The Importance of the Concentration of Selected Cytokines (IL-6, IL-10, IL-12, IL-15, TNF-α) and Inflammatory Markers (CRP, NLR, PLR, LMR, SII) in Predicting the Course of Rehabilitation for Patients after COVID-19 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Qualification for the Study
- the Post-COVID-19 Functional Status (PCFS) Scale (score 1–4);
- the Medical Research Council (MRC) (score < 5);
- the modified Medical Research Council (mMRC) (score ≥ 1).
2.2. Study Process
2.3. Calculation of Inflammation Severity Indicators Based on Blood Counts
- neutrophil-to-lymphocyte ratio (neutrophil/lymphocyte ratio—NLR);
- ratio of the platelets to the lymphocytes (platelet/lymphocyte ratio—PLR);
- ratio of the lymphocytes to the monocytes (lymphocyte/monocyte ratio—LMR);
2.4. ELISA Tests
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asser, P.A.L.; Soundararajan, K. The vital role of physiotherapy during COVID-19: A systematic review. Work 2021, 70, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Filgueira, T.O.; Castoldi, A.; Santos, L.E.R.; de Amorim, G.J.; de Sousa Fernandes, M.S.; Anastácio, W.d.L.D.N.; Campos, E.Z.; Santos, T.M.; Souto, F.O. The Relevance of a Physical Active Lifestyle and Physical Fitness on Immune Defense: Mitigating Disease Burden, With Focus on COVID-19 Consequences. Front. Immunol. 2021, 12, 587146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020, 108, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect. 2020, 9, 1123–1130. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, L.; Zhang, P.; Li, K.; Liang, L.; Sun, J.; Xu, B.; Dai, Y.; Li, X.; Zhang, C.; et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. J. Clin. Investig. 2020, 5, e139834. [Google Scholar] [CrossRef]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cai, T.; Fan, L.; Lou, K.; Hua, X.; Huang, Z.; Gao, G. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int. J. Infect. Dis. 2020, 95, 332–339. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Karimi, A.; Shobeiri, P.; Kulasinghe, A.; Rezaei, N. Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Front. Immunol. 2021, 12, 741061. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, S.; Madurga, R.; Castellano, J.M.; Rodriguez-Pascual, J.; de Aguiar Diaz Obregon, S.R.; Jimeno, S.; Montero, J.I.; Wichner, P.S.V.; López-Escobar, A. Hemogram-Derived Ratios as Prognostic Markers of ICU Admission in COVID-19. BMC Emerg. Med. 2021, 21, 89. [Google Scholar] [CrossRef]
- Simadibrata, D.M.; Pandhita, B.A.W.; Ananta, M.E.; Tango, T. Platelet-to-Lymphocyte Ratio, a Novel Biomarker to Predict the Severity of COVID-19 Patients: A Systematic Review and Meta-Analysis. J. Intensive Care Soc. 2022, 23, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Copaescu, A.; Smibert, O.; Gibson, A.; Phillips, E.J.; Trubiano, J.A. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J. Allergy Clin. Immunol. 2020, 146, 518–534.e1. [Google Scholar] [CrossRef] [PubMed]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.K.; Damodar, S.; Gujar, S.; Das, M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: Results from meta-analysis and regression. Heliyon 2021, 7, e06155. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Rutz, S.; Crellin, N.K.; Valdez, P.A.; Hymowitz, S.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011, 29, 71–109. [Google Scholar] [CrossRef]
- Behzadi, P.; Behzadi, E.; Ranjbar, R. IL-12 Family Cytokines: General Characteristics, Pathogenic Microorganisms, Receptors, and Signalling Pathways. Acta Microbiol. Immunol. Hung. 2016, 63, 1–25. [Google Scholar] [CrossRef]
- Leite, M.d.M.; Gonzalez-Galarza, F.F.; da Silva, B.C.C.; Middleton, D.; dos Santos, E.J.M. Predictive immunogenetic markers in COVID-19. Hum. Immunol. 2021, 82, 247–254. [Google Scholar] [CrossRef]
- Kandikattu, H.K.; Venkateshaiah, S.U.; Kumar, S.; Mishra, A. IL-15 immunotherapy is a viable strategy for COVID-19. Cytokine Growth Factor Rev. 2020, 54, 24–31. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Wei, F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 2020, 92, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, A.; Mayashinta, D.K.; Robert, R.; Samsu, N.; Endharti, A.T.; Widjajanto, E. Correlation Between IL-8, C-Reactive Proteins (CRP) and Neutrophil to Lymphocyte Ratio (NLR) as Predictor of Mortality in COVID-19 Patients with Diabetes Mellitus Comorbidity. Int. J. Gen. Med. 2023, 16, 2349–2354. [Google Scholar] [CrossRef]
- Chan, A.S.; Rout, A. Use of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in COVID-19. J. Clin. Med. Res. 2020, 12, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, C.; Mao, Z.; Xiao, M.; Wang, L.; Qi, S.; Zhou, F. Predictive Values of Neutrophil-to-Lymphocyte Ratio on Disease Severity and Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Crit. Care 2020, 24, 647. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, R.; Ramamurthy, P.; Aslam, S.M.; Kulkarni, A.K.S.; Ramamurthy, P.S. Platelet Indices and Platelet to Lymphocyte Ratio (PLR) as Markers for Predicting COVID-19 Infection Severity. Cureus 2022, 14, e28206. [Google Scholar] [CrossRef] [PubMed]
- Dymicka-Piekarska, V.; Dorf, J.; Milewska, A.; Łukaszyk, M.; Kosidło, J.W.; Kamińska, J.; Wolszczak-Biedrzycka, B.; Naumnik, W. Neutrophil/Lymphocyte Ratio (NLR) and Lymphocyte/Monocyte Ratio (LMR)—Risk of Death Inflammatory Biomarkers in Patients with COVID-19. J. Inflamm. Res. 2023, 16, 2209–2222. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Sabbatinelli, J.; Bonfigli, A.R.; Sarzani, R.; Giordano, P.; Cherubini, A.; Antonicelli, R.; Rosati, Y.; Del Prete, S.; Di Rosa, M.; et al. Routine Laboratory Parameters, Including Complete Blood Count, Predict COVID-19 in-Hospital Mortality in Geriatric Patients. Mech. Ageing Dev. 2022, 204, 111674. [Google Scholar] [CrossRef] [PubMed]
- Righetti, R.F.; Onoue, M.A.; Politi, F.V.A.; Teixeira, D.T.; de Souza, P.N.; Kondo, C.S.; Moderno, E.V.; Moraes, I.G.; Maida, A.L.V.; Pastore, L.; et al. Physiotherapy Care of Patients with Coronavirus Disease 2019 (COVID-19)—A Brazilian Experience. Clinics 2020, 75, e2017. [Google Scholar] [CrossRef]
- Order of the President of the National Health Fund No. 172/2021/DSOZ of 18 October 2021. Available online: https://baw.nfz.gov.pl/NFZ/tabBrowser/mainPage (accessed on 9 March 2023).
- Klok, F.A.; Boon, G.J.; Barco, S.; Endres, M.; Geelhoed, J.M.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef]
- Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.; Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J. Rehabil. Med. 2008, 40, 665–671. [Google Scholar] [CrossRef]
- Minakata, Y.; Hayata, A.; Matsunaga, K.; Nakanishi, M.; Yamamoto, N. Differences in physical activity according to mMRC grade in patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2203–2208. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Singh, S.J.; Puhan, M.A.; Andrianopoulos, V.; Hernandes, N.A.; Mitchell, K.E.; Hill, C.J.; Lee, A.L.; Camillo, C.A.; Troosters, T.; Spruit, M.A.; et al. An official systematic review of the European Respiratory Society/American Thoracic Society: Measurement properties of field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1447–1478. [Google Scholar] [CrossRef] [PubMed]
- Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I.I.C. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl. Lung Cancer Res. 2019, 8, 886–894. [Google Scholar] [CrossRef]
- Wang, R.-H.; Wen, W.-X.; Jiang, Z.-P.; Du, Z.-P.; Ma, Z.-H.; Lu, A.-L.; Li, H.-P.; Yuan, F.; Wu, S.-B.; Guo, J.-W.; et al. The clinical value of neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), platelet-to-lymphocyte ratio (PLR) and systemic inflammation response index (SIRI) for predicting the occurrence and severity of pneumonia in patients with intracerebral hemorrhage. Front. Immunol. 2023, 14, 1115031. [Google Scholar] [CrossRef]
- Ali, A.M.; Rostam, H.M.; Fatah, M.H.; Noori, C.M.; Ali, K.M.; Tawfeeq, H.M. Serum troponin, D-dimer, and CRP level in severe coronavirus (COVID-19) patients. Immun. Inflamm. Dis. 2022, 10, e582. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Ge, Y.; Wu, B.; Zhang, W.; Wu, T.; Wen, T.; Liu, J.; Guo, X.; Huang, C.; Jiao, Y.; et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J. Infect. Dis. 2020, 222, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Wang, G.; Xu, J.; Long, J.; Deng, F.; Jiang, W. Role of tumor necrosis factor-α in the mortality of hospitalized patients with severe and critical COVID-19 pneumonia. Aging 2021, 13, 23895–23912. [Google Scholar] [CrossRef] [PubMed]
- Kgatle, M.M.; Lawal, I.O.; Mashabela, G.; Boshomane, T.M.G.; Koatale, P.C.; Mahasha, P.W.; Ndlovu, H.; Vorster, M.; Rodrigues, H.G.; Zeevaart, J.R.; et al. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Front. Immunol. 2021, 12, 752380. [Google Scholar] [CrossRef]
- Ji, Y.; Li, M.; Chang, M.; Liu, R.; Qiu, J.; Wang, K.; Deng, C.; Shen, Y.; Zhu, J.; Wang, W.; et al. Inflammation: Roles in Skeletal Muscle Atrophy. Antioxidants 2022, 11, 1686. [Google Scholar] [CrossRef]
- Ma, W.; Xu, T.; Wang, Y.; Wu, C.; Wang, L.; Yang, X.; Sun, H. The role of inflammatory factors in skeletal muscle injury. Biotarget 2018, 2, 7. [Google Scholar] [CrossRef]
- Pahlavani, H.A. Exercise Therapy for People with Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front. Endocrinol. 2022, 13, 811751. [Google Scholar] [CrossRef]
- Sirayder, U.; Inal-Ince, D.; Kepenek-Varol, B.; Acik, C. Long-Term Characteristics of Severe COVID-19: Respiratory Function, Functional Capacity, and Quality of Life. Int. J. Environ. Res. Public Health 2022, 19, 6304. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xie, J.; Fiskesund, R.; Dong, W.; Liang, X.; Lv, J.; Jin, X.; Liu, J.; Mo, S.; Zhang, T.; et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 2018, 9, 873. [Google Scholar] [CrossRef] [PubMed]
- Chua, R.L.; Lukassen, S.; Trump, S.; Hennig, B.P.; Wendisch, D.; Pott, F.; Debnath, O.; Thürmann, L.; Kurth, F.; Völker, M.T.; et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 2020, 38, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Meisen, W.H.; Wohleb, E.S.; Jaime-Ramirez, A.C.; Bolyard, C.; Yoo, J.Y.; Russell, L.; Hardcastle, J.; Dubin, S.; Muili, K.; Yu, J.; et al. The Impact of Macrophage- and Mi-croglia-Secreted TNFα on Oncolytic HSV-1 Therapy in the Glioblastoma Tumor Microenvironment. Clin. Cancer Res. 2015, 21, 3274–3285. [Google Scholar]
- Lv, J.; Wang, Z.; Qu, Y.; Zhu, H.; Zhu, Q.; Tong, W.; Bao, L.; Lv, Q.; Cong, J.; Li, D.; et al. Distinct uptake, amplification, and release of SARS-CoV-2 by M1 and M2 alveolar macrophages. Cell Discov. 2021, 7, 24. [Google Scholar] [CrossRef]
Variable | n | % | |
---|---|---|---|
Sex | Female | 91 | 53.2 |
Male | 76 | 46.8 | |
Age | <60 years | 46 | 26.9 |
>60 years | 121 | 73.1 | |
Nutritional status (BMI) | 18.5–24.99 (norm) | 36 | 21.1 |
25.0–29.9 (overweight) | 60 | 35.1 | |
30.0–34.99 (1st degree obesity) | 48 | 28.1 | |
35.0–39.99 (2nd degree obesity) | 18 | 10.5 | |
Over 40 (3rd degree obesity) | 5 | 2.9 | |
Hospitalization | Yes | 117 | 68.4 |
No | 44 | 25.7 | |
Length of hospitalization | 1–5 days | 5 | 2.9 |
6–10 days | 18 | 7.6 | |
11–15 days | 31 | 18.1 | |
16–20 days | 18 | 10.5 | |
More than 20 days | 50 | 29.2 | |
Pneumonia during COVID-19 infection | Yes | 128 | 74.8 |
No | 34 | 19.9 | |
Oxygen therapy during hospitalization | Yes | 106 | 61.9 |
No | 38 | 22.2 | |
The duration of rehabilitation | 2–3 weeks | 75 | 43.8 |
3–4 weeks | 23 | 13.5 | |
4–5 weeks | 16 | 9.4 | |
5–6 weeks | 51 | 29.8 | |
Comorbidities | Without comorbidities | 37 | 22.2 |
≥1 comorbid disease | 130 | 77.8 | |
Type of comorbid disease | Diabetes | 50 | 29.2 |
Hypertension | 113 | 66.1 | |
Asthma | 19 | 11.1 | |
COPD | 9 | 5.3 | |
Smoking status | Yes | 15 | 8.8 |
No | 146 | 85.4 | |
Concentration of cytokines | M ± SD | ||
IL-6 (pg/mL) | 285.51 ± 288.98 | ||
IL-10 (pg/mL) | 491.95 ± 554.83 | ||
IL-12 (pg/mL) | 105.97 ± 110.19 | ||
IL-15 (pg/mL) | 96.01 ± 83.99 | ||
TNF-α (pg/mL) | 148.84 ± 179.19 | ||
Inflammation severity index value | NLR | 2.33 ± 1.99 | |
PLR | 138.99 ± 115.95 | ||
LMR | 3.57 ± 1.29 | ||
SII | 635.73 ± 810.18 | ||
CRP | 5.89 ± 14.92 |
Rehabilitation Time | |||
---|---|---|---|
Independent Variables | Beta Significance | Independent Variables | Beta Significance |
Sex | −0.27 * | IL-15 | 0.081 |
Age | 0.004 | CRP | 0.129 |
BMI | 0.09 | LMR | −0.01 |
Diabetes | 0.156 | NLR | −0.03 |
Pneumonia | 0.359 * | PLR | 0.053 |
IL-6 | −0.07 | SII | 0.00 |
IL-10 | −0.21 | Smoking status | −0.19 |
IL-12 | 0.104 | TNF-α | −0.13 |
The Period of Time from the End of COVID-19 Treatment to the Start of Rehabilitation | |||
---|---|---|---|
Independent Variables | Beta Significance | Independent Variables | Beta Significance |
Sex | 0.007 | IL-12 | 0.089 |
Age | 0.336 * | IL-15 | 0.037 |
BMI | 0.125 | CRP | −0.11 |
Diabetes | −0.16 | LMR | −0.13 |
Pneumonia | −0.07 | NLR | −0.29 |
IL-6 | −0.05 | PLR | −0.02 |
IL-10 | 0.178 | SII | 0.00 |
CRP | |||
---|---|---|---|
Independent Variables | Beta Significance | Independent Variables | Beta Significance |
Sex | −0.07 | LMR | −0.19 |
Age | 0.097 | NLR | 0.090 |
BMI | −0.03 | PLR | −0.16 |
Diabetes | 0.036 | SII | 0.106 |
Pneumonia | 0.90 | Smoking status | −0.04 |
NLR | |||
---|---|---|---|
Independent Variables | Beta Significance | Independent Variables | Beta Significance |
Sex | −0.01 | FVC | 0.085 |
Age | 0.043 | FEV1/FVC | 0.216 |
BMI | −0.12 | FEV1 | −0.38 |
Diabetes | 0.071 | 6MWT (%) | −0.02 |
Pneumonia | 0.038 | Smoking status | −0.09 |
SII | |||
---|---|---|---|
Independent Variables | Beta Significance | Independent Variables | Beta Significance |
Sex | 0.020 | FVC | 0.239 |
Age | −0.05 | FEV1/FVC | 0.268 |
BMI | −0.12 | FEV1 | −0.46 |
Diabetes | 0.073 | 6MWT (%) | −0.06 |
Pneumonia | 0.239 | Smoking status | −0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mińko, A.; Turoń-Skrzypińska, A.; Rył, A.; Mańkowska, K.; Cymbaluk-Płoska, A.; Rotter, I. The Importance of the Concentration of Selected Cytokines (IL-6, IL-10, IL-12, IL-15, TNF-α) and Inflammatory Markers (CRP, NLR, PLR, LMR, SII) in Predicting the Course of Rehabilitation for Patients after COVID-19 Infection. Biomedicines 2024, 12, 2055. https://doi.org/10.3390/biomedicines12092055
Mińko A, Turoń-Skrzypińska A, Rył A, Mańkowska K, Cymbaluk-Płoska A, Rotter I. The Importance of the Concentration of Selected Cytokines (IL-6, IL-10, IL-12, IL-15, TNF-α) and Inflammatory Markers (CRP, NLR, PLR, LMR, SII) in Predicting the Course of Rehabilitation for Patients after COVID-19 Infection. Biomedicines. 2024; 12(9):2055. https://doi.org/10.3390/biomedicines12092055
Chicago/Turabian StyleMińko, Alicja, Agnieszka Turoń-Skrzypińska, Aleksandra Rył, Katarzyna Mańkowska, Aneta Cymbaluk-Płoska, and Iwona Rotter. 2024. "The Importance of the Concentration of Selected Cytokines (IL-6, IL-10, IL-12, IL-15, TNF-α) and Inflammatory Markers (CRP, NLR, PLR, LMR, SII) in Predicting the Course of Rehabilitation for Patients after COVID-19 Infection" Biomedicines 12, no. 9: 2055. https://doi.org/10.3390/biomedicines12092055
APA StyleMińko, A., Turoń-Skrzypińska, A., Rył, A., Mańkowska, K., Cymbaluk-Płoska, A., & Rotter, I. (2024). The Importance of the Concentration of Selected Cytokines (IL-6, IL-10, IL-12, IL-15, TNF-α) and Inflammatory Markers (CRP, NLR, PLR, LMR, SII) in Predicting the Course of Rehabilitation for Patients after COVID-19 Infection. Biomedicines, 12(9), 2055. https://doi.org/10.3390/biomedicines12092055