The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Inflammatory Response in Acute Myocardial Infarction
4. Clinical Studies Investigating Inflammation in Cardiogenic Shock
5. Pathogenesis of Inflammation Development in Myocardial Infarction-Associated Shock
6. Macrophages in Myocardial Infarction-Associated Shock
7. Neutrophils in Myocardial Infarction-Associated Shock
8. Lymphocytes in Myocardial Infarction-Associated Shock
9. Clonal Hematopoiesis in Cardiogenic Shock
10. Immunomodulatory Therapy in Cardiogenic Shock
11. Directions for Future Research
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shirakabe, A.; Matsushita, M.; Shibata, Y.; Shighihara, S.; Nishigoori, S.; Sawatani, T.; Kiuchi, K.; Asai, K. Organ dysfunction, injury, and failure in cardiogenic shock. J. Intensive Care 2023, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.E.; Chan, W.; Kaye, D.M.; Stub, D. State of Shock: Contemporary Vasopressor and Inotrope Use in Cardiogenic Shock. J. Am. Heart Assoc. 2023, 12, e029787. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Ahmed, A.M.; Vallabhajosyula, S.; Burstein, B.; Tabi, M.; Barsness, G.W.; Murphy, J.G.; Best, P.J.; Bell, M.R. Shock in the cardiac intensive care unit: Changes in epidemiology and prognosis over time. Am. Heart J. 2021, 232, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Novosadov, M.M.; Novosadov, V.M.; Dzhioeva, O.N.; Drapkina, O.M. Practical aspects of managing patients with cardiogenic shock. Russ. J. Cardiol. 2023, 28, 5337. [Google Scholar] [CrossRef]
- Parenica, J.; Jarkovsky, J.; Malaska, J.; Mebazaa, A.; Gottwaldova, J.; Helanova, K.; Litzman, J.; Dastych, M.; Tomandl, J.; Spinar, J.; et al. GREAT Network. Infectious Complications and Immune/Inflammatory Response in Cardiogenic Shock Patients: A Prospective Observational Study. Shock 2017, 47, 165–174. [Google Scholar] [CrossRef]
- Buckel, M.; Maclean, P.; Knight, J.C.; Lawler, P.R.; Proudfoot, A.G. Extending the ‘host response’ paradigm from sepsis to cardiogenic shock: Evidence, limitations and opportunities. Crit. Care 2023, 27, 460. [Google Scholar] [CrossRef]
- Panteleev, O.O.; Ryabov, V.V. Cardiogenic shock: What’s new? Sib. J. Clin. Exp. Med. 2021, 36, 45–51. [Google Scholar] [CrossRef]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef]
- Mehta, A.; Vavilin, I.; Nguyen, A.H.; Batchelor, W.B.; Blumer, V.; Cilia, L.; Dewanjee, A.; Desai, M.; Desai, S.S.; Flanagan, M.C.; et al. Contemporary approach to cardiogenic shock care: A state-of-the-art review. Front. Cardiovasc. Med. 2024, 11, 1354158. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Bhat, A.G.; Patlolla, S.H.M.; Sinha, S.S.M.; Miller, P.E.; Lawler, P.R.; van Diepen, S.M.; Khanna, A.K.; Zhao, D.X.; Vallabhajosyula, S.M. Concomitant Sepsis Diagnoses in Acute Myocardial Infarction-Cardiogenic Shock: 15-Year National Temporal Trends, Management, and Outcomes. Crit. Care Explor. 2022, 4, e0637. [Google Scholar] [CrossRef]
- Datzmann, T.; Träger, K. Extracorporeal membrane oxygenation and cytokine adsorption. J. Thorac. Dis. 2018, 10 (Suppl. S5), S653–S660. [Google Scholar] [CrossRef] [PubMed]
- Laghlam, D.; Benghanem, S.; Ortuno, S.; Bouabdallaoui, N.; Manzo-Silberman, S.; Hamzaoui, O.; Aissaoui, N. Management of cardiogenic shock: A narrative review. Ann. Intensive Care 2024, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Lv, Y.; Bai, X.; Qi, J.; Weng, X.; Liu, S.; Bao, X.; Jia, H.; Yu, B. Plaque Erosion: A Distinctive Pathological Mechanism of Acute Coronary Syndrome. Front. Cardiovasc. Med. 2021, 8, 711453. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.-Q.; Abdu, F.A.; Liu, L.; Yin, G.; Mareai, R.M.; Mohammed, A.A.; Xu, Y.; Che, W. Coronary microvascular dysfunction and myocardial infarction with non-obstructive coronary arteries: Where do we stand? Eur. J. Intern. Med. 2023, 117, 8–20. [Google Scholar] [CrossRef]
- Lodrini, A.M.; Goumans, M.J. Cardiomyocytes Cellular Phenotypes After Myocardial In-farction. Front. Cardiovasc. Med. 2021, 8, 750510. [Google Scholar] [CrossRef]
- Chen, X.; Tian, P.-C.; Wang, K.; Wang, M.; Wang, K. Pyroptosis: Role and Mechanisms in Car-diovascular Disease. Front. Cardiovasc. Med. 2022, 9, 897815. [Google Scholar] [CrossRef]
- Mishra, P.K.; Adameova, A.; Hill, J.A.; Baines, C.P.; Kang, P.M.; Downey, J.M.; Narula, J.; Takahashi, M.; Abbate, A.; Piristine, H.C.; et al. Guidelines for evaluating myocardial cell death. Am. J. Physiol. Circ. Physiol. 2019, 317, H891–H922. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Swirski, F. Innate immune cells in ischemic heart disease: Does myocardial infarction beget myocardial infarction? Eur. Heart J. 2016, 37, 868–872. [Google Scholar] [CrossRef]
- Ong, S.-B.; Hernández-Reséndiz, S.; Crespo-Avilan, G.E.; Mukhametshina, R.T.; Kwek, X.-Y.; Cabrera-Fuentes, H.A.; Hausenloy, D.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther. 2018, 186, 73–87. [Google Scholar] [CrossRef]
- Kologrivova, I.; Shtatolkina, M.; Suslova, T.; Ryabov, V. Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Front. Immunol. 2021, 12, 664457. [Google Scholar] [CrossRef]
- Ramos-Regalado, L.; Alcover, S.; Badimon, L.; Vilahur, G. The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment. Cells 2024, 13, 1125. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, K.; Kox, M.; Scheffer, G.J.; Pickkers, P. Danger in the intensive care unit: Damps in critically ill patients. Shock 2016, 45, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Anzai, A.; Ko, S.; Fukuda, K. Immune and Inflammatory Networks in Myocardial Infarction: Current Research and Its Potential Implications for the Clinic. Int. J. Mol. Sci. 2022, 23, 5214. [Google Scholar] [CrossRef]
- Lin, G.; Dai, C.; Xu, K.; Wu, M. Predictive value of neutrophil to lymphocyte ratio and red cell distribution width on death for ST segment elevation myocardial infarction. Sci. Rep. 2021, 11, 11506. [Google Scholar] [CrossRef] [PubMed]
- Pluijmert, N.J.; Atsma, D.E.; Quax, P.H.A. Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Front. Cardiovasc. Med. 2021, 8, 647785. [Google Scholar] [CrossRef]
- Jaén, R.I.; Val-Blasco, A.; Prieto, P.; Gil-Fernández, M.; Smani, T.; López-Sendón, J.L.; Delgado, C.; Boscá, L.; Fernández-Velasco, M. Innate Immune Receptors, Key Actors in Cardiovascular Diseases. JACC Basic Transl. Sci. 2020, 5, 735–749. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. The immune system and the remodeling infarcted heart: Cell biological insights and therapeutic opportunities. J. Cardiovasc. Pharmacol. 2014, 63, 185–195. [Google Scholar] [CrossRef]
- Hofmann, U.; Frantz, S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ. Res. 2015, 116, 354–367. [Google Scholar] [CrossRef]
- Liu, J.; Liu, F.; Liang, T.; Zhou, Y.; Su, X.; Li, X.; Zeng, J.; Qu, P.; Wang, Y.; Chen, F.; et al. The roles of Th cells in myocardial infarction. Cell Death Discov. 2024, 10, 287. [Google Scholar] [CrossRef]
- Varzideh, F.; Kansakar, U.; Donkor, K.; Wilson, S.; Jankauskas, S.S.; Mone, P.; Wang, X.; Lombardi, A.; Santulli, G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front. Cardiovasc. Med. 2022, 9, 863238. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Chen, S.; Mao, J.; Jin, Y.; Ye, H.; Zhang, Y.; Liu, X.; Gong, C.; Cheng, X.; et al. TREM2hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat. Metab. 2023, 5, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.L.; Lavine, K.J. Leveraging FPR2 Agonists to Resolve Inflammation and Improve Outcomes Following Myocardial Infarction. JACC Basic Transl. Sci. 2021, 6, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hu, Q.; Hu, T. Association of Lymphocyte to Monocyte Ratio and Risk of in-Hospital Mortality in Patients with Cardiogenic Shock: A Propensity Score Matching Study. Int. J. Gen. Med. 2021, 14, 4459–4468. [Google Scholar] [CrossRef]
- Ma, Y. Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction. Cells 2021, 10, 1676. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, F.; Rauch, P.J.; Ueno, T.; Gorbatov, R.; Marinelli, B.; Lee, W.W.; Dutta, P.; Wei, Y.; Robbins, C.; Iwamoto, Y.; et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 2012, 209, 123–137. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, S.; Kang, D.O.; Seo, H.S. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18f-fluorodeoxyglucose positron emission tomograpic imaging. Circ. Cardiovasc. Imaging 2014, 7, 454–460. [Google Scholar] [CrossRef]
- Weirather, J.; Hofmann, U.D.; Beyersdorf, N.; Ramos, G.C.; Vogel, B.; Frey, A.; Ertl, G.; Kerkau, T.; Frantz, S. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 2014, 115, 55–67. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, X.; Ding, Y.-J.; Fu, Q.-Q.; Xie, J.-J.; Tang, T.-T.; Yao, R.; Chen, Y.; Liao, Y.-H. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 2008, 127, 89–97. [Google Scholar] [CrossRef]
- Aghajanian, H.; Kimura, T.; Rurik, J.G.; Hancock, A.S.; Leibowitz, M.S.; Li, L.; Scholler, J.; Monslow, J.; Lo, A.; Han, W.; et al. Targeting cardiac fibrosis with engineered T cells. Nature 2019, 573, 430–433. [Google Scholar] [CrossRef]
- Yuan, D.; Tie, J.; Xu, Z.; Liu, G.; Ge, X.; Wang, Z.; Zhang, X.; Gong, S.; Liu, G.; Meng, Q.; et al. Dynamic profile of CD4(+) T-cell-associated cytokines/chemokines following murine myocardial infarction/reperfusion. Mediators Inflamm. 2019, 2019, 9483647. [Google Scholar] [CrossRef]
- Xia, N.; Lu, Y.; Gu, M.; Li, N.; Liu, M.; Jiao, J.; Zhu, Z.; Li, J.; Li, D.; Tang, T.; et al. A Unique Population of Regulatory T Cells in Heart Potentiates Cardiac Protection From Myocardial Infarction. Circulation 2020, 142, 1956–1973. [Google Scholar] [CrossRef] [PubMed]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, Y.M.; Ministrini, S.; Schwarz, L.; Karch, C.; Liberale, L.; Camici, G.G. Modern Concepts in Cardiovascular Disease: Inflamm-Aging. Front. Cell Dev. Biol. 2022, 10, 882211. [Google Scholar] [CrossRef] [PubMed]
- Owens, W.A.; Walaszczyk, A.; Spyridopoulos, I.; Dookun, E.; Richardson, G.D. Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mech. Ageing Dev. 2021, 198, 111540. [Google Scholar] [CrossRef] [PubMed]
- Walaszczyk, A.; Dookun, E.; Redgrave, R.; Tual-Chalot, S.; Victorelli, S.; Spyridopoulos, I.; Owens, A.; Arthur, H.M.; Passos, J.F.; Richardson, G.D. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell 2019, 18, e12945. [Google Scholar] [CrossRef]
- Redgrave, R.E.; Dookun, E.; Booth, L.K.; Encina, M.C.; Folaranmi, O.; Tual-Chalot, S.; Gill, J.H.; Owens, W.A.; Spyridopoulos, I.; Passos, J.F.; et al. Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction. npj Aging 2023, 9, 15. [Google Scholar] [CrossRef]
- Levi, N.; Papismadov, N.; Solomonov, I.; Sagi, I.; Krizhanovsky, V. The ECM path of senescence in aging: Components and modifiers. FEBS J. 2020, 287, 2636–2646. [Google Scholar] [CrossRef]
- Webb, J.G.; Sleeper, L.A.; Buller, C.E.; Boland, J.; Palazzo, A.; Buller, E.; White, H.D.; Hochman, J.S. Implications of the timing of onset of cardiogenic shock after acute myocardial infarction: A report from the SHOCK Trial Registry. Should we emergently revascularize Occluded Coronaries for cardiogenic shock? J. Am. Coll. Cardiol. 2000, 3 (Suppl. SA), 1084–1090. [Google Scholar] [CrossRef]
- Damluji, A.A.; van Diepen, S.; Katz, J.N.; Menon, V.; Tamis-Holland, J.E.; Bakitas, M.; Cohen, M.G.; Balsam, L.B.; Chikwe, J.; Arteriosclerosis, T.C.O.; et al. American Heart Association Council on Clinical Cardiology; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Surgery and Anesthesia; and Council on Cardiovascular and Stroke Nursing. Mechanical Complications of Acute Myocardial Infarction: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e16–e35. [Google Scholar] [CrossRef]
- Sterling, L.H.; Fernando, S.M.; Talarico, R.; Qureshi, D.; van Diepen, S.; Herridge, M.S.; Price, S.; Brodie, D.; Fan, E.; Di Santo, P.; et al. Long-Term Outcomes of Cardiogenic Shock Complicating Myocardial Infarction. J. Am. Coll. Cardiol. 2023, 82, 985–995. [Google Scholar] [CrossRef]
- Cuinet, J.; Garbagnati, A.; Rusca, M.; Yerly, P.; Schneider, A.G.; Kirsch, M.; Liaudet, L. Cardiogenic shock elicits acute inflammation, delayed eosinophilia, and depletion of immune cells in most severe cases. Sci. Rep. 2020, 10, 7639. [Google Scholar] [CrossRef]
- Kunkel, J.B.; Josiassen, J.; Helgestad, O.K.L.; Schmidt, H.; Holmvang, L.; Jensen, L.O.; Thøgersen, M.; Fosbøl, E.; Ravn, H.B.; Møller, J.E.; et al. Inflammatory response by 48 h after admission and mortality in patients with acute myocardial infarction complicated by cardiogenic shock. Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 306–314. [Google Scholar] [CrossRef]
- Dessap, A.M.; Bagate, F.; Delmas, C.; Morichau-Beauchant, T.; Cholley, B.; Cariou, A.; Lattuca, B.; Moussa, M.; Mongardon, N.; Fard, D.; et al. Low-dose corticosteroid therapy for cardiogenic shock in adults (COCCA): Study protocol for a randomized controlled trial. Trials 2022, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Dettling, A.; Weimann, J.; Sundermeyer, J.; Beer, B.N.; Besch, L.; Becher, P.M.; Brunner, F.J.; Kluge, S.; Kirchhof, P.; Blankenberg, S.; et al. Association of systemic inflammation with shock severity, 30-day mortality, and therapy response in patients with cardiogenic shock. Clin. Res. Cardiol. 2024, 113, 324–335. [Google Scholar] [CrossRef]
- Diakos, N.A.; Thayer, K.; Swain, L.; Goud, M.; Jain, P.; Kapur, N.K. Systemic Inflammatory Burden Correlates with Severity and Predicts Outcomes in Patients with Cardiogenic Shock Supported by a Percutaneous Mechanical Assist Device. J. Cardiovasc. Transl. Res. 2021, 14, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.J.; Frydland, M.S.; Hassager, C.; Bos, L.D.; van Vught, L.A.; Cremer, O.L.; Møller, J.E.; Born, B.-J.H.v.D.; Vlaar, A.P.; Henriques, J.P.; et al. Biomarker patterns in patients with cardiogenic shock versus septic shock. Int. J. Cardiol. Heart Vasc. 2024, 52, 101424. [Google Scholar] [CrossRef]
- Toma, A.; dos Santos, C.; Burzyńska, B.; Góra, M.; Kiliszek, M.; Stickle, N.; Kirsten, H.; Kosyakovsky, L.B.; Wang, B.; van Diepen, S.; et al. Diversity in the Expressed Genomic Host Response to Myocardial Infarction. Circ. Res. 2022, 131, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Kohsaka, S.; Menon, V.; Lowe, A.M.; Lange, M.; Dzavik, V.; Sleeper, L.A.; Hochman, J.S. SHOCK Investigators. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch. Intern. Med. 2005, 165, 1643–1650. [Google Scholar] [CrossRef]
- Park, J.; Yoon, J.H.; Ki, H.K.; Ko, J.H.; Moon, H.W. Performance of presepsin and procalcitonin predicting culture-proven bacterial infection and 28-day mortality: A cross-sectional study. Front. Med. 2022, 9, 954114. [Google Scholar] [CrossRef]
- Nguyen, M.; Gautier, T.; Masson, D.; Bouhemad, B.; Guinot, P.G. Endotoxemia in Acute Heart Failure and Cardiogenic Shock: Evidence, Mechanisms and Therapeutic Options. J. Clin. Med. 2023, 12, 2579. [Google Scholar] [CrossRef]
- Malovan, G.; Hierzberger, B.; Suraci, S.; Schaefer, M.; Santos, K.; Jha, S.; Macheroux, P. The emerging role of dipeptidyl peptidase 3 in pathophysiology. FEBS J. 2023, 290, 2246–2262. [Google Scholar] [CrossRef] [PubMed]
- Deniau, B.; Rehfeld, L.; Santos, K.; Dienelt, A.; Azibani, F.; Sadoune, M.; Kounde, P.R.; Samuel, J.L.; Tolpannen, H.; Lassus, J.; et al. Circulating dipeptidyl peptidase 3 is a myocardial depressant factor: Dipeptidyl peptidase 3 inhibition rapidly and sustainably improves haemodynamics. Eur. J. Heart Fail. 2020, 22, 290–299. [Google Scholar] [CrossRef]
- Torzewski, J.; Mattecka, S.; Ries, W.; Garlichs, C.D.; Heigl, F.; Fiedler, J.; Sheriff, A. Case report: C-reactive protein apheresis in cardiogenic shock: Case series from the C-reactive protein apheresis in acute myocardial infarction-registry. Front. Drug Discov. 2023, 3, 1286710. [Google Scholar] [CrossRef]
- Ikeda, U.; Maeda, Y.; Yamamoto, K.; Shimada, K. C-Reactive protein augments inducible nitric oxide synthase expression in cytokine-stimulated cardiac myocytes. Cardiovasc. Res. 2002, 56, 86–92. [Google Scholar] [CrossRef]
- Butt, N.; Bache-Mathiesen, L.; Ushakova, A.; Nordrehaug, J.; Jensen, S.; Munk, P.; Danchin, N.; Dubois-Rande, J.; Hansen, H.; Paganelli, F.; et al. Pentraxin 3 in primary percutaneous coronary intervention for ST elevation myocardial infarction is associated with early irreversible myocardial damage: Kinetic profile, relationship to interleukin 6 and infarct size. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 302–312. [Google Scholar] [CrossRef]
- Reindl, M.; Tiller, C.; Holzknecht, M.; Lechner, I.; Henninger, B.; Mayr, A.; Brenner, C.; Klug, G.; Bauer, A.; Metzler, B.; et al. Association of Myocardial Injury With Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Netw. Open 2020, 3, e207030. [Google Scholar] [CrossRef] [PubMed]
- Pavasini, R.; Fabbri, G.; Marchini, F.; Bianchi, N.; Deserio, M.A.; Sanguettoli, F.; Verardi, F.M.; Segala, D.; Pompei, G.; Tonet, E.; et al. Procalcitonin Predicts Bacterial Infection, but Not Long-Term Occurrence of Adverse Events in Patients with Acute Coronary Syndrome. J. Clin. Med. 2022, 11, 554. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.P.; Kasinadhuni, G.; Santosh, K.; Parashar, N.K.; Sharma, R.; Bootla, D.; Kanabar, K.; Krishnappa, D. Prognostic role of procalcitonin in ST-elevation myocardial infarction complicated by cardiogenic shock. Asian Cardiovasc. Thorac. Ann. 2021, 29, 751–757. [Google Scholar] [CrossRef]
- Nores, J.E.R.; Bensussan, A.; Vita, N.; Stelter, F.; Arias, M.A.; Jones, M.; Lefort, S.; Borysiewicz, L.K.; Ferrara, P.; Labéta, M.O. Soluble CD14 acts as a negative regulator of human T cell activation and function. Eur. J. Immunol. 1999, 29, 265–276. [Google Scholar] [CrossRef]
- Own, J.; Ulevitch, R.; McKay, D. CD14 blockade to prevent ischemic injury to donor organs. Transpl. Immunol. 2022, 72, 101580. [Google Scholar] [CrossRef]
- Cheng, W.; Fuernau, G.; Desch, S.; Freund, A.; Feistritzer, H.-J.; Pöss, J.; Buettner, P.; Thiele, H. Circulating Monocyte Chemoattractant Protein-1 in Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction Treated with Mild Hypothermia: A Biomarker Substudy of SHOCK-COOL Trial. J. Cardiovasc. Dev. Dis. 2022, 9, 280. [Google Scholar] [CrossRef] [PubMed]
- Prondzinsky, R.; Unverzagt, S.; Lemm, H.; Wegener, N.; Heinroth, K.; Buerke, U.; Fiedler, M.; Thiery, J.; Haerting, J.; Werdan, K.; et al. Acute myocardial infarction and cardiogenic shock: Prognostic impact of cytokines: INF-γ, TNF-α, MIP-1β, G-CSF, and MCP-1β. Med. Klin. Intensivmed. Notfmed 2012, 107, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Döring, Y.; Libby, P.; Soehnlein, O. Neutrophil Extracellular Traps Participate in Cardiovascular Diseases: Recent Experimental and Clinical Insights. Circ. Res. 2020, 126, 1228–1241. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.H.; Adav, S.S.; Sze, S.K.; Choong, Y.K.; Saravanan, R.; Schmidtchen, A. Thrombin and Plasmin Alter the Proteome of Neutrophil Extracellular Traps. Front. Immunol. 2018, 9, 1554. [Google Scholar] [CrossRef] [PubMed]
- Langseth, M.S.; Andersen, G.; Husebye, T.; Arnesen, H.; Zucknick, M.; Solheim, S.; Eritsland, J.; Seljeflot, I.; Opstad, T.B.; Helseth, R. Neutrophil extracellular trap components and myocardial recovery in post-ischemic acute heart failure. PLoS ONE 2020, 15, e0241333. [Google Scholar] [CrossRef]
- Fuernau, G.; Poenisch, C.; Eitel, I.; de Waha, S.; Desch, S.; Schuler, G.; Adams, V.; Werdan, K.; Zeymer, U.; Thiele, H. Growth-differentiation factor 15 and osteoprotegerin in acute myocardial infarction complicated by cardiogenic shock: A biomarker substudy of the IABP-SHOCK II-trial. Eur. J. Heart Fail. 2014, 16, 880–887. [Google Scholar] [CrossRef]
- Santos, I.; Colaço, H.G.; Neves-Costa, A.; Seixas, E.; Velho, T.R.; Pedroso, D.; Barros, A.; Martins, R.; Carvalho, N.; Payen, D.; et al. CXCL5-mediated recruitment of neutrophils into the peritoneal cavity of Gdf15-deficient mice protects against abdominal sepsis. Proc. Natl. Acad. Sci. USA 2020, 117, 12281–12287. [Google Scholar] [CrossRef]
- Patnaik, R.; Azim, A.; Agarwal, V. Neutrophil CD64 a Diagnostic and Prognostic Marker of Sepsis in Adult Critically Ill Patients: A Brief Review. Indian J. Crit. Care Med. 2020, 24, 1242–1250. [Google Scholar] [CrossRef]
- Shalaby, A.M.; Ismail, A.M.; Farook, Y.; Abdel-Aziz, S.M.; Thabet, M.M.; Mokhtar, A.A.; Fadle, A.A.; Nigm, D.A. CD64 as a diagnostic marker for bacterial infection in acute bronchiolitis. Eur. J. Inflamm. 2023, 21, 1721727X231176943. [Google Scholar] [CrossRef]
- Weiß, E.; Ramos, G.C.; Delgobo, M. Myocardial-Treg Crosstalk: How to Tame a Wolf. Front. Immunol. 2022, 13, 914033. [Google Scholar] [CrossRef]
- Sasmita, B.R.; Zhu, Y.; Gan, H.; Hu, X.; Xue, Y.; Xiang, Z.; Huang, B.; Luo, S. Prognostic value of neutrophil-lymphocyte ratio in cardiogenic shock complicating acute myocardial infarction: A cohort study. Int. J. Clin. Pract. 2021, 75, e14655. [Google Scholar] [CrossRef] [PubMed]
- del Rosario Espinoza Mora, M.; Böhm, M.; Link, A. The Th17/Treg imbalance in patients with cardiogenic shock. Clin. Res. Cardiol. 2014, 103, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Kleinschnitz, C.; Kraft, P.; Dreykluft, A.; Hagedorn, I.; Göbel, K.; Schuhmann, M.K.; Langhauser, F.; Helluy, X.; Schwarz, T.; Bittner, S.; et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 2013, 121, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Böhme, M.; Desch, S.; Rosolowski, M.; Scholz, M.; Krohn, K.; Büttner, P.; Cross, M.; Kirchberg, J.; Rommel, K.-P.; Pöss, J.; et al. Impact of Clonal Hematopoiesis in Patients With Cardiogenic Shock Complicating Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2022, 80, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Rahoual, G.; Hulot, J.S. Clonal Hematopoiesis in Cardiogenic Shock: Beyond Conventional Prognostication? J. Am. Coll. Cardiol. 2022, 80, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Scolari, F.L.; Abelson, S.; Brahmbhatt, D.H.; Medeiros, J.J.; Fan, C.S.; Fung, N.L.; Mihajlovic, V.; Anker, M.S.; Otsuki, M.; Lawler, P.R.; et al. Clonal haematopoiesis is associated with higher mortality in patients with cardiogenic shock. Eur. J. Heart Fail. 2022, 24, 1573–1582. [Google Scholar] [CrossRef]
- TRIUMPH Investigators; Alexander, J.H.; Reynolds, H.R.; Stebbins, A.L.; Dzavik, V.; Harrington, R.A.; Van de Werf, F.; Hochman, J.S. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: The TRIUMPH randomized controlled trial. JAMA 2007, 297, 1657–1666. [Google Scholar] [CrossRef]
- Karakas, M.; Akin, I.; Burdelski, C.; Clemmensen, P.; Grahn, H.; Jarczak, D.; Keßler, M.; Kirchhof, P.; Landmesser, U.; Lezius, S.; et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): An investigator-initiated, randomised, double-blinded, placebo-controlled, multicentre trial. Lancet Respir. Med. 2022, 10, 247–254. [Google Scholar] [CrossRef]
- Meyer, M.A.S.; Wiberg, S.; Grand, J.; Meyer, A.S.P.; Obling, L.E.R.; Frydland, M.; Thomsen, J.H.; Josiassen, J.; Møller, J.E.; Kjaergaard, J.; et al. Treatment Effects of Interleukin-6 Receptor Antibodies for Modulating the Systemic Inflammatory Response After Out-of-Hospital Cardiac Arrest (The IMICA Trial): A Double-Blinded, Placebo-Controlled, Single-Center, Randomized, Clinical Trial. Circulation 2021, 143, 1841–1851. [Google Scholar] [CrossRef]
- Supady, A.; Weber, E.; Rieder, M.; Lother, A.; Niklaus, T.; Zahn, T.; Frech, F.; Müller, S.; Kuhl, M.; Benk, C.; et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): A single centre, open-label, randomised, controlled trial. Lancet Respir. Med. 2021, 9, 755–762. [Google Scholar] [CrossRef]
- Lees, N.; Rosenberg, A.; Hurtado-Doce, A.; Jones, J.; Marczin, N.; Zeriouh, M.; Weymann, A.; Sabashnikov, A.; Simon, A.; Popov, A. Combination of ECMO and cytokine adsorption therapy for severe sepsis with cardiogenic shock and ARDS due to Panton-Valentine leukocidin-positive Staphylococcus aureus pneumonia and H1N1. J. Artif. Organs 2016, 19, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, Y.; Li, D.; Meng, X.; Liu, Z.; Liu, Y.; Fan, H. Hemoadsorption in acute respiratory distress syndrome patients requiring venovenous extracorporeal membrane oxygenation: A systematic review. Respir. Res. 2024, 25, 27. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, J.N.; Koh, M.C.; Liong, T.S.; Sim, M.Y.; Chhabra, S.; Goh, W.; Chew, N.W.; Sia, C.-H.; Goon, P.K.; Soong, J.T.; et al. Inflammatory phenotypes may be more important than age and comorbidities in predicting clinical outcomes in hospitalised patients with COVID-19. IJID Reg. 2023, 8, 84–89. [Google Scholar] [CrossRef]
- Wildi, K.; Livingstone, S.; Palmieri, C.; LiBassi, G.; Suen, J.; Fraser, J. Correction to: The discovery of biological subphenotypes in ARDS: A novel approach to targeted medicine? J. Intensive Care 2021, 9, 22. [Google Scholar] [CrossRef]
- Vitiello, R.; Smimmo, A.; Matteini, E.; Micheli, G.; Fantoni, M.; Ziranu, A.; Maccauro, G.; Taccari, F. Systemic Inflammation Response Index (SIRI) and Monocyte-to-Lymphocyte Ratio (MLR) Are Predictors of Good Outcomes in Surgical Treatment of Periprosthetic Joint Infections of Lower Limbs: A Single-Center Retrospective Analysis. Healthcare 2024, 12, 867. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wei, C.; Liu, Y.; Sun, Q.; Tian, Y.; Wang, X.; Liu, J.; Zhang, Y.; Sun, L. The Prognostic Value of Hematologic Inflammatory Markers in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221146183. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, J.; Xiang, H.; Weng, Y.; Rong, F.; Xue, Y.; Ji, K. Prognostic Value of Neutrophil-Lymphocyte Ratio in Cardiogenic Shock: A Cohort Study. Med. Sci. Monit. 2020, 26, e922167. [Google Scholar] [CrossRef]
- Genkel, V.V.; Shaposhnik, I.I. Conceptualization of Heterogeneity of Chronic Diseases and Atherosclerosis as a Pathway to Precision Medicine: Endophenotype, Endotype, and Residual Cardiovascular Risk. Int. J. Chronic Dis. 2020, 2020, 5950813. [Google Scholar] [CrossRef]
- Ozdemir, C.; Kucuksezer, U.C.; Akdis, M.; Akdis, C.A. The concepts of asthma endotypes and phenotypes to guide current and novel treatment strategies. Expert. Rev. Respir. Med. 2018, 12, 733–743. [Google Scholar] [CrossRef]
- Bos, L.D.J.; Scicluna, B.P.; Ong, D.S.Y.; Cremer, O.; van der Poll, T.; Schultz, M.J. Understanding Heterogeneity in Biologic Phenotypes of Acute Respiratory Distress Syndrome by Leukocyte Expression Profiles. Am. J. Respir. Crit. Care Med. 2019, 200, 42–50. [Google Scholar] [CrossRef]
- Sinha, P.; Delucchi, K.L.; McAuley, D.F.; O’Kane, C.M.; Matthay, M.A.; Calfee, C.S. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: A secondary analysis of randomised controlled trials. Lancet Respir. Med. 2020, 8, 247–257. [Google Scholar] [CrossRef] [PubMed]
Authors | Patients with CS | Study Points | Results |
---|---|---|---|
Cuinet et al. (2020) [51] | 24 patients (12 cases of ACS; 6 cases of chronic cardiomyopathy) | Days 1, 3, 6–8 after CS development | Day 1: ↑ neutrophils, IL-6, IL-10, MCP-1, eotaxin; Day 3: ↓ lymphocytes, monocytes; Days 6–8: ↓ lymphocytes, monocytes, ↑ eosinophils. Infectious complications 62% |
Kunkel et al. (2023) [52] | 1716 patients with acute MI who survived within 48 ± 12 h on admission to hospital | Retrospective study | Increased 30-day mortality in patients with high levels of hsCRP and leukocytes |
Mekontso Dessap et al. (2024) [53] | 406 patients with CS (134 cases of CS of ischemic etiology; 65 cases of CS after sepsis) | Retrospective study | Increased mortality after 1 month and after 1 year of follow-up in patients with elevated CRP level (greater than 69 mg/L) on admission |
Jentzer et al. (2020) [3] | 8999 cardiac intensive care patients | Retrospective study | Increased short- and long-term mortality in patients with the SIRS (≥2/4 of the following criteria: elevated heart rate >90/min, elevated body temperature >38 °C, elevated total white blood cell count >12 × 109/L, elevated respiratory rate >20/min) |
Dettling et al. (2024) [54] | 1116 patients with CS according to ICD-10 (including 530 patients with acute MI) | Retrospective study | Increased 30-day in-hospital mortality with elevated CRP level above the median value (17 mg/L) in the absence of MCS measures |
Diakos et al. (2021) [55] | 134 patients with CS (73 patients with acute MI) and MCS (ECMO or Impella) | Retrospective study | Lower baseline neutrophil-to-lymphocyte ratio in survived patients; lower IL-6 level after MCS in survived patients |
Parenica et al. (2017) [5] | 80 patients with acute MI | Time of admission, 12 h, 24 h, 48 h, 72 h, 96 h, 7 days after admission, 3 months | Elevated levels of CRP, procalcitonin, presepsin, and pentraxin-3 in the first 24 h of follow-up are predictors of 3-month mortality in patients with CS |
Peters et al. (2024) [56] | 111 patients with STEMI after early PCI | Days 1, 2, 3, 30, and 60 after CS development | Elevated adrenomodulin on the first day of CS indicates the degree of multiple organ dysfunction and is a predictor of mortality in patients with CS, in contrast to patients with sepsis |
Trial | Therapeutical Approach | Sample Size | Effect |
---|---|---|---|
TRIUMPH [87] | L-NMMA, non-selective inhibitor of nitric oxide synthase | 658 patients with MI CS | No effect |
ACCOST-HH [88] | Monoclonal antibodies to adrenomedulin | 150 patients with CS | No effect |
IMICA [89] | Antibodies to IL-6 receptor | 80 patients with out-of-hospital cardiac arrest | Reduction in inflammation and myocardial injury |
CYCOV [90] | Combination of ECMO and cytokine adsorption therapy | 34 patients with severe COVID-19 pneumonia | Negative effect on survival; no reduction in inflammation |
COCCA [53] | Hydrocortisone and fludrocortisone in low doses | 380 patients with CS (planned) | Ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kologrivova, I.; Kercheva, M.; Panteleev, O.; Ryabov, V. The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review. Biomedicines 2024, 12, 2073. https://doi.org/10.3390/biomedicines12092073
Kologrivova I, Kercheva M, Panteleev O, Ryabov V. The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review. Biomedicines. 2024; 12(9):2073. https://doi.org/10.3390/biomedicines12092073
Chicago/Turabian StyleKologrivova, Irina, Maria Kercheva, Oleg Panteleev, and Vyacheslav Ryabov. 2024. "The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review" Biomedicines 12, no. 9: 2073. https://doi.org/10.3390/biomedicines12092073
APA StyleKologrivova, I., Kercheva, M., Panteleev, O., & Ryabov, V. (2024). The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review. Biomedicines, 12(9), 2073. https://doi.org/10.3390/biomedicines12092073