The Kinetics of Inflammation-Related Proteins and Cytokines in Children Undergoing CAR-T Cell Therapy—Are They Biomarkers of Therapy-Related Toxicities?
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, M.C.; Hu, Z.H.; Curran, K.; Laetsch, T.; Locke, F.; Rouce, R.; Pulsipher, M.A.; Phillips, C.L.; Keating, A.; Frigault, M.J.; et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020, 4, 5414–5424. [Google Scholar] [CrossRef] [PubMed]
- Bader, P.; Rossig, C.; Hutter, M.; Ayuk, F.A.; Baldus, C.D.; Bücklein, V.L.; Bonig, H.; Cario, G.; Einsele, H.; Holtick, U.; et al. CD19 CAR T cells are an effective therapy for posttransplant relapse in patients with B-lineage ALL: Real-world data from Germany. Blood Adv. 2023, 7, 2436–2448. [Google Scholar] [CrossRef] [PubMed]
- Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H.; Bittencourt, H.; Bader, P.; Baruchel, A.; Boyer, M.; De Moerloose, B.; Qayed, M.; et al. Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial. J. Clin. Oncol. 2022, 41, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Le, R.Q.; Li, L.; Yuan, W.; Shord, S.S.; Nie, L.; Habtemariam, B.A.; Przepiorka, D.; Farrell, A.T.; Pazdur, R. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist 2018, 23, 943–947. [Google Scholar] [CrossRef]
- Kadauke, S.; Myers, R.M.; Li, Y.; Aplenc, R.; Baniewicz, D.; Barrett, D.M.; Barz Leahy, A.; Callahan, C.; Dolan, J.G.; Fitzgerald, J.C.; et al. Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. J. Clin. Oncol. 2021, 39, 920–930. [Google Scholar] [CrossRef]
- Jain, M.D.; Smith, M.; Shah. How I Treat Refractory CRS and ICANS after CAR T-cell Therapy. Available online: http://ashpublications.org/blood/article-pdf/141/20/2430/2051666/blood_bld-2022-017414-c-main.pdf (accessed on 1 April 2024).
- Weinkove, R.; George, P.; Dasyam, N.; McLellan, A.D. Selecting costimulatory domains for chimeric antigen receptors: Functional and clinical considerations. Clin. Transl. Immunol. 2019, 8, e1049. [Google Scholar] [CrossRef]
- Schultz, L.M.; Baggott, C.; Prabhu, S.; Pacenta, H.L.; Phillips, C.L.; Rossoff, J.; Stefanski, H.E.; Talano, J.A.; Moskop, A.; Margossian, S.P.; et al. Disease Burden Affects Outcomes in Pediatric and Young Adult B-Cell Lymphoblastic Leukemia After Commercial Tisagenlecleucel: A Pediatric Real-World Chimeric Antigen Receptor Consortium Report. J. Clin. Oncol. 2021, 40, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Bellón, M.; Alonso-Saladrigues, A.; Bobillo-Perez, S.; Faura, A.; Arqués, L.; Rivera, C.; Català, A.; Dapena, J.L.; Rives, S.; Jordan, I. Risk factors and outcome of Chimeric Antigen Receptor T-Cell patients admitted to Pediatric Intensive Care Unit: CART-PICU study. Front. Immunol. 2023, 14, 1219289. [Google Scholar] [CrossRef] [PubMed]
- Teachey, D.T.; Lacey, S.F.; Shaw, P.A.; Melenhorst, J.J.; Maude, S.L.; Frey, N.; Pequignot, E.; Gonzalez, V.E.; Chen, F.; Finklestein, J.; et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016, 6, 664–679. [Google Scholar] [CrossRef] [PubMed]
- Giavridis, T.; van der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Gust, J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef] [PubMed]
- Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 2018, 24, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Gazeau, N.; Liang, E.C.; Wu, Q.V.; Voutsinas, J.M.; Barba, P.; Iacoboni, G.; Kwon, M.; Ortega, J.L.R.; López-Corral, L.; Hernani, R.; et al. Anakinra for Refractory Cytokine Release Syndrome or Immune Effector Cell-Associated Neurotoxicity Syndrome after Chimeric Antigen Receptor T Cell Therapy. Transpl. Cell Ther. 2023, 29, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Ferreros, P.; Trapero, I. Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy. Diseases 2022, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.R.; Vatsa, S.; Larson, R.C.; Bouffard, A.A.; Scarfò, I.; Kann, M.C.; Berger, T.R.; Leick, M.B.; Wehrli, M.; Schmidts, A.; et al. Blockade or Deletion of IFNγ Reduces Macrophage Activation without Compromising CAR T-cell Function in Hematologic Malignancies. Blood Cancer Discov. 2022, 3, 136–153. [Google Scholar] [CrossRef] [PubMed]
- McNerney, K.O.; DiNofia, A.M.; Teachey, D.T.; Grupp, S.A.; Maude, S.L. Potential Role of IFNg Inhibition in Refractory Cytokine Release Syndrome Associated with CAR T-cell Therapy. Blood Cancer Discov. 2022, 3, 90–94. [Google Scholar] [CrossRef]
- Schuelke, M.R.; Bassiri, H.; Behrens, E.M.; Canna, S.; Croy, C.; DiNofia, A.; Gollomp, K.; Grupp, S.; Lambert, M.; Lambrix, A.; et al. Emapalumab for the treatment of refractory cytokine release syndrome in pediatric patients. Blood Adv. 2023, 7, 5603–5607. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.A.; Ceppi, F.; Rivers, J.; Annesley, C.; Summers, C.; Taraseviciute, A.; Gust, J.; Leger, K.J.; Tarlock, K.; Cooper, T.M.; et al. Preemptive Mitigation of CD19 CAR T-Cell Cytokine Release Syndrome without Attenuation of Antileukemic Efficacy. 2019. Available online: http://ashpublications.org/blood/article-pdf/134/24/2149/1547430/bloodbld2019001463.pdf (accessed on 1 April 2024).
- Brummer, A.B.; Yang, X.; Ma, E.; Gutova, M.; Brown, C.E.; Rockne, R.C. Dose-dependent thresholds of dexamethasone destabilize CAR T-cell treatment efficacy. PLoS Comput. Biol. 2022, 18, e1009504. [Google Scholar] [CrossRef] [PubMed]
- Poiret, T.; Vikberg, S.; Schoutrop, E.; Mattsson, J.; Magalhaes, I. CAR T cells and T cells phenotype and function are impacted by glucocorticoid exposure with different magnitude. J. Transl. Med. 2024, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hay, K.A.; Hanafi, L.A.; Li, D.; Gust, J.; Liles, W.C.; Wurfel, M.M.; López, J.A.; Chen, J.; Chung, D.; Harju-Baker, S.; et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy Key Points. Blood J. Am. Soc. Hematol. 2017, 130, 2295–2306. [Google Scholar] [CrossRef]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef] [PubMed]
- Gust, J.; Finney, O.C.; Li, D.; Brakke, H.M.; Hicks, R.M.; Futrell, R.B.; Gamble, D.N.; Rawlings-Rhea, S.D.; Khalatbari, H.K.; Ishak, G.E.; et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy. Ann. Neurol. 2019, 86, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, H.; Harrison, C.; Yates, B.; Calvo, K.R.; Lee, D.W.; Shah, N.N. Intrathecal hydrocortisone for treatment of children and young adults with CAR T-cell immune-effector cell-associated neurotoxicity syndrome. Pediatr. Blood Cancer 2024, 71, e30741. [Google Scholar] [CrossRef]
- Asawa, P.; Vusqa, U.; Khan, C.; Samhouri, Y.; Fazal, S. Intrathecal Chemotherapy as a Potential Treatment for Steroid-refractory Immune Effector Cell-associated Neurotoxicity Syndrome. Anticancer Res. 2022, 42, 3853–3856. [Google Scholar] [CrossRef]
- Chohan, K.L.; Siegler, E.L.; Kenderian, S.S. CAR-T Cell Therapy: The Efficacy and Toxicity Balance. Curr. Hematol. Malig. Rep. 2023, 18, 9–18. [Google Scholar] [CrossRef]
- Bachmann, M. The UniCAR system: A modular CAR T cell approach to improve the safety of CAR T cells. Immunol. Lett. 2019, 211, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Guercio, M.; Manni, S.; Boffa, I.; Caruso, S.; Di Cecca, S.; Sinibaldi, M.; Abbaszadeh, Z.; Camera, A.; Ciccone, R.; Polito, V.A.; et al. Inclusion of the inducible caspase 9 suicide gene in CAR construct increases safety of CAR. CD19 T cell therapy in B-cell malignancies. Front. Immunol. 2021, 12, 755639. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and Data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
N = 27 Patients | |
---|---|
Sex | 17 boys (62.9%), 10 girls (37.1%) |
Age at CAR-T infusion | 7.5 years (5.5–12.6 years) 1 |
Indication for CAR-T cell therapy | Relapse after HSCT—12 (44.4%) Secondary refractory disease—7 (25.9%) No eligible HSCT donor—3 (11.1%) Contraindications for HSCT—3 (11.1%) Primary refractory disease—1 (3.7%) Second or later relapse—1 (3.7%) |
HSCT before CAR-T | 12 patients (44.4%) |
Interval between HSCT and CAR-T | 10.5 months (8.5–12.5 months) 1 |
Previous treatment with inotuzumab ozogamicin | Before the apheresis—2 patients (7.4%) Bridging therapy—5 patients (18.5%) |
Previous treatment with blinatumomab | Before the apheresis—11 patients (40.7%) Bridging therapy—5 patients (18.5%) |
MRD before LDC | Negative—9 patients (33.3%) <1 × 10−4—4 patients (14.8%) 1 × 10−4 < x < 1 × 10−3—5 patients (18.5%) 1 × 10−3 < x < 1 × 10−2—3 patients (11.1%) 1 × 10−2 < x < 1 × 10−1—4 patients (14.8%) >5%—2 patients (7.4%) |
Infused CAR-T cells | median 3.3 × 106/recipient’s kg b.w. |
Complication | Incidence | Grade | Clinical Course (n; %) |
---|---|---|---|
CRS | 21 patients (77.8%) | Grade 1—18 patients (85.7%) Grade 2—3 patients (14.3%) | headache—3 (14.3%) hypotension—2 (9.5%) oedema—2 (9.5%) generalized erythroderma—1 (4.8%) hypoxia—1 (4.8%) vomiting—1 (4.8%) fine-wave tremors—1 (4.8%) |
ICANS | 3 patients (11.1%) | Grade 1—1 patient (33.3%) | Confusion, deterioration of contact |
Grade 2—1 patient (33.3%) | Headache, vertigo, visual impairment, tremor | ||
Grade 4—1 patient (33.3%) | Deep deterioration of consciousness (GCS 3) |
Biomarker 1 | Day 0 | Day +3 | Day +7 | Day +10 | Day +14 |
---|---|---|---|---|---|
CRP (mg/L) | 2.4 (0.4–392.0) | 17.7 (0.5–349.4) | 7.9 (0.8–182.0) | 2.8 (0.4–50.9) | 1.8 (0.3–48.9) |
ferritin (ng/mL) | 2132.9 (362.3–19,984.4) | 2500.4 (289.8–33,511.2) | 2600.5 (278.1–144,671.2) | 2968.6 (263–67,318.8) | 2364.2 (290.1–62,725.6) |
fibrinogen (g/L) | 2.9 (1.7–8.4) | 3.6 (1.9–7.3) | 2.5 (1.3–4.3) | 2.3 (0.6–3.9) | 2.2 (0.8–6.7) |
IL-6 (pg/mL) | 4.8 (2–598) | 23.3 (2–2351) | 6.2 (2–4195) | 3.6 (2–3829) | 3.1 (2–1987) |
TNFα (pg/mL) | 4.5 (2.2–16.5) | 6.3 (3.0–11.3) | 5.1 (2.2–14.8) | 4.8 (2.5–17.5) | 4.7 (2.5–17.1) |
IFNγ (pg/mL) | 6.4 (0.2–over 2) | 22.6 (1.6–over 2) | 11.8 (1.0–over 2) | 16.1 (0.1–over 2) | 8.2 (2.3–638.7) |
IL-8 (pg/mL) | 43.8 (8.9–556.5) | 46.8 (15.5–620.2) | 46.4 (8.6–over 2) | 39.4 (9.3–253.3) | 40.6 (8.9–349.3) |
IL-10 (pg/mL) | 52.8 (0.5–365.3) | 49.4 (7.3–531.3) | 45.9 (1.8–551.4) | 55.2 (1.4–479.2) | 55.5 (3.4–482.6) |
Biomarker (Maximum Concentration 1) | No CRS | CRS 1 | CRS ≥ 2 | p 2 |
---|---|---|---|---|
CRP (mg/L) | 11.9 | 26.2 | 182.0 | 0.027 |
ferritin (ng/mL) | 2938.5 | 2915.9 | 15,718.0 | 0.03 |
fibrinogen (g/L) | 3.7 | 4.1 | 4.7 | 0.28 |
IL-6 (pg/mL) | 10.5 | 21.7 | 1511.0 | 0.028 |
TNFα (pg/mL) | 5.3 | 6.6 | 9.6 | 0.09 |
IFNγ (pg/mL) | 13.4 | 34.9 | above the level of determination | 0.016 |
IL-8 (pg/mL) | 52.4 | 52.8 | 156.7 | 0.034 |
IL-10 (pg/mL) | 175.2 | 83.2 | 134.3 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marschollek, P.; Liszka, K.; Mielcarek-Siedziuk, M.; Dachowska-Kałwak, I.; Haze, N.; Panasiuk, A.; Olejnik, I.; Jarmoliński, T.; Frączkiewicz, J.; Gamrot, Z.; et al. The Kinetics of Inflammation-Related Proteins and Cytokines in Children Undergoing CAR-T Cell Therapy—Are They Biomarkers of Therapy-Related Toxicities? Biomedicines 2024, 12, 1622. https://doi.org/10.3390/biomedicines12071622
Marschollek P, Liszka K, Mielcarek-Siedziuk M, Dachowska-Kałwak I, Haze N, Panasiuk A, Olejnik I, Jarmoliński T, Frączkiewicz J, Gamrot Z, et al. The Kinetics of Inflammation-Related Proteins and Cytokines in Children Undergoing CAR-T Cell Therapy—Are They Biomarkers of Therapy-Related Toxicities? Biomedicines. 2024; 12(7):1622. https://doi.org/10.3390/biomedicines12071622
Chicago/Turabian StyleMarschollek, Paweł, Karolina Liszka, Monika Mielcarek-Siedziuk, Iwona Dachowska-Kałwak, Natalia Haze, Anna Panasiuk, Igor Olejnik, Tomasz Jarmoliński, Jowita Frączkiewicz, Zuzanna Gamrot, and et al. 2024. "The Kinetics of Inflammation-Related Proteins and Cytokines in Children Undergoing CAR-T Cell Therapy—Are They Biomarkers of Therapy-Related Toxicities?" Biomedicines 12, no. 7: 1622. https://doi.org/10.3390/biomedicines12071622
APA StyleMarschollek, P., Liszka, K., Mielcarek-Siedziuk, M., Dachowska-Kałwak, I., Haze, N., Panasiuk, A., Olejnik, I., Jarmoliński, T., Frączkiewicz, J., Gamrot, Z., Radajewska, A., Bil-Lula, I., & Kałwak, K. (2024). The Kinetics of Inflammation-Related Proteins and Cytokines in Children Undergoing CAR-T Cell Therapy—Are They Biomarkers of Therapy-Related Toxicities? Biomedicines, 12(7), 1622. https://doi.org/10.3390/biomedicines12071622