Abnormal Fetal/Neonatal Lung Development Manifested as Some Functional Heart Abnormalities During the Third Trimester of Fetal Life
Abstract
1. Introduction
1.1. Historical Background
1.2. Pathophysiology of Neonatal Pulmonary Hypertension
1.3. Epidemiology and Clinical Impact
1.4. Rationale for Study
2. Materials and Methods
2.1. Study Design and Setting
2.2. Inclusion and Exclusion Criteria
- Underwent detailed third-trimester echocardiography (≥37 weeks gestation);
- Had a prenatal suspicion of coarctation of the aorta (CoA);
- Required neonatal hospitalization exceeding 10 days, without undergoing cardiac surgery or catheterization in the neonatal period.
- Lack of complete prenatal or postnatal records;
- Cases with confirmed structural congenital heart disease including true CoA;
- Cases with severe extracardiac anomalies leading to neonatal death unrelated to PH.
2.3. Echocardiographic Protocol
- Four-chamber view (for ventricular and atrial dimensions, heart-to-chest ratio).
- Outflow tract views (right and left ventricular outflow tracts).
- Three-vessel and trachea (3VT) view (for comparison of aortic and pulmonary artery diameters).
- Doppler assessments of tricuspid and pulmonary regurgitation, ductus arteriosus flow velocity, and pulmonary artery acceleration time (PAT).
2.4. Data Collection and Analysis
- Gestational age at delivery and birth weight;
- Neonatal echocardiography findings right ventricular systolic pressure-RVSP, pulmonary artery pressure-PAP, septal position, shunt direction, valve regurgitation);
- Respiratory support requirements (oxygen therapy, continuous positive airway pressure-CPAP, mechanical ventilation, iNO);
- Other medical therapies (e.g., sildenafil, milrinone);
- Duration of neonatal hospitalization;
- Survival and postmortem findings when applicable.
3. Results
3.1. Cohort Description
3.2. Prenatal Echocardiographic Findings
- Ventricular disproportion: observed in seven out of eight cases, typically with right-sided dominance.
- Atrial disproportion: present in six out of eight cases, also favoring the right atrium.
- Three-vessel view (3VV) disproportion: evident in all eight out of eight cases, with a consistently enlarged pulmonary artery compared to the aorta.
- Main pulmonary artery (MPA) dilation: a mean diameter of 10.2 ± 2.2 mm, corresponding to a Z-score of +2.7 ± 1.3, indicating significant enlargement.
- Valve regurgitation: all fetuses showed tricuspid regurgitation with velocities ranging from 2.0 to 3.6 m/s; four out of eight had concomitant pulmonary regurgitation.
- Interventricular septal hypertrophy: identified in five out of eight cases, with IVS > 4.5 mm.
- Aortic isthmus narrowing: present in several fetuses, raising suspicion of CoA prenatally, although this was not confirmed postnatally.
- Ductus arteriosus Doppler: flows were generally patent, with mildly elevated velocities (mean 142 ± 14 cm/s) but without definitive restriction.
3.3. Postnatal Outcomes
- Day 1: All eight infants demonstrated echocardiographic signs suggestive of CoA (narrowed aortic isthmus, right-sided dilation, and abnormal DA flow). Each received prostaglandin E1 (0.01 μg/kg/min for 3–5 days) to maintain ductal patency. None developed severe hypoxemia requiring immediate ECMO.
- Subsequent course: Serial echocardiography revealed regression of tricuspid regurgitation, interventricular septal hypertrophy, and MPA dilation in survivors. Shunting across the FO and DA normalized as pulmonary pressures gradually decreased.
- Therapies: All infants required supplemental oxygen and CPAP; three received inhaled nitric oxide, and two additionally received sildenafil. The mean duration of hospitalization was 25 ± 11 days (range: 13–50 days).
- Outcomes: Three neonates died-one with confirmed trisomy 18, one with necrotizing enterocolitis (NEC), and one with severe cardiopulmonary compromise. Five infants survived, all discharged home after improvements in PH with medical management (Table 2).
3.4. Comorbidities
- Trisomy 18 (Case 4): The only chromosomal anomaly in the cohort; this infant also had PH and did not survive.
- Bilateral superior vena cava (Case 8): Associated with prolonged hospital stay (50 days) and NEC.
- Meconium peritonitis and abdominal distension (Case 6): This infant died postnatally despite colostomy.
- Meconium aspiration syndrome (Case 5): Complicated the neonatal course but the infant survived.
4. Discussion
4.1. Interpretation of Findings
4.2. Placental and Maternal Factors
4.3. Comparison with Previous Studies
4.4. Clinical Implications
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donn, S.M. Persistent pulmonary hypertension of the newborn: Historical perspectives. Semin. Fetal Neonatal Med. 2022, 27, 101323. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.R.; Ryan, G.; Seed, M.; van Arsdell, G.; Jaeggi, E.T. Fetal stenting of the atrial septum: Technique and initial results in cardiac lesions with left atrial hypertension. Int. J. Cardiol. 2013, 168, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Herberg, U.; Berg, C.; Geipel, A.; Gembruch, U.; Breuer, J. Foetal therapy: What works? Closed interatrial septum. Cardiol. Young 2014, 24 (Suppl. 2), 47–54. [Google Scholar] [CrossRef] [PubMed]
- Uzun, O.; Babaoglu, K.; Ayhan, Y.I.; Moselhi, M.; Rushworth, F.; Morris, S.; Beattie, B.; Wiener, J.; Lewis, M.J. Diagnostic ultrasound features and outcome of restrictive foramen ovale in fetuses with structurally normal hearts. Pediatr. Cardiol. 2014, 35, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E.H. Acceleration of fetal pulmonary maturity. Obstet. Gynecol. 1981, 58 (Suppl. 5), 48S–51S. [Google Scholar] [PubMed]
- Lacaze-Masmonteil, T. Corticothérapie anténatale et accélération de la maturation foetale. II. Résultats des applications cliniques Prénatal corticotherapy and acceleration of fetal maturation. II. Results of clinical applications. Arch. Pediatr. 1996, 3, 1119–1128. (In French) [Google Scholar] [CrossRef] [PubMed]
- Shyu, M.K.; Shih, J.C.; Lee, C.N.; Hwa, H.L.; Chow, S.N.; Hsieh, F.J. Correlation of prenatal ultrasound and postnatal outcome in meconium peritonitis. Fetal Diagn. Ther. 2003, 18, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.D.; Hernandez-Diaz, S.; Van Marter, L.J.; Werler, M.M.; Louik, C.; Jones, K.L.; Mitchell, A.A. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N. Engl. J. Med. 2006, 354, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Bałkowiec-Iskra, E.; Mirowska-Guzel, D.M.; Wielgoś, M. Effect of antidepressants in pregnancy on fetus development and adverse effects in newborns. Ginekol. Pol. 2017, 88, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, K.L.; Poole, S.D.; Hamdan, A.; Minton, P.A.; Sundell, H.W. Prenatal nicotine exposure transiently alters the lung mechanical response to hypoxia in young lambs. Respir. Physiol. Neurobiol. 2007, 156, 283–292. [Google Scholar] [CrossRef] [PubMed]
- DeKoninck, P.; Lewi, P.; Done, E.; Richter, J.; Gucciardo, L.; Van Mieghem, T.; Deprest, J.A. Sonographic evaluation of vascular pulmonary reactivity following oxygen administration in fetuses with normal lung development. PrenatDiagn 2012, 32, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Papamatheakis, D.G.; Blood, A.B.; Kim, J.H.; Wilson, S.M. Antenatal hypoxia and pulmonary vascular function and remodeling. Curr. Vasc. Pharmacol. 2013, 11, 616–640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saadoon, A.; Ambalavanan, N.; Zinn, K.; Ashraf, A.P.; MacEwen, M.; Nicola, T.; Fanucchi, M.V.; Harris, W.T. Effect of Prenatal versus Postnatal Vitamin D Deficiency on Pulmonary Structure and Function in Mice. Am. J. Respir. Cell Mol. Biol. 2017, 56, 383–392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zielinsky, P.; Busato, S. Prenatal effects of maternal consumption of polyphenol-rich foods in late pregnancy upon fetal ductus arteriosus. Birth Defects Res. C Embryo Today 2013, 99, 256–274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Afolayan, A.J.; Eis, A.; Alexander, M.; Michalkiewicz, T.; Teng, R.J.; Lakshminrusimha, S.; Konduri, G.G. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L40–L49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nandula, P.S.; Shah, S.D. Persistent Pulmonary Hypertension of the Newborn. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Zhou, R.; Zheng, Y.N.; Zhang, X.Y.; Cheng, Y.Y. A Meta-Analysis of the Risk Factors of Persistent Pulmonary Hypertension in Newborns. Front. Pediatr. 2021, 9, 659137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scher, M.S. “The First Thousand Days” Define a Fetal/Neonatal Neurology Program. Front. Pediatr. 2021, 9, 683138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernandez-Andrade, E.; Huntley, E.S.; Bartal, M.F.; Soto-Torres, E.E.; Tirosh, D.; Jaiman, S.; Johnson, A. Doppler evaluation of normal and abnormal placenta. Ultrasound Obstet. Gynecol. 2022, 60, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Mestan, K.K.; Check, J.; Minturn, L.; Yallapragada, S.; Farrow, K.N.; Liu, X.; Su, E.; Porta, N.; Gotteiner, N.; Ernst, L.M. Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta 2014, 35, 570–574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romanowicz, H.; Czichos, E.; Zych-Krekora, K.; Krekora, M.; Słodki, M.; Respondek-Liberska, M. Retrospective analysis of prenatal echocardiography findings in cases of congenital heart defects: Comparison with postnatal pulmonary hypertension revealed by lungs histopathology (2010–2015). Prenat. Cardiol. 2015, 5, 12–18. [Google Scholar] [CrossRef]
- Murlewska, J.; Sylwestrzak, O.; Respondek-Liberska, M. Unfavorable postnatal outcome with significant dilation of the fetal main pulmonary near term. Birth Defects Res. 2021, 113, 55–62. [Google Scholar] [CrossRef]
- Słodki, M. Differential diagnosis in disproportion in four-chamber view in fetus in late pregnancy-Challenging dilemma. Echocardiography 2024, 41, e15803. [Google Scholar] [CrossRef] [PubMed]
- van Nisselrooij, A.E.L.; Rozendaal, L.; Linskens, I.H.; Clur, S.A.; Hruda, J.; Pajkrt, E.; van Velzen, C.L.; Blom, N.A.; Haak, M.C. Postnatal outcome of fetal isolated ventricular size disproportion in the absence of aortic coarctation. Ultrasound Obstet. Gynecol. 2018, 52, 593–598. [Google Scholar] [CrossRef]
- Abman, S.H.; Mullen, M.P.; Sleeper, L.A.; Austin, E.D.; Rosenzweig, E.B.; Kinsella, J.P.; Ivy, D.; Hopper, R.K.; Raj, J.U.; Fineman, J.; et al. Pediatric Pulmonary Hypertension Network Characterisation of pediatric pulmonary hypertensive vascular disease from the PPHNet Registry. Eur. Respir. J. 2021, 59, 2003337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sosa-Olavarria, A.; Zurita-Peralta, J.; Schenone, C.V.; Schenone, M.H.; Prieto, F. Doppler evaluation of the fetal pulmonary artery pressure. J. Perinat. Med. 2019, 47, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.C.; Ye, F.L.; Zheng, X.Z. Fetal pulmonary artery stiffness is a strong predictor of persistent pulmonary hypertension of the newborn—An echocardiographic study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 289, 60–64. [Google Scholar] [CrossRef] [PubMed]
- de Boode, W.P.; van der Lee, R.; Horsberg Eriksen, B.; Nestaas, E.; Dempsey, E.; Singh, Y.; Austin, T.; El-Khuffash, A. European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE). The role of Neonatologist Performed Echocardiography in the assessment and management of neonatal shock. Pediatr. Res. 2018, 84 (Suppl. 1), 57–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moons, P.; Engelfriet, P.; Kaemmerer, H.; Meijboom, F.J.; Oechslin, E.; Mulder, B.J. Expert Committee of Euro Heart Survey on Adult Congenital Heart Disease Delivery of care for adult patients with congenital heart disease in Europe: Results from the Euro Heart Survey. Eur. Heart J. 2006, 27, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Gentle, S.J.; Travers, C.P.; Clark, M.; Carlo, W.A.; Ambalavanan, N. Patent Ductus Arteriosus and Development of Bronchopulmonary Dysplasia-associated Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2023, 207, 921–928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsoi, S.M.; Nawaytou, H.; Almeneisi, H.; Steurer, M.; Zhao, Y.; Fineman, J.R.; Keller, R.L. Prostaglandin-E1 infusion in persistent pulmonary hypertension of the newborn. Pediatr. Pulmonol. 2024, 59, 379–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, C.; McCrindle, B.W.; Carvalho, J.S.; Hornberger, L.K.; McCarthy, K.P.; Daubeney, P.E. Development of Z-scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet. Gynecol. 2005, 26, 599–605. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Mean | SD | |
---|---|---|---|---|---|---|---|---|---|---|
GA [weeks] at prenatal ECHO | 33 | 31 | 32 | 33 | 33 | 32.4 | 35 | 37.4 | 33.4 | +/−1.86 |
HA/CA | 0.48 | 0.46 | 0.4 | 0.46 | 0.45 | 0.4 | 0.4 | 0.4 | 0.43 | +/−0.03 |
Heart width [mm] | 38 | 49 | 42 | 42 | 42 | 42 | 41 | 37 | 41.6 | +/−3.4 |
MPA [mm] | 10 | 7 | 7.5 | 11.6 | 10 | 13 | 13 | 9.3 | 10.2 | +/−2.2 |
MPA Z-scores | +3.47 | +1.26 | +1.49 | +4.42 | +3.47 | +3.77 | +3.19 | −0.9 | +2.7 | +/−1.3 |
Ao [mm] | 5 | 5 | 5.5 | 7.8 | 5 | 5 | 6 | 5.2 | 5.6 | +/−0.9 |
Ao Z-score | +1.39 | +0.75 | +0.39 | +1.65 | +1.39 | −0.6 | +0.16 | −1.1 | 0.5 | +/−0.9 |
Ao/MPA ratio | 0.5 | 0.71 | 0.73 | 0.67 | 0.5 | 0.38 | 0.46 | 0.56 | 0.6 | +/−0.2 |
MPA/Ao ratio | 2 | 1.4 | 1.36 | 1.48 | 2 | 2.6 | 2.1 | 1.78 | 1.8 | +/−0.4 |
DA V max [cm/s] | 140 | 114 | 160 | 140 | 130 | 160 | 140 | 150 | 142 | +/−14 |
Hospital stay [days] | 18 | 13 | 21 | 25 | 22 | 18 | 30 | 50 | 25 | +/−11 |
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | ||
---|---|---|---|---|---|---|---|---|---|
Prenatal a-dispr. | + | - | + | + | + | - | + | + | 6/8 |
Prenatal v-dispr. | + | - | + | + | + | + | + | + | 7/8 |
Prenatal 3VV-dispr | + | + | + | + | + | + | + | + | 8/8 |
Ao reversal flow | - | - | - | + | - | + | + | + | 4/8 |
TR | + | + | + | + | + | + | + | + | 8/8 |
PR | + | + | - | + | + | - | - | - | 4/8 |
IVS > 4.5 mm | + | - | + | + | - | - | + | + | 5/8 |
Postnatal echo 1st day CoA | + | + | + | + | + | + | + | + | 8/8 |
Prostin iv 0.01 ug/kg/min (min. 3–5 days) | + | + | + | + | + | + | + | + | 8/8 |
Oxygen, CPAP or respiratory resuscitation | + | + | + | + | + | + | + | + | 8/8 |
Nitric Oxide | - | - | - | - | + | - | + | + | 3/8 |
Sildenafil | - | - | - | - | + | - | + | + | 3/8 |
Autopsy | - | + | - | + | - | + | - | - | 3/3 |
Maternal | Placental | Fetal | Birth |
---|---|---|---|
|
|
|
|
van Nisselrooij (2018) [24] | Our Data | |
---|---|---|
Study scope | 13 years (2002–2015), 77 fetuses | 18 years (2004–2022), 138 fetuses |
Diagnostic findings: false positives | 31 postnatal (CoA), 46 overall false positives | 68 CoA, 70 overall false positives |
Diagnostic findings: newborns with PH | 10/77 | 8/70 |
Echocardiographic features prenatal | Disproportions, CoA suspicion | Detailed: dilation, valve regurgitations, septum hypertrophy, cardiomegaly |
Echocardiographic features postnatal | Need for respiratory support | Right ventricular pressure increase, valve regurgitation, serial echo exams |
Outcomes: time of delivery | ~37–38 weeks | ~37–38 weeks |
Outcomes: survival | 2/10 PH cases survived (spontaneous resolution) | 5/8 survived with treatment |
Outcomes: deaths | 8/10 | 3/10 |
Autopsy/comorbidities | No autopsy data; various associated heart defects noted | Confirmation by histopathology; rare severe associated anomalies |
Prenatal Echocardiographic Key Features of PH: | Postnatal Echocardiographic Key Features of PH: |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murlewska, J.; Sylwestrzak, O.; Słodki, M.; Strzelecka, I.; Sokołowski, Ł.; Wójtowicz-Marzec, M.; Maroszyńska, I.; Cichos, E.; Romanowicz, H.; Moon-Grady, A.J.; et al. Abnormal Fetal/Neonatal Lung Development Manifested as Some Functional Heart Abnormalities During the Third Trimester of Fetal Life. Biomedicines 2025, 13, 2324. https://doi.org/10.3390/biomedicines13102324
Murlewska J, Sylwestrzak O, Słodki M, Strzelecka I, Sokołowski Ł, Wójtowicz-Marzec M, Maroszyńska I, Cichos E, Romanowicz H, Moon-Grady AJ, et al. Abnormal Fetal/Neonatal Lung Development Manifested as Some Functional Heart Abnormalities During the Third Trimester of Fetal Life. Biomedicines. 2025; 13(10):2324. https://doi.org/10.3390/biomedicines13102324
Chicago/Turabian StyleMurlewska, Julia, Oskar Sylwestrzak, Maciej Słodki, Iwona Strzelecka, Łukasz Sokołowski, Monika Wójtowicz-Marzec, Iwona Maroszyńska, Ewa Cichos, Hanna Romanowicz, Anita J. Moon-Grady, and et al. 2025. "Abnormal Fetal/Neonatal Lung Development Manifested as Some Functional Heart Abnormalities During the Third Trimester of Fetal Life" Biomedicines 13, no. 10: 2324. https://doi.org/10.3390/biomedicines13102324
APA StyleMurlewska, J., Sylwestrzak, O., Słodki, M., Strzelecka, I., Sokołowski, Ł., Wójtowicz-Marzec, M., Maroszyńska, I., Cichos, E., Romanowicz, H., Moon-Grady, A. J., & Respondek-Liberska, M. (2025). Abnormal Fetal/Neonatal Lung Development Manifested as Some Functional Heart Abnormalities During the Third Trimester of Fetal Life. Biomedicines, 13(10), 2324. https://doi.org/10.3390/biomedicines13102324