Insecure Attachment, Oxytocinergic System and C-Tactile Fibers: An Integrative and Translational Pathophysiological Model of Fibromyalgia and Central Sensitivity Syndromes
Abstract
:1. Introduction
2. Pathophysiology of Fibromyalgia Syndrome (FMS)
2.1. The Stress Response System in FMS and Central Sensitivity Syndromes (CSSs)
2.2. The Bodily Distress Syndrome and Fibromyalgia Syndrome (FMS): What Came First?
2.3. General Principles of the Attachment System (AS) Theory and Relationship with the Bodily Stress System (BSS)
2.4. The Relationship between Insecure Attachment (IA) in Chronic Pain (CP) and Fibromyalgia Syndrome (FMS)
2.5. History and Physiology of C-Tactile (CT) Afferents and Their Role in “The Affective Touch Hypothesis”
2.6. C-Tactile (CT) Fibers in Fibromyalgia Syndrome (FMS): From Small-Fiber Pathology (SFP) to Pain Modulation through the Stimulation of “The Affective System C”
2.7. Attachment System (AS), C-Tactile (CT) Fibers, Oxytocinergic System (OS) and Brain Development
2.8. Role of Oxytocinergic System (OS) in Attachment System (AS) and Pain Modulation
2.9. Attachment System (AS), C-Tactile (CT) Fibers, and Oxytocinergic System (OS) Role in Other Central Sensitivity Syndromes (CSSs) and Chronic Pain (CP) Conditions
3. Discussion
Therapeutic Implications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANS | Autonomic Nervous System |
AS | Attachment System |
BSS | Bodily stress system |
C-LTMRs | C-low-threshold mechanoreceptors |
CP | Chronic Pain |
CRPS | Complex Regional Pain Syndrome |
CSSs | Central Sensitivity Syndromes |
CT | C-tactile |
DRG | Dorsal Roots of the Spinal Ganglion |
FM | Fibromyalgia |
FMS | Fibromyalgia Syndrome |
FSDs | Functional Somatic Disorders |
HPA | Hypothalamus–Pituitary–Adrenal |
HRV | Heart Rate Variability |
IA | Insecure Attachment |
IBS | Irritable Bowel Syndrome |
IENFD | Intraepidermal Nerve-Fiber Density |
OS | Oxytocinergic System |
OT | Oxytocin |
PTSD | Post-Traumatic Stress Disorder |
PVN | Paraventricular Nucleus |
SA | Secure Attachment |
SFP | Small-Fiber Pathology |
References
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Classification of Diseases (ICD). WHO [Online]. 2015. Available online: http://www.who.int/classifications/icd/en/ (accessed on 3 June 2024).
- Burton, C.; Fink, P.; Henningsen, P.; Löwe, B.; Rief, W.; on behalf of the EURONET-SOMA Group. Functional somatic disorders: Discussion paper for a new common classification for research and clinical use. BMC Med. 2020, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Yunus, M.B. Central sensitivity syndromes: A new paradigm and group nosology for fibromyalgia and overlapping conditions, and the related issue of disease versus illness. Semin. Arthritis Rheum. 2008, 37, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Veasley, C. Fibromyalgia Syndrome and Widespread Pain: From Construction to Relevant Recognition; Häuser, W., Perrot, S., Eds.; Wolters Kluwer Health: Philadelphia, PA, USA, 2018; pp. 87–111. [Google Scholar]
- Martinez-Lavin, M. Fibromyalgia as a sympathetically maintained pain syndrome. Curr. Pain Headache Rep. 2004, 8, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lavin, M. Biology and therapy of fibromyalgia. Stress, the stress response system, and fibromyalgia. Arthritis Res. Ther. 2007, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Kosek, E.; Kadetoff, D. Evidence of reduced sympatho-adrenal and hypothalamic-pituitary activity during static muscular work in patients with fibromyalgia. J. Rehabil. Med. 2010, 42, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, L.A.; Mora, T.; Vargas, A.; Fuentes-Iniestra, M.; Martínez-Lavín, M. Sympathetic Nervous System Dysfunction in Fibromyalgia, Chronic Fatigue Syndrome, Irritable Bowel Syndrome, and Interstitial Cystitis. JCR J. Clin. Rheumatol. 2014, 20, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, F.; Karaca, Z.; Unluhizarci, K.; Kelestimur, F. The hypothalamo-pituitary-adrenal axis in chronic fatigue syndrome and fibromyalgia syndrome. Stress 2007, 10, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Schweinhardt, P. Dysfunctional neurotransmitter systems in fibromyalgia, their role in central stress circuitry and pharmacological actions on these systems. Pain Res. Treat. 2012, 2012, 741746. [Google Scholar] [CrossRef]
- Williams, D.A.; Clauw, D.J. Understanding fibromyalgia: Lessons from the broader pain research community. J. Pain 2009, 10, 777–791. [Google Scholar] [CrossRef]
- Wyns, A.; Hendrix, J.; Lahousse, A.; De Bruyne, E.; Nijs, J.; Godderis, L.; Polli, A. The Biology of Stress Intolerance in Patients with Chronic Pain—State of the Art and Future Directions. J. Clin. Med. 2023, 12, 2245. [Google Scholar] [CrossRef] [PubMed]
- Riva, R.; Mork, P.; Westgaard, R.; Rø, M.; Lundberg, U. Fibromyalgia syndrome is associated with hypocortisolism. Int. J. Behav. Med. 2010, 17, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Fries, E.; Hesse, J.; Hellhammer, J.; Hellhammer, D.H. A new view on hypocortisolism. Psychoneuroendocrinology 2005, 30, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Reyes del Paso, G.A.; Garcia-Hernandez, A.; Contreras-Merino, A.M.; Galvez-Sánchez, C.M.; de la Coba, P.; Montoro, C.I.; Davydov, D.M. A two-component model of hair cortisol concentration in fibromyalgia: Independent effects of pain chronicity and severity. Eur. J. Pain 2024, 28, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Eller-Smith, O.C.; Nicol, A.L.; Christianson, J.A. Potential mechanisms underlying centralized pain and emerging therapeutic interventions. Front. Cell. Neurosci. 2018, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Falvay, D.; Clamor, A.; Wagner, J.; Jarczok, M.N.; Ellis, R.J.; Weber, C.; Thayer, J.F. Pneumogastric (Vagus) Nerve Activity Indexed by Heart Rate Variability in Chronic Pain Patients Compared to Healthy Controls: A Systematic Review and Meta-Analysis. Pain Physician 2016, 19, E55–E78. [Google Scholar] [CrossRef] [PubMed]
- Ying-Chih, C.; Yu-Chen, H.; Wei-Lieh, H. Heart rate variability in patients with somatic symptom disorders and functional somatic syndromes: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 112, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.; Casagrande, M. Heart Rate Variability and Pain: A Systematic Review. Brain. Sci. 2022, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- An, E.; Nolty, A.A.T.; Amano, S.S.; Rizzo, A.A.; Buckwalter, J.G.; Rensberger, J. Heart Rate Variability as an Index of Resilience. Mil. Med. 2020, 2, 363–369. [Google Scholar] [CrossRef]
- Jørgensen, T.; Dantoft, T.M.; Petersen, M.W.; Gormsen, L.; Winter-Jensen, M.; Fink, P.; Linneberg, A.; Benros, M.E.; Eplov, L.F.; Bjerregaard, A.A.; et al. Is reduced heart rate variability associated with functional somatic disorders? A cross-sectional population-based study; DanFunD. BMJ Open 2024, 14, e073909. [Google Scholar] [CrossRef]
- Reyes Del Paso, G.A.; Garrido, S.; Pulgar, A.; Martín-Vázquez, M.; Duschek, S. Aberrances in autonomic cardiovascular regulation in fibromyalgia syndrome and their relevance for clinical pain reports. Psychosom. Med. 2010, 72, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Goubert, D.; De Backer, F.; Struyf, F.; Hermans, L.; Coppieters, I.; De Wandele, I.; Da Silva, H.; Calders, P. Heart rate variability in patients with fibromyalgia and patients with chronic fatigue syndrome: A systematic review. Semin. Arthritis Rheum. 2013, 43, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Tracy, L.M.; Ioannou, L.; Baker, K.S.; Gibson, S.J.; Georgiou-Karistianis, N.; Giumarra, M.J. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 2016, 157, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Manzano, C.F.; Lerma, C.; Echeverría, J.C.; Martínez-Lavin, M.; Martínez-Martínez, L.A.; Infante, O.; Guzmán-Vargas, L. Multifractal Analysis Reveals Decreased Non-linearity and Stronger Anticorrelations in Heart Period Fluctuations of Fibromyalgia Patients. Front. Physiol. 2018, 9, 1118. [Google Scholar] [CrossRef] [PubMed]
- Reyes Del Paso, G.A.; de la Coba, P. Reduced activity, reactivity and functionality of the sympathetic nervous system in fibromyalgia: An electrodermal study. PLoS ONE 2020, 15, e0241154. [Google Scholar] [CrossRef] [PubMed]
- Zetterman, T.; Markkula, R.; Miettinen, T.; Kalso, E. Heart rate variability responses to cognitive stress in fibromyalgia are characterised by inadequate autonomous system stress responses: A clinical trial. Sci. Rep. 2023, 13, 700. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.W.; Schröder, A.; Jørgensen, T.; Ørnbøl, E.; Dantoft, T.M.; Eliasen, M.; Thuesen, B.H.; Fink, P. The unifying diagnostic construct of bodily distress syndrome (BDS) was confirmed in the general population. J. Psychosom. Res. 2020, 128, 109868. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.W.; Schröder, A.; Jørgensen, T.; Ørnbøl, E.; Meinertz Dantoft, T.; Eliasen, M.; Benros, M.E.; Fink, P. Irritable bowel, chronic widespread pain, chronic fatigue and related syndromes are prevalent and highly overlapping in the general population: DanFunD. Sci. Rep. 2020, 24, 3273. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.I.; Smyth, N.; Hall, S.J.; Torres, S.J.; Hussein, M.; Jayasinghe, S.U.; Ball, K.; Clow, A.J. Psychological stress reactivity and future health and disease outcomes: A systematic review of prospective evidence. Psychoneuroendocrinology 2020, 114, 104599. [Google Scholar] [CrossRef]
- Hyland, M.E. A new paradigm to explain functional disorders and the adaptive network theory of chronic fatigue syndrome and fibromyalgia syndrome. In Resistance and Renewal in Theoretical Psychology; Sullivan, G.B., Cresswell, J., Ellis, B., Morgan, M., Schraube, E., Eds.; Captus University Publications: Concord, ON, Canada, 2017. [Google Scholar]
- Davies, A.F.; Hill, P.; Fay, D.; Dee, A.; Locher, C. Body Reprogramming: Reframing the Fibromyalgia narrative and providing an integrative therapeutic model. Health Psychol. Open 2020, 7, 2055102920971494. [Google Scholar] [CrossRef]
- Lanario, J.W.; Hudson, E.; Locher, C.; Dee, A.; Elliot, K.; Davies, A.F. Body reprogramming for fibromyalgia and central sensitivity syndrome: A preliminary evaluation. SAGE Open Med. 2023, 11, 20503121231207207. [Google Scholar] [CrossRef]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Pinto, A.M.; Geenen, R.; Wager, T.D.; Lumley, M.A.; Häuser, W.; Kosek, E.; Ablin, J.N.; Amris, K.; Branco, J.; Buskila, D.; et al. Emotion regulation and the salience network: A hypothetical integrative model of fibromyalgia. Nat. Rev. Rheumatol. 2023, 19, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Generaal, E.; Vogelzangs, N.; Macfarlane, G.J.; Geenen, R.; Smit, J.H.; de Geus, E.J.; Penninx, B.W.; Dekker, J. Biological stress systems, adverse life events and the onset of chronic multisite musculoskeletal pain: A 6-year cohort study. Ann. Rheum. Dis. 2016, 75, 847–854. [Google Scholar] [CrossRef]
- Yavne, Y.; Amital, D.; Watad, A.; Tiosano, S.; Amital, H. A systematic review of precipitating physical and psychological traumatic events in the development of fibromyalgia. Semin. Arthritis Rheum. 2018, 48, 121–133. [Google Scholar] [CrossRef]
- Smith, K.E.; Pollak, S.D. Early life stress and development: Potential mechanisms for adverse outcomes. J. Neurodev. Disord. 2020, 16, 34. [Google Scholar] [CrossRef]
- Cay, M.; Gonzalez-Heydrich, J.; Teicher, M.H.; van der Heijden, H.; Ongur, D.; Shinn, A.K.; Upadhyay, J. Childhood maltreatment and its role in the development of pain and psychopathology. Lancet Child. Adolesc. Health 2022, 6, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.R.; Dworkin, R.H.; Sullivan, M.D.; Turk, D.C.; Wasan, A.D. The Role of Psychosocial Processes in the Development and Maintenance of Chronic Pain. J. Pain 2016, 17, T70–T92. [Google Scholar] [CrossRef] [PubMed]
- Afari, N.; Ahumada, S.M.; Wright, L.J.; Mostoufi, S.; Golnari, G.; Reis, V.; Cuneo, J.G. Psychological trauma and functional somatic syndromes: A systematic review and meta-analysis. Psychosom. Med. 2014, 76, 2–11. [Google Scholar] [CrossRef]
- Holley, A.; Wilson, A.; Noel, M.; Palermo, T. Post-traumatic stress symptoms in children and adolescents with chronic pain: A topical review of the literature and a proposed framework for future research. Eur. J. Pain 2016, 20, 1371–1383. [Google Scholar] [CrossRef]
- Beal, S.J.; Kashikar-Zuck, S.; King, C.; Black, W.; Barnes, J.; Noll, J.G. Heightened risk of pain in young adult women with a history of childhood maltreatment: A prospective longitudinal study. Pain 2020, 161, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.M.; Cunningham, N.R.; Kashikar-Zuck, S. A conceptual framework for understanding the role of adverse childhood experiences in pediatric chronic Pain. Clin. J. Pain 2017, 33, 264–270. [Google Scholar]
- McCrory, E.; De Brito, S.A.; Viding, E. The impact of childhood maltreatment: A review of neurobiological and genetic factors. Front. Psychiatry. 2011, 28, 48. [Google Scholar] [CrossRef] [PubMed]
- Nardi, A.E.; Karam, E.G.; Carta, M.G. Fibromyalgia patients should always be screened for post-traumatic stress disorder. Expert. Rev. Neurother. 2020, 20, 891–893. [Google Scholar] [CrossRef] [PubMed]
- McKernan, L.C.; Johnson, B.N.; Crofford, L.J.; Lumley, M.A.; Bruehl, S.; Cheavens, J.S. Posttraumatic Stress Symptoms Mediate the Effects of Trauma Exposure on Clinical Indicators of Central Sensitization in Patients With Chronic Pain. Clin. J. Pain 2019, 35, 385–393. [Google Scholar] [CrossRef] [PubMed]
- González-Vives, S.; Díaz-Marsá, M.; De la Vega, I.; Palomares, N.; Vázquez, S.; López-Villatoro, J.M.; Palomo, T.; Carrasco, J.L. Hypothalamic-pituitary axis response to a 0.25-MG dexamethasone test in women with fibromyalgia. Stress 2020, 23, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Bowlby, J. Attachment and Loss: 1. Attachment; Hogarth Press: London, UK, 1969. [Google Scholar]
- Bowlby, J. Attachment and Loss. Vol. 1: Attachment; Basic Books: New York, NY, USA, 1982. [Google Scholar]
- Bowlby, J. Attachment and loss: Retrospect and prospect. Am. J. Orthopsychiatry 1982, 52, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, M.D.S.; Bell, S.M.; Stayton, D.F. Infant-mother attachment and social development: Socialization as a product of reciprocal responsiveness to signals. In The Integration of a Child into a Social World; Richards, M.P.M., Ed.; Cambridge University Press: New York, NY, USA, 1974; pp. 99–135. [Google Scholar]
- Feldman, R. What is resilience: An affiliative neuroscience approach. World Psychiatry Off. J. World Psychiatr. Assoc. (WPA) 2020, 19, 132–150. [Google Scholar] [CrossRef] [PubMed]
- Ma, K. Attachment theory in adult psychiatry. Part 1: Conceptualisations, measurement and clinical research findings. Adv. Psychiatr. Treatment. 2006, 12, 440–449. [Google Scholar] [CrossRef]
- Bartholomew, K.; Horowitz, L.M. Attachment styles among young adults: A test of a four-category model. J. Personal. Soc. Psychol. 1991, 61, 226–244. [Google Scholar] [CrossRef]
- Vrtička, P.; Vuilleumier, P. Neuroscience of human social interactions and adult attachment style. Front. Hum. Neurosci. 2012, 6, 212. [Google Scholar] [CrossRef]
- Gander, M.; Karabatsiakis, A.; Nuderscher, K.; Bernheim, D.; Doyen-Waldecker, C.; Buchheim, A. Secure Attachment Representation in Adolescence Buffers Heart-Rate Reactivity in Response to Attachment-Related Stressors. Front. Hum. Neurosci. 2022, 16, 806987. [Google Scholar] [CrossRef]
- Bryant, R.A.; Hutanamon, T. Activating attachments enhances heart rate variability. PLoS ONE 2018, 15, e0151747. [Google Scholar] [CrossRef] [PubMed]
- Gander, M.; Buchheim, A. Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: A review. Front. Hum. Neurosci. 2015, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Pietromonaco, P.R.; Powers, S.I. Attachment and Health-Related Physiological Stress Processes. Curr. Opin. Psychol. 2015, 1, 34–39. [Google Scholar] [CrossRef]
- Godoy, L.; Rossignoli, M.; Delfino-Pereira, P.; Garcia-Cairasco, N.; de Lima Umeoka, E.A. Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front. Behav. Neurosci. 2018, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Pietromonaco, P.R.; Uchino, B.; Dunkel Schetter, C. Close relationship processes and health: Implications of attachment theory for health and disease. Health Psychol. 2013, 32, 499–513. [Google Scholar] [CrossRef]
- Bosmans, G.; Borelli, J.L. Attachment and the Development of Psychopathology: Introduction to the Special Issue. Brain Sci. 2022, 12, 174. [Google Scholar] [CrossRef]
- Meredith, P.; Ownsworth, T.; Strong, J. A review of the evidence linking adult attachment theory and chronic pain: Presenting a conceptual model. Clin. Psychol. Rev. 2008, 28, 407–429. [Google Scholar] [CrossRef]
- McWilliams, L.A. Adult attachment insecurity is positively associated with medically unexplained chronic Pain. Eur. J. Pain 2017, 21, 1378–1383. [Google Scholar]
- Romeo, A.; Tesio, V.; Castelnuovo, G.; Castelli, L. Attachment Style and Chronic Pain: Toward an Interpersonal Model of Pain. Front. Psychol. 2017, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.A.; Macfarlane, G.J.; McBeth, J.; Morriss, R.; Dickens, C. Insecure attachment style is associated with chronic widespread Pain. Pain 2009, 143, 200–205. [Google Scholar]
- McWilliams, L.A.; Asmundson, G.J. The relationship of adult attachment dimensions to pain-related fear, hypervigilance, and catastrophizing. Pain 2007, 127, 27–34. [Google Scholar] [CrossRef]
- Meredith, P.J. A review of the evidence regarding associations between attachment theory and experimentally induced Pain. Curr. Pain Headache Rep. 2013, 17, 326. [Google Scholar] [CrossRef]
- Peñacoba, C.; Perez-Calvo, S.; Blanco, S.; Sanroman, L. Attachment styles, pain intensity and emotional variables in women with fibromyalgia. Scand. J. Caring Sci. 2018, 32, 535–544. [Google Scholar] [CrossRef]
- Romeo, A.; Di Tella, M.; Ghiggia, A.; Tesio, V.; Fusaro, E.; Geminiani, G.C.; Castelli, L. Attachment style and parental bonding: Relationships with fibromyalgia and alexithymia. PLoS ONE 2020, 15, e0231674. [Google Scholar] [CrossRef]
- Puşuroğlu, M.; Topaloğlu, M.S.; Hocaoğlu, Ç.; Yıldırım, M. Expressing emotions, rejection sensitivity, and attachment in patients with fibromyalgia. Turk. J. Phys. Med. Rehabil. 2023, 69, 303. [Google Scholar] [CrossRef]
- Sechi, C.; Vismara, L.; Brennstuhl, M.J.; Tarquinio, C.; Lucarelli, L. Adult attachment styles, self-esteem, and quality of life in women with fibromyalgia. Health Psychol. Open 2020, 7, 2055102920947921. [Google Scholar] [CrossRef] [PubMed]
- Sechi, C.; Lucarelli, L.; Vismara, L. Depressive Symptoms and Quality of Life in a Sample of Italian Women with a Diagnosis of Fibromyalgia: The Role of Attachment Styles. Depress. Res. Treat. 2021, 16, 5529032. [Google Scholar] [CrossRef] [PubMed]
- Shea, V.K.; Perl, E.R. Sensory receptors with unmyelinated (C) fibers innervating the skin of the rabbit’s ear. J. Neurophysiol. 1985, 54, 491–501. [Google Scholar] [CrossRef]
- Lawson, S.N.; Crepps, B.A.; Perl, E.R. Relationship of substance P to afferent characteristics of dorsal root ganglion neurones in guinea-pig. J. Physiol. 1997, 505, 177–191. [Google Scholar] [CrossRef]
- Johansson, R.S.; Trulsson, M.; Olsson, K.A.; Westberg, K.G. Mechanoreceptor activity from the human face and oral mucosa. Exp. Brain Res. 1988, 72, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Nordin, M. Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J. Physiol. 1990, 426, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Ackerley, R. C-tactile (CT) afferents: Evidence of their function from microneurography studies in humans. Curr. Opin. Behav. Sci. 2022, 43, 95–100. [Google Scholar] [CrossRef]
- Vallbo, Å.B.; Olausson, H.; Wessberg, J. Pleasant touch. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Vallbo, A.B.; Olausson, H.; Wessberg, J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 1999, 81, 2753–2763. [Google Scholar] [CrossRef] [PubMed]
- Grayston, R.; Czanner, G.; Elhadd, K.; Goebel, A.; Frank, B.; Üçeyler, N.; Malik, R.A.; Alam, U. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: Implications for a new paradigm in fibromyalgia etiopathogenesis. Semin. Arthritis Rheum. 2019, 48, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Enders, J.; Kaiser, A.; Rovenstine, L.; Heslop, L.; Hauser, W.; Chadwick, A.; Wright, D.E. Abnormal Intraepidermal Nerve Fiber Density in Disease: A Scoping Review. Front. Neurol. 2023, 14, 1161077. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.; Rapteas, L.; Burgess, J.; Riley, D.; Anson, M.; Matsumoto, K.; Bennett, A.; Kaye, S.; Marshall, A.; Dunham, J.; et al. Small fibre pathology, small fibre symptoms and pain in fibromyalgia syndrome. Sci. Rep. 2024, 14, 3947. [Google Scholar] [CrossRef]
- Harte, S.E.; Clauw, D.J.; Hayes, J.M.; Feldman, E.L.; St Charles, I.C.; Watson, C.J. Reduced intraepidermal nerve fiber density after a sustained increase in insular glutamate: A proof-of-concept study examining the pathogenesis of small fiber pathology in fibromyalgia. Pain Rep. 2017, 2, e590. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lavín, M. Dorsal root ganglia: Fibromyalgia pain factory? Clin. Rheumatol. 2021, 40, 783–787. [Google Scholar] [CrossRef]
- Goebel, A.; Krock, E.; Gentry, C.; Israel, M.R.; Jurczak, A.; Urbina, C.M.; Sandor, K.; Vastani, N.; Maurer, M.; Cuhadar, U.; et al. Passive transfer of fibromyalgia symptoms from patients to mice. J. Clin. Investig. 2021, 131, e144201. [Google Scholar] [CrossRef]
- Liptan, G. The widespread myofascial pain of fibromyalgia is sympathetically maintained and immune mediated. J. Bodyw. Mov. Ther. 2023, 35, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.; Guerra-Juárez, A.; Miyake, D.Y.; Sebastian-Arellano, C.; Estrada-Mata, A.G.; González-Moyotl, N.J.; Rodríguez-Aguayo, A.M.; Martínez-Lavin, M.; Martínez-Martínez, L.A. Correlation Between Corneal Nerve Density and Symptoms of Small Fiber Neuropathy in Patients With Fibromyalgia: The Confounding Role of Severe Anxiety or Depression. Am. J. Clin. Rheumatol. 2021, 27, E606–E608. [Google Scholar] [CrossRef] [PubMed]
- Jänsch, S.; Evdokimov, D.; Egenolf, N.; Meyer Zu Altenschildesche, C.; Kreß, L.; Üçeyler, N. Distinguishing fibromyalgia syndrome from small fiber neuropathy: A clinical guide. Pain Rep. 2024, 9, e1136. [Google Scholar] [CrossRef] [PubMed]
- Üçeyler, N.; Zeller, D.; Kahn, A.K.; Kewenig, S.; Kittel-Schneider, S.; Schmid, A.; Casanova-Molla, J.; Reiners, K.; Sommer, C. Small fibre pathology in patients with fibromyalgia syndrome. Brain 2013, 136, 1857–1867. [Google Scholar] [CrossRef] [PubMed]
- Case, L.K.; Čeko, M.; Gracely, J.L.; Richards, E.A.; Olausson, H.; Bushnell, M.C. Touch Perception Altered by Chronic Pain and by Opioid Blockade. eNeuro 2016, 3, 0138. [Google Scholar] [CrossRef] [PubMed]
- Boehme, R.; van Ettinger-Veenstra, H.; Olausson, H.; Gerdle, B.; Nagi, S.S. Anhedonia to Gentle Touch in Fibromyalgia: Normal Sensory Processing but Abnormal Evaluation. Brain Sci. 2020, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Nagi, S.S. Role of C-tactile fibers in pain modulation: Animal and human perspectives. Curr. Opin. Behav. Sci. 2022, 43, 138–144. [Google Scholar] [CrossRef]
- Fusaro, M.; Bufacchi, R.J.; Nicolardi, V.; Provenzano, L. The analgesic power of pleasant touch in individuals with chronic pain: Recent findings and new insights. Front. Integr. Neurosci. 2022, 16, 956510. [Google Scholar] [CrossRef] [PubMed]
- Liljencrantz, J.; Strigo, I.; Ellingsen, D.M.; Krämer, H.H.; Lundblad, L.C.; Nagi, S.S.; Leknes, S.; Olausson, H. Slow brushing reduces heat pain in humans. Eur. J. Pain 2017, 21, 1173–1185. [Google Scholar] [CrossRef]
- Delfini, M.C.; Mantilleri, A.; Gaillard, S.; Hao, J.; Reynders, A.; Malapert, P.; Alonso, S.; François, A.; Barrere, C.; Seal, R.; et al. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep. 2013, 5, 378–388. [Google Scholar] [CrossRef]
- Walker, S.C.; Trotter, P.D.; Swaney, W.T.; Marshall, A.; Mcglone, F.P. C-tactile afferents: Cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides 2017, 64, 27–38. [Google Scholar] [CrossRef]
- Di Lernia, D.; Cipresso, P.; Pedroli, E.; Riva, G. Toward an embodied medicine: A portable device with programmable interoceptive stimulation for heart rate variability enhancement. Sensors 2018, 18, 2469. [Google Scholar] [CrossRef]
- Nummenmaa, L.; Tuominen, L.; Dunbar, R.; Hirvonen, J.; Manninen, S.; Arponen, E.; Machin, A.; Hari, R.; Jääskeläinen, I.P.; Sams, M. Social touch modulates endogenous μ-opioid system activity in humans. Neuroimage 2016, 138, 242–247. [Google Scholar] [CrossRef]
- Meijer, L.L.; Ruis, C.; van der Smagt, M.J.; Scherder, E.J.; Dijkerman, H.C. Neural basis of affective touch and pain: A novel model suggests possible targets for pain amelioration. J. Neuropsychol. 2022, 16, 38–53. [Google Scholar] [CrossRef]
- Fidanza, F.; Polimeni, E.; Pierangeli, V.; Martini, M. A Better Touch: C-tactile Fibers Related Activity is Associated to Pain Reduction During Temporal Summation of Second Pain. J. Pain 2021, 22, 567–576. [Google Scholar] [CrossRef]
- Hashmi, J.A.; Baliki, M.N.; Huang, L.; Baria, A.T.; Torbey, S.; Hermann, K.M.; Schnitzer, T.J.; Apkarian, A.V. Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 2013, 136, 2751–2768. [Google Scholar] [CrossRef]
- Habig, K.; Schänzer, A.; Schirner, W.; Lautenschläger, G.; Dassinger, B.; Olausson, H.; Birklein, F.; Gizewski, E.R.; Krämer, H.H. Low threshold unmyelinated mechanoafferents can modulate Pain. BMC Neurol. 2017, 17, 184. [Google Scholar]
- Habig, K.; Lautenschläger, G.; Maxeiner, H.; Birklein, F.; Krämer, H.H.; Seddigh, S. Low mechano-afferent fibers reduce thermal pain but not pain intensity in CRPS. BMC Neurol. 2021, 21, 272. [Google Scholar] [CrossRef]
- Gossrau, G.; Klimova, A.; Lapp, H.S.; Frost, M.; Peschel, E.; Weidner, K.; Koch, T.; Sabatowski, R.; Croy, I. C-tactile touch perception in patients with chronic pain disorders. Pain Rep. 2021, 6, e941. [Google Scholar] [CrossRef]
- Di Lernia, D.; Lacerenza, M.; Ainley, V.; Riva, G. Altered Interoceptive Perception and the Effects of Interoceptive Analgesia in Musculoskeletal, Primary, and Neuropathic Chronic Pain Conditions. J. Pers. Med. 2020, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Horsburgh, A.; Summers, S.J.; Lewis, A.; Keegan, R.J.; Flood, A. The Relationship Between Pain and Interoception: A Systematic Review and Meta-Analysis. J. Pain 2024, 25, 104476. [Google Scholar] [CrossRef]
- Keizer, A.; Heijman, J.O.; Dijkerman, H.C. Do transdiagnostic factors influence affective touch perception in psychiatric populations? Curr. Opin. Behav. Sci. 2022, 43, 125–130. [Google Scholar] [CrossRef]
- Croy, I.; Fairhurst, M.T.; McGlone, F. The role of C-tactile nerve fibers in human social development. Curr. Opin. Behav. Sci. 2022, 43, 20–26. [Google Scholar] [CrossRef]
- Morrison, I. ALE meta-analysis reveals dissociable networks for affective and discriminative aspects of touch. Hum. Brain Mapp. 2016, 37, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, W.; Kendrick, K.M. Affective touch in the context of development, oxytocin signaling, and autism. Front. Psychol. 2022, 23, 13. [Google Scholar] [CrossRef]
- Bystrova, K. Novel mechanism of human fetal growth regulation: A potential role of lanugo, vernix caseosa and a second tactile system of unmyelinated low-threshold C-afferents. Med. Hypotheses 2009, 72, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.; Eidelman, A.I.; Sirota, L.; Weller, A. Comparison of skin-to-skin and traditional care: Parenting outcomes and preterm infant development. Pediatrics 2001, 110, 16–26. [Google Scholar] [CrossRef]
- Jefferies, A.L. Kangaroo care for the preterm infant and family. Paediatr. Child. Health 2012, 17, 141–143. [Google Scholar] [CrossRef]
- Bystrova, K.; Widström, A.M.; Matthiesen, A.S.; Ransjö-Arvidson, A.B.; Welles-Nyström, B.; Wassberg, C.; Vorontsov, I.; Uvnäs-Moberg, K. Skin-to-skin contact may reduce negative consequences of “the stress of being born”: A study on temperature in newborn infants, subjected to different ward routines in St. Petersburg. Acta Paediatr. 2003, 92, 320–326. [Google Scholar] [CrossRef]
- Van Puyvelde, M.; Collette, L.; Gorissen, A.S.; Pattyn, N.; McGlone, F. Infants Autonomic Cardio- Respiratory Responses to Nurturing Stroking Touch Delivered by the Mother or the Father. Front. Physiol. 2019, 10, 1117. [Google Scholar] [CrossRef]
- Manzotti, A.; Cerritelli, F.; Esteves, J.E.; Lista, G.; Lombardi, E.; La Rocca, S.; Gallace, A.; McGlone, F.P.; Walker, S.C. Dynamic touch reduces physiological arousal in preterm infants: A role for c-tactile afferents? Dev. Cogn. Neurosci. 2019, 39, 100703. [Google Scholar] [CrossRef]
- Gursul, D.; Goksan, S.; Hartley, C.; Schmidt Mellado, G.; Moultrie, F.; Hoskin, A.; Adams, E.; Hathway, G.; Walker, S.; McGlone, F.; et al. Stroking modulates noxious-evoked brain activity in human infants. Curr. Biol. 2018, 28, R1380–R1381. [Google Scholar] [CrossRef] [PubMed]
- Carozza, S.; Leong, V. The Role of Affectionate Caregiver Touch in Early Neurodevelopment and Parent-Infant Interactional Synchrony. Front. Neurosci. 2021, 14, 613378. [Google Scholar] [CrossRef]
- Liao, P.Y.; Chiu, Y.M.; Yu, J.H.; Chen, S.K. Mapping Central Projection of Oxytocin Neurons in Unmated Mice Using Cre and Alkaline Phosphatase Reporter. Front. Neuroanat. 2020, 14, 559402. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Petersson, M. Physiological effects induced by stimulation of cutaneous sensory nerves, with a focus on oxytocin. Curr. Opin. Behav. Sci. 2022, 43, 159–166. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Onaka, T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int. J. Mol. Sci. 2021, 23, 150. [Google Scholar] [CrossRef]
- Bharadwaj, V.N.; Tzabazis, A.Z.; Klukinov, M.; Manering, N.A.; Yeomans, D.C. Intranasal Administration for Pain: Oxytocin and Other Polypeptides. Pharmaceutics 2021, 13, 1088. [Google Scholar] [CrossRef] [PubMed]
- Uvnäs-Moberg, K.; Handlin, L.; Petersson, M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol. 2015, 5, 1529. [Google Scholar] [CrossRef]
- McGlone, F.; Wessberg, J.; Olausson, H. Discriminative and affective touch: Sensing and feeling. Neuron 2014, 82, 737–755. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Funato, H. Physical contact in parent-infant relationship and its effect on fostering a feeling of safety. iScience 2021, 24, 102721. [Google Scholar] [CrossRef]
- Yu, H.; Miao, W.; Ji, E.; Huang, S.; Jin, S.; Zhu, X.; Liu, M.Z.; Sun, Y.G.; Xu, F.; Yu, X. Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions. Neuron 2022, 110, 1051–1067. [Google Scholar] [CrossRef]
- Bucsea, O.; Pillai Riddell, R. Non-pharmacological pain management in the neonatal intensive care unit: Managing neonatal pain without drugs. Semin. Fetal Neonatal Med. 2019, 24, 101017. [Google Scholar] [CrossRef] [PubMed]
- Failo, A.; Giannotti, M.; Venuti, P. Associations between attachment and pain: From infant to adolescent. SAGE Open Med. 2019, 7, 2050312119877771. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, H.S.; Grinevich, V. Evolution of oxytocin pathways in the brain of vertebrates. Front. Behav. Neurosci. 2014, 8, 31. [Google Scholar] [CrossRef]
- Feldman, R.; Monakhov, M.; Pratt, M.; Ebstein, R.P. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology. Biol. Psychiatry 2016, 79, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.L.; Nikitchenko, M.; Wang, W.C.; Luks-Morgan, S.J.; Song, E.; Gagnon, J.A.; Randlett, O.; Bianco, I.H.; Lacoste, A.M.B.; Glushenkova, E.; et al. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nat. Neurosci. 2019, 22, 1477–1492. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R. The adaptive human parental brain: Implications for children’s social development. Trends Neurosci. 2015, 38, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Eliava, M.; Melchior, M.; Knobloch-Bollmann, H.S.; Wahis, J.; da Silva Gouveia, M.; Tang, Y.; Ciobanu, A.C.; Triana Del Rio, R.; Roth, L.C.; Althammer, F.; et al. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing. Neuron 2016, 16, 1291–1304. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73, 553–566. [Google Scholar] [CrossRef]
- Poisbeau, P.; Grinevich, V.; Charlet, A. Oxytocin Signaling in Pain: Cellular, Circuit, System, and Behavioral Levels. In Chapter in Current Topics in Behavioral Neurosciences; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Yang, L.N.; Chen, K.; Yin, X.P.; Liu, D.; Zhu, L.Q. The Comprehensive Neural Mechanism of Oxytocin in Analgesia. Curr. Neuropharmacol. 2022, 20, 147–157. [Google Scholar] [CrossRef]
- De Ridder, D.; Adhia, D.; Vanneste, S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci. Biobehav. Rev. 2021, 130, 125–146. [Google Scholar] [CrossRef]
- Aygün, O.; Mohr, E.; Duff, C.; Matthew, S.; Schoenberg, P. Oxytocin Modulation in Mindfulness-Based Pain Management for Chronic Pain. Life 2024, 14, 253. [Google Scholar]
- Wolfe, F. Fibromyalgianess. Arthritis Rheum. 2009, 61, 715–716. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Schmutzer, G.; Brähler, E.; Glaesmer, H. A cluster within the continuum of biopsychosocial distress can be labeled “fibromyalgia syndrome”—Evidence from a representative German population survey. J. Rheumatol. 2009, 36, 2806–2812. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Brähler, E.; Hinz, A.; Häuser, W. Fibromyalgia prevalence, somatic symptom reporting, and the dimensionality of polysymptomatic distress: Results from a survey of the general population. Arthritis Care Res. 2013, 65, 777–785. [Google Scholar] [CrossRef]
- Rossi, P.; Di Lorenzo, G.; Malpezzi, M.G.; Di Lorenzo, C.; Cesarino, F.; Faroni, J.; Siracusano, A.; Troisi, A. Depressive symptoms and insecure attachment as predictors of disability in a clinical population of patients with episodic and chronic migraine. Headache 2005, 45, 561–570. [Google Scholar] [CrossRef]
- Belot, R.A.; Bouteloup, M.; Bonnet, M.; Parmentier, A.L.; Magnin, E.; Mauny, F.; Vuillier, F. Evaluation of Attachment Style and Social Support in Patients With Severe Migraine. Applications in Doctor-Patient Relationships and Treatment Adherence. Front. Neurol. 2021, 12, 706639. [Google Scholar] [CrossRef]
- Kascakova, N.; Furstova, J.; Hasto, J.; Madarasova-Geckova, A.; Tavel, P. When a Head Is about to Burst: Attachment Mediates the Relationship Between Childhood Trauma and Migraine. Int. J. Environ. Res. Public Health 2020, 25, 4579. [Google Scholar] [CrossRef]
- Tarantino, S.; De Ranieri, C.; Dionisi, C.; Gagliardi, V.; Paniccia, M.F.; Capuano, A.; Frusciante, R.; Balestri, M.; Vigevano, F.; Gentile, S.; et al. Role of the Attachment Style in Determining the Association Between Headache Features and Psychological Symptoms in Migraine Children and Adolescents. An Analytical Observational Case-Control Study. Headache 2017, 57, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Lapp, H.S.; Sabatowski, R.; Weidner, K.; Croy, I.; Gossrau, G. C-tactile touch perception in migraineurs—A case-control study. Cephalalgia 2020, 40, 478–492. [Google Scholar] [CrossRef]
- Boström, A.; Scheele, D.; Stoffel-Wagner, B.; Hönig, F.; Chaudhry, S.R.; Muhammad, S.; Hurlemann, R.; Krauss, J.K.; Lendvai, I.S.; Chakravarthy, K.V.; et al. Saliva molecular inflammatory profiling in female migraine patients responsive to adjunctive cervical non-invasive vagus nerve stimulation: The MOXY Study. J. Transl. Med. 2019, 17, 53. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yuan, Y.; Yang, J.; Wang, C.H.; Pan, Y.J.; Lu, L.; Wu, Y.Q.; Wang, D.X.; Lv, L.X.; Li, R.R.; et al. The interaction between the oxytocin and pain modulation in headache patients. Neuropeptides 2013, 47, 93–97. [Google Scholar] [CrossRef]
- Mekhael, A.A.; Bent, J.E.; Fawcett, J.M.; Campbell, T.S.; Aguirre-Camacho, A.; Farrell, A.; Rash, J.A. Evaluating the efficacy of oxytocin for pain management: An updated systematic review and meta-analysis of randomized clinical trials and observational studies. Can. J. Pain = Rev. Can. De La Douleur 2023, 7, 2191114. [Google Scholar] [CrossRef]
- Kearney, B.E.; Lanius, R.A. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front. Neurosci. 2022, 16, 1015749. [Google Scholar] [CrossRef]
- Harricharan, S.; McKinnon, M.C.; Lanius, R.A. How processing of sensory information from the internal and external worlds shape the perception and engagement with the world in the aftermath of trauma: Implications for PTSD. Front. Neurosci. 2021, 15, 625490. [Google Scholar] [CrossRef]
- Badura-Brack, A.S.; Becker, K.M.; McDermott, T.J.; Ryan, T.J.; Becker, M.M.; Hearley, A.R.; Heinrichs-Graham, E.; Wilson, T.W. Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder. Psychiatry Res. Neuroimaging 2015, 233, 194–200. [Google Scholar] [CrossRef]
- Strauss, T.; Rottstädt, F.; Sailer, U.; Schellong, J.; Hamilton, J.P.; Raue, C.; Weidner, K.; Croy, I. Touch aversion in patients with interpersonal traumatization. Depress. Anxiety 2019, 36, 635–646. [Google Scholar] [CrossRef]
- Maier, A.; Gieling, C.; Heinen-Ludwig, L.; Stefan, V.; Schultz, J.; Güntürkün, O.; Becker, B.; Hurlemann, R.; Scheele, D. Association of childhood maltreatment with interpersonal distance and social touch preferences in adulthood. Am. J. Psychiatry 2020, 177, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Devine, S.L.; Walker, S.C.; Makdani, A.; Stockton, E.R.; McFarquhar, M.J.; McGlone, F.P.; Trotter, P.D. Childhood adversity and affective touch perception: A comparison of United Kingdom care leavers and non-care leavers. Front. Psychol. 2020, 11, 557171. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.; Young, L.J.; Newport, D.J.; Mletzko, T.; Miller, A.H.; Nemeroff, C.B. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol. Psychiatry 2009, 14, 954–958. [Google Scholar] [CrossRef]
- Donadon, M.F.; Martin-Santos, R.; Osório, F.d.L. The associations between oxytocin and trauma in humans: A systematic review. Front. Pharmacol. 2018, 9, 154. [Google Scholar] [CrossRef]
- Frijling, J.L.; van Zuiden, M.; Nawijn, L.; Koch, S.B.J.; Neumann, I.D.; Veltman, D.J.; Olff, M. Salivary oxytocin and vasopressin levels in police officers with and without post-traumatic stress disorder. J. Neuroendocr. 2015, 27, 743–751. [Google Scholar] [CrossRef]
- Verne, G.N.; Price, D.D. Irritable bowel syndrome as a common precipitant of central sensitization. Curr. Rheumatol. Rep. 2002, 4, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Hah, J.M.; Aivaliotis, V.I.; Hettie, G.; Pirrotta, L.X.; Mackey, S.C.; Nguyen, L.A. Whole Body Pain Distribution and Risk Factors for Widespread Pain Among Patients Presenting with Abdominal Pain: A Retrospective Cohort Study. Pain Ther. 2022, 11, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, M.; Sjöberg, K.; Candamio, M.; Lerman, A.; Ohlsson, B. Anxiety in close relationships is higher and self-esteem lower in patients with irritable bowel syndrome compared to patients with inflammatory bowel disease. Eur. J. Intern. Med. 2013, 24, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Gerson, C.D.; Gerson, M.J.; Chang, L.; Corazziari, E.S.; Dumitrascu, D.; Ghoshal, U.C.; Porcelli, P.; Schmulson, M.; Wang, W.A.; Zali, M. A cross-cultural investigation of attachment style, catastrophizing, negative pain beliefs, and symptom severity in irritable bowel syndrome. Neurogastroenterol. Motil. 2015, 27, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Ben-Israel, Y.; Shadach, E.; Levy, S.; Sperber, A.; Aizenberg, D.; Niv, Y.; Dickman, R. Possible Involvement of Avoidant Attachment Style in the Relations Between Adult IBS and Reported Separation Anxiety in Childhood. Stress Health 2016, 32, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Pénzes, I.; Czeglédi, E.; Szalai, T.; Csala, I.; Túry, F. Adult attachment and parental bonding in irritable bowel syndrome and in panic disorder—Implications for psychotherapy. Ideggyogy. Szle. 2016, 69, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Louvel, D.; Delvaux, M.; Felez, A.; Fioramonti, J.; Bueno, L.; Lazorthes, Y.; Frexinos, J. Oxytocin increases thresholds of colonic visceral perception in patients with irritable bowel syndrome. Gut 1996, 39, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Nees, F.; Usai, K.; Löffler, M.; Flor, H. The evaluation and brain representation of pleasant touch in chronic and subacute back Pain. Neurobiol. Pain 2018, 5, 100025. [Google Scholar]
- Schirmer, A.; Croy, I.; Ackerley, R. What are C-tactile afferents and how do they relate to “affective touch”? Neurosci. Biobehav. Rev. 2023, 151, 105236. [Google Scholar] [CrossRef]
- Rasmussen, V.F.; Karlsson, P.; Drummond, P.D.; Schaldemose, E.L.; Terkelsen, A.J.; Jensen, T.S.; Knudsen, L.F. Bilaterally Reduced Intraepidermal Nerve Fiber Density in Unilateral CRPS-I. Pain Med. 2018, 19, 2021–2030. [Google Scholar] [CrossRef]
- Komalasari, R. Unravelling the Veil: Exploring the Nexus of Insecure Attachment and Functional Somatic Disorders in Adults. In Change Dynamics in Healthcare, Technological Innovations, and Complex Scenarios; Burrell, D.N., Ed.; IGI Global: Hershey, PA, USA, 2024; pp. 1–27. [Google Scholar]
- Martínez-Lavín, M. Imbalance of threat and soothing systems in fibromyalgia: Rephrasing an established mechanistic model? Nat. Rev. Rheumatol. 2023, 19, 318. [Google Scholar] [CrossRef] [PubMed]
- Ciuffini, R.; Cofini, V.; Muselli, M.; Necozione, S.; Piroli, A.; Marrelli, A. Emotional arousal and valence in patients with fibromyalgia: A pilot study. Front. Pain Res. 2023, 4, 1075722. [Google Scholar] [CrossRef] [PubMed]
- Janeček, M.; Dabrowska, J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res. 2019, 375, 143–172. [Google Scholar] [CrossRef] [PubMed]
- Grinevich, V.; Neumann, I.D. Brain oxytocin: How puzzle stones from animal studies translate into psychiatry. Mol. Psychiatry 2021, 26, 265–279. [Google Scholar] [CrossRef]
- Friuli, M.; Eramo, B.; Valenza, M.; Scuderi, C.; Provensi, G.; Romano, A. Targeting the Oxytocinergic System: A Possible Pharmacological Strategy for the Treatment of Inflammation Occurring in Different Chronic Diseases. Int. J. Mol. Sci. 2021, 22, 10250. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Espinera, A.R.; Chen, D.; Choi, K.E.; Caslin, A.Y.; Won, S.; Pecoraro, V.; Xu, G.Y.; Wei, L.; Yu, S.P. Neonatal inflammatory pain and systemic inflammatory responses as possible environmental factors in the development of autism spectrum disorder of juvenile rats. J. Neuroinflamm. 2016, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Onaka, T.; Takayanagi, Y. The oxytocin system and early-life experience-dependent plastic changes. J. Neuroendocrinol. 2021, 33, e13049. [Google Scholar] [CrossRef] [PubMed]
- Nagi, S.S.; Rubin, T.K.; Chelvanayagam, D.K.; Macefield, V.G.; Mahns, D.A. Allodynia mediated by C-tactile afferents in human hairy skin. J. Physiol. 2011, 589, 4065–4075. [Google Scholar] [CrossRef] [PubMed]
- Nagi, S.S.; Mahns, D.A. Mechanical allodynia in human glabrous skin mediated by low-threshold cutaneous mechanoreceptors with unmyelinated fibres. Exp. Brain Res. 2013, 231, 139–151. [Google Scholar] [CrossRef]
- Goodin, B.R.; Ness, T.J.; Robbins, M.T. Oxytocin—A multifunctional analgesic for chronic deep tissue Pain. Curr. Pharm. Des. 2015, 21, 906–913. [Google Scholar]
- Mameli, S.; Pisanu, G.M.; Sardo, S.; Marchi, A.; Pili, A.; Carboni, M.; Minerba, L.; Trincas, G.; Carta, M.G.; Melis, M.R.; et al. Oxytocin nasal spray in fibromyalgic patients. Rheumatol. Int. 2014, 34, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W.; Davila, M.I.; Lewis, G.F.; Kolacz, J.; Okonmah-Obazee, S.; Hane, A.A.; Kwon, K.Y.; Ludwig, R.J.; Myers, M.M.; Welch, M.G. Autonomic regulation of preterm infants is enhanced by Family Nurture Intervention. Dev. Psychobiol. 2019, 61, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Chandler Iii, G.; Rojas, A.M.; Worts, P.R.; Flynn, H.A. Utilizing Multidisciplinary Medicine in Pain Management: A Narrative Review. Pain Physician 2021, 24, 369–378. [Google Scholar] [PubMed]
Organ System | Symptoms |
---|---|
The nervous system | depression, thinking or remembering problems, numbness/tingling, nervousness, seizures, hearing difficulties, headache, dizziness, insomnia, blurred vision, ringing in ears |
The gastrointestinal system | pain/cramps in the abdomen, constipation, pain in the upper abdomen, nausea, diarrhea, loss of appetite, loss of/change in taste, vomiting, oral ulcers, heartburn |
The immune system | rash, sun-sensitivity, easy bruising, dry eyes, fever, dry mouth, Raynaud’s phenomenon, itching, hives/welts |
The musculoskeletal system | muscle pain, fatigue/tiredness, muscle weakness |
The urinary system | bladder spasms, painful urination, frequent urination |
The respiratory system | chest pain, shortness of breath, wheezing |
The integumentary system | hair loss |
Type of Stimulus | Properties of CT Fibers | Characteristics of CT Fibers |
---|---|---|
Mechanical | Low mechanical-activation threshold | Monofilament activation threshold of <5 mN |
Sensitive to moving touch | Very responsive to different types of mechanical stimuli such as hand, brush, cotton wool, needle, smooth metal plate | |
Responsive to both blunt and sharp probes | Equally responsive to sharp and blunt indentations | |
Optimal activation with a stroking speed of 1–10 cm/s | Greater activation at intermediate velocities. Stroking velocity >10 cm/s and <1 cm/s produces lower activation (reversed U- shape response) | |
Intermediate adaptation | Static application of the mechanical stimulus produces an initial burst of spikes followed within seconds by cessation of activation | |
Firing after removal of a stimulus | Often a response of a few spikes is observed immediately after removal of the stimulus | |
Reduction in activation with repeated stimulation | Tendency to significantly reduce activation with the repetition of stimulation | |
Biphasic response to prolonged stimulus | Following prolonged stimulation, after a phase of cessation of activity, a second wave of activation is observed | |
Vibration | Poor response to vibration with few spikes at 1 Hz of stimulation and transient response with a single phase-locked spike at vibrations between 16 and 50 Hz | |
Skin stretch | Activation by stretching the skin with continuous weak discharge after prolonged, static stretch | |
Thermal | Radiant heating and cooling | Poorly responsive to thermal stimuli with low response rate to evaporative cooling |
Stationary mechano-thermal stimulation | Better reactivity to skin temperature compared to warm static touch | |
Dynamic mechano-thermal stimulation | Better responsiveness to skin temperature than hot and cold touch, depending on the duration of stimulation | |
Electrical | Low-frequency, repetitive electrical stimulation, in conjunction with mechanical stimulation | In this type of stimulation paradigm, spike latencies are slowed slightly |
Activity-dependent slowing at 2 Hz stimulation | At this frequency stimulation, the elicited spikes have a very small latency delay | |
High-frequency electrical stimulation | Short bursts of activation can follow electrical stimulation up to frequencies of 100 Hz, with increased response latency over 50 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruti, G.; Foggetti, P. Insecure Attachment, Oxytocinergic System and C-Tactile Fibers: An Integrative and Translational Pathophysiological Model of Fibromyalgia and Central Sensitivity Syndromes. Biomedicines 2024, 12, 1744. https://doi.org/10.3390/biomedicines12081744
Bruti G, Foggetti P. Insecure Attachment, Oxytocinergic System and C-Tactile Fibers: An Integrative and Translational Pathophysiological Model of Fibromyalgia and Central Sensitivity Syndromes. Biomedicines. 2024; 12(8):1744. https://doi.org/10.3390/biomedicines12081744
Chicago/Turabian StyleBruti, Gianluca, and Paola Foggetti. 2024. "Insecure Attachment, Oxytocinergic System and C-Tactile Fibers: An Integrative and Translational Pathophysiological Model of Fibromyalgia and Central Sensitivity Syndromes" Biomedicines 12, no. 8: 1744. https://doi.org/10.3390/biomedicines12081744