.0–53.0) | 0.8 |
LVEDd, mm | 77.2 (10.7) | 78.4 (11.3) | 76.1 (9.9) | 0.3 |
LVEF, % | 15.0 (12.0–18.0) | 19.5 (15.0–20.0) | 20.0 (17.0–20.0) | 0.8 |
Cardiac medication on admission, n (%) | ||||
Inotropic support before LVAD implantation, n (%) | 86 (90.5%) | 44 (95.7%) | 42 (85.7%) | 0.2 |
B-blockers, n (%) | 92 (96.8%) | 46 (100.0%) | 46 (93.9%) | 0.2 |
ACEI, ARB/ARNI n (%) | 67 (70.5%) | 34 (73.9%) | 33 (67.3%) | 0.5 |
MRA, n (%) | 92 (96.8%) | 43 (93.5%) | 49 (100.0%) | 0.11 |
SGLT2, n (%) | 33 (34.7%) | 21 (45.7%) | 12 (24.5%) | 0.03 |
Sildenafil, n (%) | 91 (95.8%) | 44 (95.7%) | 47 (95.9%) | 0.9 |
Digoxin, n (%) | 49 (51.6%) | 28 (60.9%) | 21 (42.9%) | 0.079 |
Cordarone, n (%) | 41 (43.2%) | 18 (39.1%) | 23 (46.9%) | 0.4 |
ASA, n (%) | 66 (69.5%) | 31 (67.4%) | 35 (71.4%) | 0.7 |
Clopidogrel, n (%) | 24 (25.3%) | 15 (32.6%) | 14 (28.6%) | 0.7 |
VKA, n (%) | 95 (100.0%) | 46 (100) | 49 (100) | |
ICD, n (%) | 30 (31.6%) | 11 (23.9%) | 19 (38.8%) | 0.12 |
CRT-D, n (%) | 45 (47.4%) | 20 (43.5%) | 25 (51.0%) | 0.5 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Parameter | HR (95% CI) | p | HR (95% CI) | P |
Age | 1.047 (1.018–1.076) | 0.001 | 1.044 (1.011–1.078) | 0.008 |
Ischemic etiology of HF | 0.408 (0.219–0.761) | 0.005 | ||
Hypertension | 1.661 (0.947–2.914) | 0.077 | ||
Type 2 diabetes | 1.547 (0.882–2.716) | 0.13 | ||
AF | 1.761 (0.990–3.133) | 0.054 | ||
COPD | 1.668 (0.660–4.212) | 0.3 | ||
RLC | 0.982 (0.948–1.018) | 0.3 | ||
Bilirubin | 1.029 (1.019–1.040) | <0.001 | ||
Creatinine | 2.327 (1.351–4.010) | 0.002 | 3.403 (2.050–5.648) | <0.001 |
ALBI | 4.242 (2.506–7.182) | <0.001 | 4.981 (2.791–8.890) | <0.001 |
logNTproBNP | 1.821 (1.223–2.711) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niklewski, T.; Jurkiewicz, M.; Szczurek-Wasilewicz, W.; Szyguła-Jurkiewicz, B.; Skrzypek, M.; Przybyłowski, P.; Hrapkowicz, T. Preoperative Albumin–Bilirubin (ALBI) Score Is the Strongest Predictor of Mortality After LVAD Implantation. Biomedicines 2025, 13, 2449. https://doi.org/10.3390/biomedicines13102449
Niklewski T, Jurkiewicz M, Szczurek-Wasilewicz W, Szyguła-Jurkiewicz B, Skrzypek M, Przybyłowski P, Hrapkowicz T. Preoperative Albumin–Bilirubin (ALBI) Score Is the Strongest Predictor of Mortality After LVAD Implantation. Biomedicines. 2025; 13(10):2449. https://doi.org/10.3390/biomedicines13102449
Chicago/Turabian StyleNiklewski, Tomasz, Michał Jurkiewicz, Wioletta Szczurek-Wasilewicz, Bożena Szyguła-Jurkiewicz, Michał Skrzypek, Piotr Przybyłowski, and Tomasz Hrapkowicz. 2025. "Preoperative Albumin–Bilirubin (ALBI) Score Is the Strongest Predictor of Mortality After LVAD Implantation" Biomedicines 13, no. 10: 2449. https://doi.org/10.3390/biomedicines13102449
APA StyleNiklewski, T., Jurkiewicz, M., Szczurek-Wasilewicz, W., Szyguła-Jurkiewicz, B., Skrzypek, M., Przybyłowski, P., & Hrapkowicz, T. (2025). Preoperative Albumin–Bilirubin (ALBI) Score Is the Strongest Predictor of Mortality After LVAD Implantation. Biomedicines, 13(10), 2449. https://doi.org/10.3390/biomedicines13102449