Optical, Structural, and Biological Characteristics of Rapid-Sintered Multichromatic Zirconia
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- (a)
- Control group (samples denoted as CS), obtained by conventional sintering with heating and cooling as follows:
- -
- Specimens were heated with a heating rate, ΔT/Δt = 10 °C/min up to T = 1550 °C, followed by holding for 2 h at that temperature, and then cooled for 153 min with a cooling rate of 10 °C/min to 20 °C before removing from the furnace. The total sintering time was 7 h.
- (b)
- Experimental group (samples denoted as SS), obtained by speed sintering, were subjected to the followed protocols:
- -
- Specimens were heated with a heating rate 50 °C/min up to 1400 °C, then with 4 °C/min up to a temperature of 1500 °C, and then, for the last 16 min, with 10 °C/min up to 1560 °C. Cooling was carried out with a cooling rate of 50 °C/min down to 800 °C, dwelling for 5 min, when the specimens were removed from the furnace and left to cool down to room temperature (for approximately 15 min). The total sintering time was 90 min.
- (a)
- Polished specimens underwent dry polishing, performed with SagemaxNexxZr (Sagemax Bioceramics, Federal Way, WA, USA) Shine Kit diamond rubber polishers (rubber polishers for pre-polishing and high-gloss polish with diamond paste).
- (b)
- Glazed specimens underwent transparent aluminosilicate glass deposition on a surface.
2.2. Color Measurements
2.3. X-Ray Diffraction (XRD)
2.4. Physical Analysis: Contact Angle Measurements
2.5. Biocompatibility Evaluation of Human Gingival Fibroblasts
3. Results
3.1. Optical Properties
3.1.1. Differences in Total Color Change in Speed-Sintered Samples
3.1.2. Differences in L* and C* Values
3.2. The Crystal Structure of Sintered Katana STML Samples
3.3. Contact Angle Measurements
3.4. Comparable Cell Viability and Attachment on Polished and Glazed Zirconia Surfaces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, M.-G. Effect of Low-Temperature Degradation Treatment on Hardness, Color, and Translucency of Single Layers of Multilayered Zirconia. J. Prosthet. Dent. 2023, 133, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Kohorst, P.; Borchers, L.; Strempel, J.; Stiesch, M.; Hassel, T.; Bach, F.-W.; Hübsch, C. Low-Temperature Degradation of Different Zirconia Ceramics for Dental Applications. Acta Biomater. 2012, 8, 1213–1220. [Google Scholar] [CrossRef]
- Manziuc, M.; Gasparik, C.; Negucioiu, M.; Constantiniuc, M.; Alexandru, B.; Vlas, I.; Dudea, D. Optical Properties of Translucent Zirconia: A Review of the Literature. EuroBiotech J. 2019, 3, 45–51. [Google Scholar] [CrossRef]
- Benalcázar Jalkh, E.; Bergamo, E.; Campos, T.; Coelho, P.; Sailer, I.; Yamaguchi, S.; Alves, L.; Witek, L.; Tebcherani, S.; Bonfante, E. A Narrative Review on Polycrystalline Ceramics for Dental Applications and Proposed Update of a Classification System. Materials 2023, 16, 7541. [Google Scholar] [CrossRef]
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.; Zhang, Y. New Multi-Layered Zirconias: Composition, Microstructure and Translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef]
- Cesar, P.F.; Miranda, R.B.d.P.; Santos, K.F.; Scherrer, S.S.; Zhang, Y. Recent Advances in Dental Zirconia: 15 Years of Material and Processing Evolution. Dent. Mater. 2024, 40, 824–836. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. The Effect of Extended Aging on the Optical Properties of Different Zirconia Materials. J. Prosthodont. Res. 2017, 61, 305–314. [Google Scholar] [CrossRef]
- Zhang, Y. Making Yttria-Stabilized Tetragonal Zirconia Translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef]
- Srinivasan, R.; Angelis, R.D.; Davis, B.H. Factors Influencing the Stability of the Tetragonal Form of Zirconia. J. Mater. Res. 1986, 1, 583–588. [Google Scholar] [CrossRef]
- Srinivasan, R.; Harris, M.B.; Simpson, S.F.; Angelis, R.J.D.; Davis, B.H. Zirconium Oxide Crystal Phase: The Role of the pH and Time to Attain the Final pH for Precipitation of the Hydrous Oxide. J. Mater. Res. 1988, 3, 787–797. [Google Scholar] [CrossRef]
- Li, Q.-L.; Jiang, Y.-Y.; Wei, Y.-R.; Swain, M.V.; Yao, M.-F.; Li, D.-S.; Wei, T.; Jian, Y.-T.; Zhao, K.; Wang, X.-D. The Influence of Yttria Content on the Microstructure, Phase Stability and Mechanical Properties of Dental Zirconia. Ceram. Int. 2022, 48, 5361–5368. [Google Scholar] [CrossRef]
- The Royal Society of Chemistry. Available online: https://www.rsc.org/ (accessed on 10 August 2024).
- Yoshida, M.; Hada, M.; Sakurada, O.; Morita, K. Transparent Tetragonal Zirconia Prepared by Sinter Forging at 950 °C. J. Eur. Ceram. Soc. 2023, 43, 2051–2056. [Google Scholar] [CrossRef]
- Xia, X. Computational Modelling Study of Yttria-Stabilized Zirconia. Ph.D. Thesis, University College London, London, UK, 2010. [Google Scholar]
- Aktas, B.; Das, R.; Aktas, H.G.; Uyar, E.; Yalcin, S.; Ergin, B.; Celik, Z.; Ulas, E.O. Additive Manufacturing of TiO2-Doped 3Y-ZrO2 Ceramics via DLP-3D Printing for Dental Implant Applications: Enhanced Mechanical Strength, Biocompatibility, and Antibacterial Performance. J. Alloys Compd. 2025, 1037, 182246. [Google Scholar] [CrossRef]
- Aktas, B.; Das, R.; Acıkgoz, A.; Ulas, E.O.; Demircan, G.; Uyar, E.; Celik, Z.; Ergin, B.; Aktas, H.G.; Yalcin, S.; et al. Fabrication of CaSiO3-Doped 3Y-ZrO2 Ceramics via DLP 3D Printing: Structural, Mechanical, and Biological Evaluation. J. Alloys Compd. 2025, 1036, 181895. [Google Scholar] [CrossRef]
- Khanlari, K.; Shi, Q.; Li, K.; Hu, K.; Tan, C.; Zhang, W.; Cao, P.; Achouri, I.E.; Liu, X. Fabrication of Ni-Rich 58NiTi and 60NiTi from Elementally Blended Ni and Ti Powders by a Laser Powder Bed Fusion Technique: Their Printing, Homogenization and Densification. Int. J. Mol. Sci. 2022, 23, 9495. [Google Scholar] [CrossRef]
- Daou, E.E. The Zirconia Ceramic: Strengths and Weaknesses. Open Dent. J. 2014, 8, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.M.; Troczynski, T.; McCullagh, A.P.; Wyatt, C.C.L.; Carvalho, R.M. The Influence of Altering Sintering Protocols on the Optical and Mechanical Properties of Zirconia: A Review. J. Esthet. Restor. Dent. 2019, 31, 423–430. [Google Scholar] [CrossRef]
- Alshahrani, A.M.; Lim, C.H.; Wolff, M.S.; Janal, M.N.; Zhang, Y. Current Speed Sintering and High-Speed Sintering Protocols Compromise the Translucency but Not Strength of Yttria-Stabilized Zirconia. Dent. Mater. 2024, 40, 664–673. [Google Scholar] [CrossRef]
- Kaizer, M.R.; Gierthmuehlen, P.C.; dos Santos, M.B.; Cava, S.S.; Zhang, Y. Speed Sintering Translucent Zirconia for Chairside One-Visit Dental Restorations: Optical, Mechanical, and Wear Characteristics. Ceram. Int. 2017, 43, 10999–11005. [Google Scholar] [CrossRef]
- Paravina, R.; Ghinea, R.I.; Herrera, L.; Della Bona, A.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Mar Perez, M.D. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Rabel, K.; Blankenburg, A.; Steinberg, T.; Kohal, R.J.; Spies, B.C.; Adolfsson, E.; Witkowski, S.; Altmann, B. Gingival Fibroblast Response to (Hybrid) Ceramic Implant Reconstruction Surfaces Is Modulated by Biomaterial Type and Surface Treatment. Dent. Mater. 2024, 40, 689–699. [Google Scholar] [CrossRef]
- Chu, S. Color in Dentistry a Clinical Guide to Predictable Esthetics. Stomatol. Edu J. 2018, 5, 129. [Google Scholar] [CrossRef]
- Halder, N.C.; Wagner, C.N.J. Separation of Particle Size and Lattice Strain in Integral Breadth Measurements. Acta Cryst. 1966, 20, 312–313. [Google Scholar] [CrossRef]
- Popović, A.S.; Miličić Lazić, M.; Mitić, D.; Rakočević, L.; Jugović, D.; Živković, P.; Grgur, B.N. Corrosion Stability and Biological Activity of Anodized cpTi for Dental Application. Metals 2025, 15, 817. [Google Scholar] [CrossRef]
- SEC. Available online: https://www.stevenabbott.co.uk/abbottapps/SEC/index.html (accessed on 14 August 2025).
- Cai, Y.; Tong, S.; Zhang, R.; Zhu, T.; Wang, X. In Vitro Evaluation of a Bone Morphogenetic Protein-2 Nanometer Hydroxyapatite Collagen Scaffold for Bone Regeneration. Mol. Med. Rep. 2018, 17, 5830–5836. [Google Scholar] [CrossRef]
- Ghinea, R.; Pérez, M.M.; Herrera, L.J.; Rivas, M.J.; Yebra, A.; Paravina, R.D. Color Difference Thresholds in Dental Ceramics. J. Dent. 2010, 38, e57–e64. [Google Scholar] [CrossRef]
- Ebeid, K.; Wille, S.; Hamdy, A.; Salah, T.; El-Etreby, A.; Kern, M. Effect of Changes in Sintering Parameters on Monolithic Translucent Zirconia. Dent. Mater. 2014, 30, e419–e424. [Google Scholar] [CrossRef]
- Pekkan, G.; Pekkan, K.; Bayindir, B.Ç.; Özcan, M.; Karasu, B. Factors Affecting the Translucency of Monolithic Zirconia Ceramics: A Review from Materials Science Perspective. Dent. Mater. J. 2020, 39, 1–8. [Google Scholar] [CrossRef]
- Kim, M.-J.; Ahn, J.-S.; Kim, J.-H.; Kim, H.-Y.; Kim, W.-C. Effects of the Sintering Conditions of Dental Zirconia Ceramics on the Grain Size and Translucency. J. Adv. Prosthodont. 2013, 5, 161–166. [Google Scholar] [CrossRef]
- Yıldırım, B.; Recen, D. Color Stability and Translucency of Two CAD-CAM Restorative Materials Subjected To Mechanical Polishing, Staining, and Prophylactic Paste Polishing Procedures. EÜ Dişhek Fak. Derg. 2021, 42, 1–8. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kim, S.-H.; Lee, J.-B.; Han, J.-S.; Yeo, I.-S. Effect of Polishing and Glazing on the Color and Spectral Distribution of Monolithic Zirconia. J. Adv. Prosthodont. 2013, 5, 296. [Google Scholar] [CrossRef]
- Kim, I.-J.; Lee, Y.-K.; Lim, B.-S.; Kim, C.-W. Effect of Surface Topography on the Color of Dental Porcelain. J. Mater. Sci. Mater. Med. 2003, 14, 405–409. [Google Scholar] [CrossRef]
- Inokoshi, M.; Shimizu, H.; Nozaki, K.; Takagaki, T.; Yoshihara, K.; Nagaoka, N.; Zhang, F.; Vleugels, J.; Van Meerbeek, B.; Minakuchi, S. Crystallographic and Morphological Analysis of Sandblasted Highly Translucent Dental Zirconia. Dent. Mater. 2018, 34, 508–518. [Google Scholar] [CrossRef]
- Itoh, T.; Mori, M.; Inukai, M.; Nitani, H.; Yamamoto, T.; Miyanaga, T.; Igawa, N.; Kitamura, N.; Ishida, N.; Idemoto, Y. Effect of Annealing on Crystal and Local Structures of Doped Zirconia Using Experimental and Computational Methods. J. Phys. Chem. C 2015, 119, 8447–8458. [Google Scholar] [CrossRef]
- Belli, R.; Hurle, K.; Schürrlein, J.; Petschelt, A.; Werbach, K.; Peterlik, H.; Rabe, T.; Mieller, B.; Lohbauer, U. Relationships between Fracture Toughness, Y2O3 Fraction and Phases Content in Modern Dental Yttria-Doped Zirconias. J. Eur. Ceram. Soc. 2021, 41, 7771–7782. [Google Scholar] [CrossRef]
- Mayinger, F.; Ender, A.; Strickstrock, M.; Elsayed, A.; Nassary Zadeh, P.; Zimmermann, M.; Stawarczyk, B. Impact of the Sintering Parameters on the Grain Size, Crystal Phases, Translucency, Biaxial Flexural Strength, and Fracture Load of Zirconia Materials. J. Mech. Behav. Biomed. Mater. 2024, 155, 106580. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.G. Phase Relationships in the Yttria-Rich Part of the Yttria-Zirconia System. J. Mater. Sci. 1977, 12, 311–316. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Liu, H.; Inokoshi, M.; Nozaki, K.; Shimizubata, M.; Nakai, H.; Cho Too, T.D.; Minakuchi, S. Influence of High-Speed Sintering Protocols on Translucency, Mechanical Properties, Microstructure, Crystallography, and Low-Temperature Degradation of Highly Translucent Zirconia. Dent. Mater. 2022, 38, 451–468. [Google Scholar] [CrossRef]
- Gibson, I.R.; Irvine, J.T.S. Qualitative X-Ray Diffraction Analysis of Metastable Tetragonal (T′) Zirconia. 2001. Available online: https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.2001.tb00708.x (accessed on 2 July 2025).
- Yamashita, I.; Tsukuma, K. Phase Separation and Hydrothermal Degradation of 3 Mol% Y2O3-ZrO2 Ceramics. J. Ceram. Soc. Jpn. 2005, 113, 530–533. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, M.; Pi, Z.; Zhang, F. Phase Equilibria and Non-Transformable Tetragonal Zirconia in ZrO2-RETaO4 Systems and Their Stabilization Mechanism: Experiments and Calculations. Ceram. Int. 2023, 49, 15969–15978. [Google Scholar] [CrossRef]
- Alves, L.M.M.; Contreras, L.P.C.; Bueno, M.G.; Campos, T.M.B.; Bresciani, E.; Valera, M.C.; de Melo, R.M. The Wear Performance of Glazed and Polished Full Contour Zirconia. Braz. Dent. J. 2019, 30, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Shin, S.-Y.; Moon, S.-K.; Yang, S.-M. Surface Properties Correlated with the Human Gingival Fibroblasts Attachment on Various Materials for Implant Abutments: A Multiple Regression Analysis. Acta Odontol. Scand. 2015, 73, 38–47. [Google Scholar] [CrossRef]
- Rutkunas, V.; Bukelskiene, V.; Sabaliauskas, V.; Balciunas, E.; Malinauskas, M.; Baltriukiene, D. Assessment of Human Gingival Fibroblast Interaction with Dental Implant Abutment Materials. J. Mater. Sci. Mater. Med. 2015, 26, 169. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.J.; Khang, G.; Lee, H.B. The Effect of Fluid Shear Stress on Endothelial Cell Adhesiveness to Polymer Surfaces with Wettability Gradient. J. Colloid Interface Sci. 2000, 230, 84–90. [Google Scholar] [CrossRef]
- Lee, S.J.; Khang, G.; Lee, Y.M.; Lee, H.B. The Effect of Surface Wettability on Induction and Growth of Neurites from the PC-12 Cell on a Polymer Surface. J. Colloid Interface Sci. 2003, 259, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Mordanov, O.; Khabadze, Z.; Meremkulov, R.; Saeidyan, S.; Golovina, V.; Kozlova, Z.; Fokina, S.; Kostinskaya, M.; Eliseeva, T. Effect of surface treatment protocols of zirconium dioxide multilayer restorations on functional properties of the human oral mucosa stromal cells. Georgian Med. News 2023, 345, 172–177. [Google Scholar]
- Janyavula, S.; Lawson, N.; Cakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. The Wear of Polished and Glazed Zirconia against Enamel. J. Prosthet. Dent. 2013, 109, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.S.; Anwar, E.M.; Elsharkawy, A.M.; Rabie, K.A. Wear of Enamel Antagonist to Polished vs Glazed Zirconia-Reinforced Lithium Silicate Crowns (Randomized Clinical Trial). J. Contemp. Dent. Pract. 2025, 26, 18–24. [Google Scholar] [CrossRef]
Layer | ΔE* | ΔL* | ΔC* | ΔH* | Δa* | Δb* | |
---|---|---|---|---|---|---|---|
Polished | Enamel | 3.013 | 2.453 | 1.621 | −0.659 | 0.444 | 1.692 |
Transition 1 | 1.643 | 0.511 | 1.544 | −0.227 | 0.095 | 1.558 | |
Transition 2 | 1.514 | 0.362 | 1.482 | −0.298 | 0.245 | 1.446 | |
Body | 1.496 | 0.600 | 1.337 | −0.298 | 0.326 | 1.331 | |
Glazed | Enamel | 2.580 | 1.593 | 1.888 | −0.747 | 0.345 | 2.000 |
Transition 1 | 1.528 | 0.168 | 1.466 | −0.398 | 0.196 | 1.506 | |
Transition 2 | 1.925 | −0.247 | 1.683 | −0.488 | 0.263 | 1.832 | |
Body | 2.196 | −0.925 | 2.256 | −0.274 | 0.244 | 2.259 |
Heating Rate (°C/min) | Phase | Lattice Parameters (Å) | Phase Fraction (wt.%) | Tetragonality, a | Crystallite Size, DXRD (nm) | Lattice Strain, ε (%) | |
---|---|---|---|---|---|---|---|
CS-Katana | 10 | Tetragonal (S.G. P42/nmc) | a = b = 3.633 (7) c = 5.124 (8) | 54 (8) | 0.997 | 17 ± 2 | 0 |
Cubic (S.G. Fm-3m) | a = b = c = 5.137 (7) | 46 (8) | |||||
SS-Katana | 50 | Tetragonal (T) | a = b = 3.627 (7) c = 5.157 (8) | 49 (3) | 1.005 | 19 ± 2 | 0.2 (2) |
Tetragonal (T1) | a = b = 3.615 (7) c = 5.168 (8) | 27 (2) | 1.011 | ||||
Cubic (C) | a = b = c = 5.189 (9) | 24 (4) |
Liquid | Sample | |
---|---|---|
Polished | Glazed | |
Water | 45.1 ± 1.2 | 32.3 ± 1.8 |
Ethylene glycol | 50.1 ± 3.1 | 28.1 ± 1.4 |
Diiodmethane | 42.6 ± 2.0 | 35.5 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miličić Lazić, M.; Jović Orsini, N.; Lazarević, M.; Jokanović, V.; Marjanović, V.; Grgur, B.N. Optical, Structural, and Biological Characteristics of Rapid-Sintered Multichromatic Zirconia. Biomedicines 2025, 13, 2361. https://doi.org/10.3390/biomedicines13102361
Miličić Lazić M, Jović Orsini N, Lazarević M, Jokanović V, Marjanović V, Grgur BN. Optical, Structural, and Biological Characteristics of Rapid-Sintered Multichromatic Zirconia. Biomedicines. 2025; 13(10):2361. https://doi.org/10.3390/biomedicines13102361
Chicago/Turabian StyleMiličić Lazić, Minja, Nataša Jović Orsini, Miloš Lazarević, Vukoman Jokanović, Vanja Marjanović, and Branimir N. Grgur. 2025. "Optical, Structural, and Biological Characteristics of Rapid-Sintered Multichromatic Zirconia" Biomedicines 13, no. 10: 2361. https://doi.org/10.3390/biomedicines13102361
APA StyleMiličić Lazić, M., Jović Orsini, N., Lazarević, M., Jokanović, V., Marjanović, V., & Grgur, B. N. (2025). Optical, Structural, and Biological Characteristics of Rapid-Sintered Multichromatic Zirconia. Biomedicines, 13(10), 2361. https://doi.org/10.3390/biomedicines13102361