Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias
2.6. Synthesis Methods and Meta-Analysis
3. Results
3.1. Prisma Flowchart
3.2. Risk of Bias Assessment
3.3. Meta-Analysis
3.4. Results at 6 Months
3.5. Results at 12 Months
3.6. Results at 24 Months
4. Discussion
Limitations and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Knight, S.; Aujla, R.; Biswas, S. Total Hip Arthroplasty—Over 100 Years of Operative History. Orthop. Rev. 2011, 3, e16. [Google Scholar] [CrossRef]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Culliford, D.; Maskell, J.; Judge, A.; Cooper, C.; Prieto-Alhambra, D.; Arden, N.K. Future Projections of Total Hip and Knee Arthroplasty in the UK: Results from the UK Clinical Practice Research Datalink. Osteoarthr. Cartil. 2015, 23, 594–600. [Google Scholar] [CrossRef]
- Sharif, B.; Kopec, J.; Bansback, N.; Rahman, M.M.; Flanagan, W.M.; Wong, H.; Fines, P.; Anis, A. Projecting the Direct Cost Burden of Osteoarthritis in Canada Using a Microsimulation Model. Osteoarthr. Cartil. 2015, 23, 1654–1663. [Google Scholar] [CrossRef]
- Nemes, S.; Gordon, M.; Rogmark, C.; Rolfson, O. Projections of Total Hip Replacement in Sweden from 2013 to 2030. Acta Orthop. 2014, 85, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, I.N.; Bohensky, M.A.; Zomer, E.; Tacey, M.; Gorelik, A.; Brand, C.A.; de Steiger, R. The Projected Burden of Primary Total Knee and Hip Replacement for Osteoarthritis in Australia to the Year 2030. BMC Musculoskelet. Disord. 2019, 20, 90. [Google Scholar] [CrossRef]
- Karachalios, T.; Komnos, G.; Koutalos, A. Total Hip Arthroplasty. EFORT Open Rev. 2018, 3, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Brunello, M.; Bordini, B.; Rossomando, V.; Tassinari, L.; D’Agostino, C.; Ruta, F.; Faldini, C. Unstable Total Hip Arthroplasty: Should It Be Revised Using Dual Mobility Implants? A Retrospective Analysis from the R.I.P.O. Registry J. Clin. Med. 2023, 12, 440. [Google Scholar] [CrossRef]
- Perez Alamino, R.; Casellini, C.; Baňos, A.; Schneeberger, E.E.; Gagliardi, S.A.; Maldonado Cocco, J.A.; Citera, G. Prevalence of Periprosthetic Osteolysis after Total Hip Replacement in Patients with Rheumatic Diseases. Open Access Rheumatol. 2012, 2012, 57–62. [Google Scholar] [CrossRef]
- Di Martino, A.; Brunello, M.; Pederiva, D.; Schilardi, F.; Rossomando, V.; Cataldi, P.; D’Agostino, C.; Genco, R.; Faldini, C. Fast Track Protocols and Early Rehabilitation after Surgery in Total Hip Arthroplasty: A Narrative Review. Clin. Pract. 2023, 13, 569–582. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Hamer, A.J.; Stockley, I.; Eastell, R. Polyethylene Wear Rate and Osteolysis: Critical Threshold versus Continuous Dose-Response Relationship. J. Orthop. Res. 2005, 23, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Orishimo, K.F.; Claus, A.M.; Sychterz, C.J.; Engh, C.A. Relationship between Polyethylene Wear and Osteolysis in Hips with a Second-Generation Porous-Coated Cementless Cup after Seven Years of Follow-Up. J. Bone Jt. Surg.-Am. 2003, 85, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Jagga, S.; Sharma, A.R.; Bhattacharya, M.; Chakraborty, C.; Lee, S.-S. Influence of Single Nucleotide Polymorphisms (SNPs) in Genetic Susceptibility towards Periprosthetic Osteolysis. Genes Genom. 2019, 41, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Sukur, E.; Akman, Y.E.; Ozturkmen, Y.; Kucukdurmaz, F. Particle Disease: A Current Review of the Biological Mechanisms in Periprosthetic Osteolysis After Hip Arthroplasty. Open Orthop. J. 2016, 10, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Brunello, M.; Di Martino, A.; Ruta, F.; Ferri, R.; Rossomando, V.; D’Agostino, C.; Pederiva, D.; Schilardi, F.; Faldini, C. Which Patient Benefit Most from Minimally Invasive Direct Anterior Approach Total Hip Arthroplasty in Terms of Perioperative Blood Loss? A Retrospective Comparative Study from a Cohort of Patients with Primary Degenerative Hips. Musculoskelet. Surg. 2023, 107, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Mjöberg, B. Hip Prosthetic Loosening and Periprosthetic Osteolysis: A Commentary. World J. Orthop. 2022, 13, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Gallo, J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Ferri, R.; Bordini, B.; Brunello, M.; Rossomando, V.; Digennaro, V.; Traina, F.; Faldini, C. Long-Term Survival and Complication Rate of Cementless Prosthetic Stems in Primary Total Hip Arthroplasty Categorized by Types According to Mont Classification: A Regional Registry-Based Study on 53,626 Implants. Arch. Orthop. Trauma Surg. 2024, 144, 1423–1435. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef]
- Papapoulos, S.E. Bisphosphonates: How Do They Work? Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 831–847. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Available online: https://www.prisma-statement.org/ (accessed on 14 May 2024).
- Arabmotlagh, M.; Pilz, M.; Warzecha, J.; Rauschmann, M. Changes of Femoral Periprosthetic Bone Mineral Density 6 Years after Treatment with Alendronate Following Total Hip Arthroplasty. J. Orthop. Res. 2009, 27, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Masuhara, K.; Yamasaki, S.; Fuji, T.; Seino, Y. Effects of Discontinuation as Well as Intervention of Cyclic Therapy with Etidronate on Bone Remodeling after Cementless Total Hip Arthroplasty. Bone 2004, 35, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Fokter, S.K.; Komadina, R.; Repše-Fokter, A. Effect of Etidronate in Preventing Periprosthetic Bone Loss Following Cemented Hip Arthroplasty: A Randomized, Double Blind, Controlled Trial. Wien. Klin. Wochenschr. 2006, 118, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Morita, A.; Kobayashi, N.; Choe, H.; Ike, H.; Tezuka, T.; Higashihira, S.; Inaba, Y. Effect of Switching Administration of Alendronate after Teriparatide for the Prevention of BMD Loss around the Implant after Total Hip Arthroplasty, 2-Year Follow-Up. A Randomized Controlled Trial. J. Orthop. Surg. Res. 2020, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.F.; Woltz, J.N.; Smith, R.R. Effect of Zoledronic Acid on Reducing Femoral Bone Mineral Density Loss Following Total Hip Arthroplasty. J. Arthroplast. 2013, 28, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Masuhara, K.; Yamasaki, S.; Nakai, T.; Fuji, T. Cyclic Therapy with Etidronate Has a Therapeutic Effect against Local Osteoporosis after Cementless Total Hip Arthroplasty. Bone 2003, 33, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, Y.; Guo, X.; Yang, H.; Xu, Y.; Geng, D. Effects of Zoledronic Acid on Bone Mineral Density around Prostheses and Bone Metabolism Markers after Primary Total Hip Arthroplasty in Females with Postmenopausal Osteoporosis. Osteoporos. Int. 2019, 30, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Gruen, T.A.; McNeice, G.M.; Amstutz, H.C. “Modes of Failure” of Cemented Stem-Type Femoral Components: A Radiographic Analysis of Loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Kuźnik, A.; Październiok-Holewa, A.; Jewula, P.; Kuźnik, N. Bisphosphonates—Much More than Only Drugs for Bone Diseases. Eur. J. Pharmacol. 2020, 866, 172773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, J.-W.; Li, M.-Y.; Wu, L.-M.; Zeng, Y.; Shen, B. Zoledronic Acid for Periprosthetic Bone Mineral Density Changes in Patients with Osteoporosis After Hip Arthroplasty—An Updated Meta-Analysis of Six Randomized Controlled Trials. Front. Med. 2021, 8, 801282. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gao, C.; Li, H.; Wang, G.; Xu, C.; Ran, J. Effect of Zoledronic Acid on Reducing Femoral Bone Mineral Density Loss Following Total Hip Arthroplasty: A Meta-Analysis from Randomized Controlled Trails. Int. J. Surg. 2017, 47, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, Y.; Ye, C.; Mumingjiang, Y.; Lu, J.; Yu, Y. Prophylactic Efficacy on Periprosthetic Bone Loss in Calcar Region after Total Hip Arthroplasty of Antiosteoporotic Drugs: A Network Meta-Analysis of Randomised Controlled Studies. Postgrad. Med. J. 2021, 97, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Sköldenberg, O.G.; Salemyr, M.O.; Bodén, H.S.; Ahl, T.E.; Adolphson, P.Y. The Effect of Weekly Risedronate on Periprosthetic Bone Resorption Following Total Hip Arthroplasty. J. Bone Jt. Surg. 2011, 93, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- Nyström, A.; Kiritopoulos, D.; Ullmark, G.; Sörensen, J.; Petrén-Mallmin, M.; Milbrink, J.; Hailer, N.P.; Mallmin, H. Denosumab Prevents Early Periprosthetic Bone Loss After Uncemented Total Hip Arthroplasty: Results from a Randomized Placebo-Controlled Clinical Trial. J. Bone Miner. Res. 2019, 35, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Neer, R.M.; Arnaud, C.D.; Zanchetta, J.R.; Prince, R.; Gaich, G.A.; Reginster, J.-Y.; Hodsman, A.B.; Eriksen, E.F.; Ish-Shalom, S.; Genant, H.K. Effect of Parathyroid Hormone (1–34) on Fractures and Bone Mineral Density in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2001, 344, 1434–1441. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Yang, N.; Qian, H.; Zhang, L.; Tan, M. Raloxifene Prevents Early Periprosthetic Bone Loss for Postmenopausal Women after Uncemented Total Hip Arthroplasty: A Randomized Placebo-Controlled Clinical Trial. Orthop. Surg. 2020, 12, 1074–1083. [Google Scholar] [CrossRef]
Author | Year | Bis. Dose | Cont. dose | Bis. n | Cont. n. | Follow-Up (Months) |
---|---|---|---|---|---|---|
Arabmotlagh et al. [23] | 2009 | 10 mg/day alendronate for 5 weeks | No treatment | 14 | 20 | 12 months |
Yamaguchi et al. [24] | 2003 | 400 mg/day etidronate was given in a 2-week cycle followed by 12 weeks of 500 mg/day calcium supplementation | No treatment | 22 | 30 | 12 months |
Fokter et al. [25] | 2006 | 400 mg etidronate/day, given in a 2-week cycle followed by 12 weeks of 260/mg/day calcium supplementation | Placebo | 18 | 13 | 12 months |
Morita et al. [26] | 2020 | 20 μg/day teriparatide for 1 year. Patients then switched to 35/mg/week alendronate for 1 year | No treatment | 14 | 15 | 24 months |
Scott et al. [27] | 2013 | IV infusion of 5 mg zoledronic (+received oral calcium carbonate 1200 mg/day and calcitriol 0.50 μg/day) | Oral calcium carbonate 1200 mg/day and calcitriol 0.50 μg/day | 21 | 21 | 24 months |
Yamaguchi et al. [28] | 2004 | Received 400 mg/day of etidronate for 2 weeks, followed by 500 mg/day of calcium for 12 weeks. Cycle was repeated every 14 weeks for four cycles for a total of 12 months | Placebo | 16 | 24 | 24 months |
Zhou et al. [29] | 2019 | Received an intravenous infusion of 5 mg zoledronic acid (+1200 mg/day calcium carbonate and 0.50 μg/day calcitriol). | 1200 mg/day calcium carbonate and 0.50 μg/day calcitriol | 21 | 21 | 24 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, A.; Valtetsiotis, K.; Rossomando, V.; Brunello, M.; Bordini, B.; D’Agostino, C.; Ruta, F.; Traina, F.; Faldini, C. Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis. Biomedicines 2024, 12, 1778. https://doi.org/10.3390/biomedicines12081778
Di Martino A, Valtetsiotis K, Rossomando V, Brunello M, Bordini B, D’Agostino C, Ruta F, Traina F, Faldini C. Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis. Biomedicines. 2024; 12(8):1778. https://doi.org/10.3390/biomedicines12081778
Chicago/Turabian StyleDi Martino, Alberto, Konstantinos Valtetsiotis, Valentino Rossomando, Matteo Brunello, Barbara Bordini, Claudio D’Agostino, Federico Ruta, Francesco Traina, and Cesare Faldini. 2024. "Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis" Biomedicines 12, no. 8: 1778. https://doi.org/10.3390/biomedicines12081778
APA StyleDi Martino, A., Valtetsiotis, K., Rossomando, V., Brunello, M., Bordini, B., D’Agostino, C., Ruta, F., Traina, F., & Faldini, C. (2024). Efficacy of Bisphosphonates in Total Hip Arthroplasty Patients: Systematic Review and Meta-Analysis. Biomedicines, 12(8), 1778. https://doi.org/10.3390/biomedicines12081778