Prognostic Value of High-Density Lipoprotein Cholesterol in Patients with Overt Hepatic Encephalopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethics and Consent
2.3. Data Collection and Clinical Definitions
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients with OHE
3.2. Identification of Independent Risk Factors for OHE
3.3. Prognosis Value of HDL-C in Patients with OHE
3.4. Optimal Threshold Values for HDL-C and the MELD Score
3.5. Risk Prediction Stratification for Patients with OHE
3.6. Subgroup Analysis
3.7. Validation of the Prognostic Value of the HDL-C Level and MELD Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, V. Hepatic Encephalopathy: Diagnosis and Treatment in Advanced Liver Disease. Crit. Care Nurs. Clin. N. Am. 2022, 34, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Blei, A.T.; Córdoba, J. Hepatic encephalopathy. Am. J. Gastroenterol. 2001, 96, 1968–1976. [Google Scholar] [CrossRef]
- Rose, C.F.; Amodio, P.; Bajaj, J.S.; Dhiman, R.K.; Montagnese, S.; Taylor-Robinson, S.D.; Vilstrup, H.; Jalan, R. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J. Hepatol. 2020, 73, 1526–1547. [Google Scholar] [CrossRef]
- Bajaj, J.S.; O’Leary, J.G.; Tandon, P.; Wong, F.; Garcia-Tsao, G.; Kamath, P.S.; Maliakkal, B.; Biggins, S.W.; Thuluvath, P.J.; Fallon, M.B.; et al. Hepatic encephalopathy is associated with mortality in patients with cirrhosis independent of other extrahepatic organ failures. Clin. Gastroenterol. Hepatol. 2017, 15, 565–574.e4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, W.; Wang, X.; Zheng, X.; Huang, Y.; Li, B.; Meng, Z.; Gao, Y.; Qian, Z.; Liu, F.; et al. Metabolic biomarkers significantly enhance the prediction of HBV-related ACLF occurrence and outcomes. J. Hepatol. 2023, 79, 1159–1171. [Google Scholar] [CrossRef]
- Tanaka, S.; Couret, D.; Tran-Dinh, A.; Duranteau, J.; Montravers, P.; Schwendeman, A.; Meilhac, O. High-density lipoproteins during sepsis: From bench to bedside. Crit. Care 2020, 24, 134. [Google Scholar] [CrossRef] [PubMed]
- Trieb, M.; Rainer, F.; Stadlbauer, V.; Douschan, P.; Horvath, A.; Binder, L.; Trakaki, A.; Knuplez, E.; Scharnagl, H.; Stojakovic, T.; et al. HDL-related biomarkers are robust predictors of survival in patients with chronic liver failure. J. Hepatol. 2020, 73, 113–120. [Google Scholar] [CrossRef]
- Casula, M.; Colpani, O.; Xie, S.; Catapano, A.L.; Baragetti, A. HDL in atherosclerotic cardiovascular disease: In search of a role. Cells 2021, 10, 1869. [Google Scholar] [CrossRef]
- Pei, G.; Qin, A.; Dong, L.; Wang, S.; Liu, X.; Yang, D.; Tan, J.; Zhou, X.; Tang, Y.; Qin, W. Prognostic value of triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) in IgA nephropathy patients. Front. Endocrinol 2022, 13, 877794. [Google Scholar] [CrossRef]
- Young, K.A.; Maturu, A.; Lorenzo, C.; Langefeld, C.D.; Wagenknecht, L.E.; Chen, Y.I.; Taylor, K.D.; Rotter, J.I.; Norris, J.M.; Rasouli, N. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance, β-cell function, and diabetes in Hispanics and African Americans. J. Diabetes Complicat. 2019, 33, 118–122. [Google Scholar] [CrossRef]
- Etogo-Asse, F.E.; Vincent, R.P.; Hughes, S.A.; Auzinger, G.; Le Roux, C.W.; Wendon, J.; Bernal, W. High density lipoprotein in patients with liver failure; relation to sepsis, adrenal function and outcome of illness. Liver Int. 2012, 32, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Crudele, L.; Matteis, C.D.; Piccinin, E.; Gadaleta, R.M.; Cariello, M.; Di Buduo, E.; Piazzolla, G.; Suppressa, P.; Berardi, E.; Sabbà, C.; et al. Low HDL-cholesterol levels predict hepatocellular carcinoma development in individuals with liver fibrosis. JHEP Rep. 2023, 5, 100627. [Google Scholar] [CrossRef] [PubMed]
- Mathur, K.; Vilar-Gomez, E.; Connelly, M.A.; He, H.; Sanyal, A.J.; Chalasani, N.; Jiang, Z.G. Circulating high density lipoprotein distinguishes alcoholic hepatitis from heavy drinkers and predicts 90-day outcome: Lipoproteins in alcoholic hepatitis. J. Clin. Lipidol. 2021, 15, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Mihas, A.A.; Abou-Assi, S.G.; Williams, L.M.; Gavis, E.; Pandak, W.M.; Heuman, D.M. High-density lipoprotein cholesterol as an indicator of liver function and prognosis in noncholestatic cirrhotics. Clin. Gastroenterol. Hepatol. 2005, 3, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Guo, G.; Hui, Y.; Wang, X.; Liu, W.; Sun, C. The prognostic value of high-density lipoprotein cholesterol in patients with decompensated cirrhosis: A propensity score matching analysis. J. Clin. Lipidol. 2022, 16, 325–334. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, X.; Peng, S.; Han, Z.; Shen, J.; Cai, M. Association of low high-density lipoprotein cholesterol levels with poor outcomes in hepatitis B-associated decompensated cirrhosis patients. Biomed. Res. Int. 2021, 2021, 9927330. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Seals, S.; Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 2014, 21, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Pommergaard, H.C.; Daugaard, T.R.; Rostved, A.A.; Schultz, N.A.; Hillingsø, J.; Krohn, P.S.; Rasmussen, A. Model for end-stage liver disease score predicts complications after liver transplantation. Langenbecks Arch. Surg. 2021, 406, 55–65. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Lee, D.H.; Keum, N.; Hu, F.B.; Orav, E.J.; Rimm, E.B.; Willett, W.C.; Giovannucci, E.L. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: Prospective US cohort study. BMJ 2018, 362, k2575. [Google Scholar] [CrossRef] [PubMed]
- Kaffe, E.; Tisi, A.; Magkrioti, C.; Aidinis, V.; Mehal, W.Z.; Flavell, R.A.; Maccarrone, M. Bioactive signaling lipids as drivers of chronic liver diseases. J. Hepatol. 2024, 80, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.H.; Onufer, E.J.; Huang, L.H.; Sprung, R.W.; Davidson, W.S.; Czepielewski, R.S.; Wohltmann, M.; Sorci-Thomas, M.G.; Warner, B.W.; Randolph, G.J. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 2021, 373, eabe6729. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tan, W.; Wang, X.; Zheng, X.; Huang, Y.; Li, B.; Meng, Z.; Gao, Y.; Qian, Z.; Liu, F.; et al. Role of precipitants in transition of acute decompensation to acute-on-chronic liver failure in patients with HBV-related cirrhosis. JHEP Rep. 2022, 4, 100529. [Google Scholar] [CrossRef] [PubMed]
- Fung, J.; Mak, L.Y.; Chan, A.C.; Chok, K.S.; Wong, T.C.; Cheung, T.T.; Dai, W.C.; Sin, S.L.; She, W.H.; Ma, K.W.; et al. Model for end-stage liver disease with additional criteria to predict short-term mortality in severe flares of chronic hepatitis B. Hepatology 2020, 72, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Huang, Y.; Zhang, Q.; Li, Y.; Wang, X. Neutrophil-lymphocyte ratio and the risk of 30-day mortality in patients with overt hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 2022, 34, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Huang, Y.; Zhang, Q.; Ran, C.; Hou, J.; Zhang, Y.; Bi, Y.; Wang, X. A dynamic nomogram to predict transplant-free mortality in patients with hepatitis B-related cirrhosis and overt hepatic encephalopathy. Int. Immunopharmacol. 2022, 108, 108879. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, W.; Huang, F.; Yu, C.; Xi, L.; Gao, J.; Yin, M.; Liu, X.; Lin, J.; Liu, L.; et al. HDL-C levels added to the MELD score improves 30-day mortality prediction in Asian patients with cirrhosis. J. Int. Med. Res. 2022, 50, 3000605221109385. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.F.; Rader, D.J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res. 2005, 96, 1221–1232. [Google Scholar] [CrossRef]
- Manka, P.; Olligse, V.; Bechmann, L.P.; Schlattjan, M.; Jochum, C.; Treckmann, J.W.; Saner, F.H.; Gerken, G.; Syn, W.K.; Canbay, A. Low levels of blood lipids are associated with etiology and lethal outcome in acute liver failure. PLoS ONE 2014, 9, e102351. [Google Scholar] [CrossRef]
- Bernardi, M.; Ricci, C.S.; Zaccherini, G. Role of human albumin in the management of complications of liver cirrhosis. J. Clin. Exp. Hepatol. 2014, 4, 302–311. [Google Scholar] [CrossRef]
- Bories, P.N.; Campillo, B. One-month regular oral nutrition in alcoholic cirrhotic patients. Changes of nutritional status, hepatic function and serum lipid pattern. Br. J. Nutr. 1994, 72, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug. Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef] [PubMed]
- Oda, M.; Yokotani, A.; Hayashi, N.; Kamoshida, G. Role of sphingomyelinase in the pathogenesis of bacillus cereus infection. Biol. Pharm. Bull. 2020, 43, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Fessler, M.B.; Parks, J.S. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J. Immunol. 2011, 187, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Dogan, I.; Karaman, K.; Sonmez, B.; Celik, S.; Turker, O. Relationship between serum neutrophil count and infarct size in patients with acute myocardial infarction. Nucl. Med. Commun. 2009, 30, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.J.; Barrett, T.J.; Taylor, L.; McNeill, E.; Manmadhan, A.; Recio, C.; Carmineri, A.; Brodermann, M.H.; White, G.E.; Cooper, D.; et al. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo. eLife 2016, 5, e15190. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Catapano, A.L.; Norata, G.D. HDL in infectious diseases and sepsis. Handb. Exp. Pharmacol. 2015, 224, 483–508. [Google Scholar] [CrossRef]
- Gao, B.; Xiao, J.; Zhang, M.; Zhang, F.; Zhang, W.; Yang, J.; He, J.; Liu, Y.; Zou, X.; Xu, P.; et al. High-density lipoprotein cholesterol for the prediction of mortality in cirrhosis with portal vein thrombosis: A retrospective study. Lipids Health Dis. 2019, 18, 79. [Google Scholar] [CrossRef]
Variables | Training Cohort (n = 821) | Validation Cohort (n = 480) | p-Value |
---|---|---|---|
Age (years) | 54.0 (47.0,61.0) | 55.0 (47.0,63.0) | 0.896 |
Male | 598 (72.8) | 364 (75.8) | 0.235 |
Diabetes (%) | 198 (24.1) | 126 (26.3) | 0.391 |
GIB (%) | 291 (35.4) | 158 (32.9) | 0.355 |
SBP (%) | 50 (6.1) | 27 (5.6) | 0.732 |
Ascites (%) | 587 (71.5) | 348 (72.5) | 0.698 |
Classification of OHE (%) | 0.451 | ||
Grade II | 679 (82.7) | 389 (81.0) | |
Grade III–IV | 142 (17.3) | 91 (19.0) | |
ALT (IU/L) | 31.0 (19.7,59.2) | 30.7 (19.2,56.6) | 0.742 |
AST (IU/L) | 49.9 (32.7,103.2) | 66.8 (34.9,169.8) | 0.706 |
TBIL (µmol/L) | 55.3 (27.2,140.2) | 53.8 (32.2,102.9) | 0.248 |
Albumin (g/L) | 28.4 ± 4.9 | 28.0 ± 5.3 | 0.255 |
TC (mmol/L) | 2.4 (1.8,3.1) | 2.4 (2.0,2.9) | 0.762 |
TG (mmol/L) | 0.6 (0.4,0.8) | 0.6 (0.4,0.8) | 0.318 |
HDL-C (mmol/L) | 0.5 (0.3,0.9) | 0.5 (0.2,0.8) | 0.123 |
LDL-C (mmol/L) | 1.1 (0.8,1.6) | 1.1 (0.8,1.5) | 0.179 |
NLR | 4.3 (2.1,7.3) | 4.3 (2.3,7.9) | 0.597 |
PLT (×109/L) | 66.9 (43.4,103.0) | 69.2 (48.7,102.0) | 0.432 |
PT (s) | 17.6 (15.2,22.0) | 17.7 (15.3,23.3) | 0.322 |
PTA (%) | 49.6 (36.3,62.3) | 48.7 (34.0,62.0) | 0.463 |
INR | 1.5 (1.3,1.9) | 1.5 (1.3,1.9) | 0.160 |
Cr (µmol/L) | 70.3 (56.7,96.3) | 69.8 (56.0,97.6) | 0.831 |
MELD score | 14.5 (10.3,20.7) | 14.4 (10.0,22.2) | 0.455 |
Mortality (%) | 200 (24.4) | 126 (26.3) | 0.448 |
Variables | Survived (n = 621) | Death (n = 200) | p-Value |
---|---|---|---|
Age (years) | 54.0 (48.0,62.0) | 56.5 (47.0,66.0) | 0.001 |
Male | 465 (74.9) | 133 (66.5) | 0.021 |
Diabetes (%) | 148 (23.8) | 50 (25.0) | 0.737 |
GIB (%) | 202 (32.5) | 89 (44.5) | 0.002 |
SBP (%) | 26 (4.2) | 24 (12.0) | 0.001 |
Ascites (%) | 421 (67.8) | 166 (83.0) | <0.001 |
ALT (IU/L) | 28.2 (18.5,47.3) | 51.8 (25.5,142.0) | <0.001 |
AST (IU/L) | 43.9 (30.2,76.5) | 97.4 (44.6,241.8) | <0.001 |
TBIL (µmol/L) | 44.8 (24.2,92.4) | 174.1 (62.5,399.7) | <0.001 |
Albumin (g/L) | 28.8 ± 4.8 | 26.9 ± 4.9 | <0.001 |
TC (mmol/L) | 2.5 (2.1,3.2) | 1.9 (1.4,2.4) | <0.001 |
TG (mmol/L) | 0.6 (0.4,0.8) | 0.6 (0.4,0.7) | 0.219 |
HDL-C (mmol/L) | 0.6 (0.4,0.9) | 0.3 (0.1,0.5) | <0.001 |
LDL-C (mmol/L) | 1.2 (0.9,1.6) | 0.8 (0.5,1.1) | <0.001 |
NLR | 3.7 (2.2,6.2) | 6.5 (3.9,10.6) | <0.001 |
PLT (×109/L) | 68.0 (44.2,103.0) | 62.5 (40.5,105.7) | 0.743 |
INR | 1.5 (1.3,1.7) | 1.9 (1.5,2.4) | 0.219 |
Cr (µmol/L) | 67.4 (55.7,87.0) | 88.9 (61.0,146.6) | <0.001 |
MELD score | 13.0 (9.4,17.1) | 23.2 (15.9,29.1) | <0.001 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (years) | 1.012 (1.000,1.025) | 0.048 | 1.030 (1.016,1.044) | <0.001 |
Male | 0.708 (0.521,0.949) | 0.021 | ||
Diabetes | 1.082 (0.786,1.490) | 0.629 | ||
GIB (Yes or no) | 1.523 (1.152,2.012) | 0.003 | ||
SBP (Yes or no) | 2.383 (1.552,3.657) | 0.001 | ||
Ascites (Yes or no) | 2.172 (1.501,3.143) | <0.001 | 1.974 (1.452,2.683) | <0.001 |
Classification of OHE (%) | ||||
Grade II | Reference | |||
Grade III–IV | 1.447 (1.029,2.003) | 0.033 | ||
MELD score | 1.124 (1.108,1.141) | <0.001 | 1.107 (1.066,1.150) | <0.001 |
ALT (IU/L) | 1.001 (1.001,1.002) | <0.001 | ||
AST (IU/L) | 1.001 (1.001,1.001) | <0.001 | ||
TBIL (µmol/L) | 1.004 (1.003,1.005) | <0.001 | ||
Albumin (g/L) | 0.925 (0.899,0.952) | <0.001 | ||
TC (mmol/L) | 1.100 (1.006,1.135) | <0.001 | ||
TG (mmol/L) | 1.115 (0.960,1.391) | 0.217 | ||
HDL-C (mmol/L) | 0.008 (0.049,0.113) | <0.001 | 0.393 (0.218,0.711) | 0.002 |
LDL-C (mmol/L) | 0.365 (0.274,0.486) | <0.001 | ||
NLR | 1.061 (1.046,1.076) | <0.001 | 1.003 (1.014,1.053) | 0.001 |
PLT (×109/L) | 1.000 (0.997,1.002) | 0.774 | ||
PT (s) | 1.077 (1.064,1.089) | <0.001 | ||
PTA (%) | 0.951 (0.943,0.959) | <0.001 | ||
Cr (µmol/L) | 1.004 (1.003,1.005) | <0.001 |
Variables | HDL-C < 0.5 mmol/L (n = 408) | HDL-C ≥ 0.5 mmol/L (n = 413) | p-Value |
---|---|---|---|
Age (years) | 53.0 (46.0,63.0) | 56.0 (49.0,63.0) | 0.008 |
Male | 302 (74.0) | 296 (71.7) | 0.449 |
Diabetes (%) | 89 (21.8) | 109 (26.4) | 0.125 |
GIB (%) | 149 (36.5) | 142 (34.4) | 0.552 |
SBP (%) | 39 (9.6) | 11 (2.7) | <0.001 |
Ascites (%) | 327 (80.1) | 260 (63.0) | <0.001 |
ALT (IU/L) | 42.3 (23.0,130.4) | 25.8 (17.9,39.5) | <0.001 |
AST (IU/L) | 81.2 (42.7,190.0) | 38.5 (27.8,57.2) | <0.001 |
TBIL (µmol/L) | 124.1 (51.5,286.6) | 34.2 (20.3,59.7) | <0.001 |
Albumin (g/L) | 27.1 ± 4.8 | 29.6 ± 4.7 | <0.001 |
TC (mmol/L) | 2.1 (1.5,2.4) | 2.8 (2.3,3.5) | <0.001 |
TG (mmol/L) | 0.6 (0.5,0.8) | 0.6 (0.4,0.8) | 0.129 |
LDL-C (mmol/L) | 1.0 (0.6,1.1) | 1.4 (1.0,1.8) | <0.001 |
NLR | 5.1 (3.0,8.6) | 3.5 (2.1,5.9) | <0.001 |
PLT (×109/L) | 70.5 (42.2,108.0) | 65.2 (44.0,95.7) | 0.407 |
INR | 1.8 (1.4,2.2) | 1.3 (1.2,1.5) | <0.001 |
Cr (µmol/L) | 76.1 (59.6,113.2) | 66.7 (54.0,84.9) | <0.001 |
MELD score | 19.7 (13.5,26.1) | 11.7 (9.0,14.9) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Bi, Y.; Wang, X.; Li, Y.; Zeng, X.; Feng, Y.; Wang, X. Prognostic Value of High-Density Lipoprotein Cholesterol in Patients with Overt Hepatic Encephalopathy. Biomedicines 2024, 12, 1783. https://doi.org/10.3390/biomedicines12081783
Shi K, Bi Y, Wang X, Li Y, Zeng X, Feng Y, Wang X. Prognostic Value of High-Density Lipoprotein Cholesterol in Patients with Overt Hepatic Encephalopathy. Biomedicines. 2024; 12(8):1783. https://doi.org/10.3390/biomedicines12081783
Chicago/Turabian StyleShi, Ke, Yufei Bi, Xiaojing Wang, Yanqiu Li, Xuanwei Zeng, Ying Feng, and Xianbo Wang. 2024. "Prognostic Value of High-Density Lipoprotein Cholesterol in Patients with Overt Hepatic Encephalopathy" Biomedicines 12, no. 8: 1783. https://doi.org/10.3390/biomedicines12081783
APA StyleShi, K., Bi, Y., Wang, X., Li, Y., Zeng, X., Feng, Y., & Wang, X. (2024). Prognostic Value of High-Density Lipoprotein Cholesterol in Patients with Overt Hepatic Encephalopathy. Biomedicines, 12(8), 1783. https://doi.org/10.3390/biomedicines12081783