Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C., Jr.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; Grimm, R.H., Jr.; et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Shakiba, M.; Nazemipour, M.; Mansournia, N.; Mansournia, M.A. Protective effect of intensive glucose lowering therapy on all-cause mortality, adjusted for treatment switching using G-estimation method, the ACCORD trial. Sci. Rep. 2023, 13, 5833. [Google Scholar] [CrossRef] [PubMed]
- Kahal, H.; Aburima, A.; Spurgeon, B.; Wraith, K.S.; Rigby, A.S.; Sathyapalan, T.; Kilpatrick, E.S.; Naseem, K.M.; Atkin, S.L. Platelet function following induced hypoglycaemia in type 2 diabetes. Diabetes Metab. 2018, 44, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Newby, D.E.; Stirling, D.; Ludlam, C.A.; Macdonald, I.A.; Frier, B.M. Effects of acute insulin-induced hypoglycemia on indices of inflammation: Putative mechanism for aggravating vascular disease in diabetes. Diabetes Care 2010, 33, 1591–1597. [Google Scholar] [CrossRef]
- Chow, E.; Iqbal, A.; Walkinshaw, E.; Phoenix, F.; Macdonald, I.A.; Storey, R.F.; Ajjan, R.; Heller, S.R. Prolonged Prothrombotic Effects of Antecedent Hypoglycemia in Individuals With Type 2 Diabetes. Diabetes Care 2018, 41, 2625–2633. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. The severity and duration of Hypoglycemia affect platelet-derived protein responses in Caucasians. Cardiovasc. Diabetol. 2022, 21, 202. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ito, T.; Nagasato, T.; Shinnakasu, A.; Kurano, M.; Arimura, A.; Arimura, H.; Hashiguchi, H.; Deguchi, T.; Maruyama, I.; et al. Effects of glycemic control and hypoglycemia on Thrombus formation assessed using automated microchip flow chamber system: An exploratory observational study. Thromb. J. 2019, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Kahal, H.; Halama, A.; Aburima, A.; Bhagwat, A.M.; Butler, A.E.; Graumann, J.; Suhre, K.; Sathyapalan, T.; Atkin, S.L. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci. Rep. 2020, 10, 4750. [Google Scholar] [CrossRef] [PubMed]
- Halama, A.; Kahal, H.; Bhagwat, A.M.; Zierer, J.; Sathyapalan, T.; Graumann, J.; Suhre, K.; Atkin, S.L. Metabolic and proteomic signatures of hypoglycaemia in type 2 diabetes. Diabetes Obes. Metab. 2018, 21, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Monnier, L.; Colette, C.; Owens, D.R. The application of simple metrics in the assessment of glycaemic variability. Diabetes Metab. 2018, 44, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D.L.; Chyun, D.A.; Di Palo, K.E.; Golden, S.H.; Sperling, L.S. Comprehensive Management of Cardiovascular Risk Factors for Adults With Type 2 Diabetes: A Scientific Statement From the American Heart Association. Circulation 2022, 145, e722–e759. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Bellia, A.; Sergi, D.; Barone, L.; Lauro, D.; Barillà, F. Glucose variability: A new risk factor for cardiovascular disease. Acta Diabetol. 2023, 60, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 7489795. [Google Scholar] [CrossRef] [PubMed]
- Alatawi, Z.; Mirghani, H. The Association Between Glycemic Variability and Myocardial Infarction: A Review and Meta-Analysis of Prospective Studies and Randomized Trials. Cureus 2020, 12, e11556. [Google Scholar] [CrossRef] [PubMed]
- Feldbauer, R.; Heinzl, M.W.; Klammer, C.; Resl, M.; Pohlhammer, J.; Rosenberger, K.; Almesberger, V.; Obendorf, F.; Schinagl, L.; Wagner, T.; et al. Effect of repeated bolus and continuous glucose infusion on a panel of circulating biomarkers in healthy volunteers. PLoS ONE 2022, 17, e0279308. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Al-Qaissi, A.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Hypoglycaemia in type 2 diabetes exacerbates amyloid-related proteins associated with dementia. Diabetes Obes. Metab. 2020, 23, 338–349. [Google Scholar] [CrossRef]
- Kraemer, S.; Vaught, J.D.; Bock, C.; Gold, L.; Katilius, E.; Keeney, T.R.; Kim, N.; Saccomano, N.A.; Wilcox, S.K.; Zichi, D.; et al. From SOMAmer-based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay. PLoS ONE 2011, 6, e26332. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; Arnold, M.; Bhagwat, A.M.; Cotton, R.J.; Engelke, R.; Raffler, J.; Sarwath, H.; Thareja, G.; Wahl, A.; DeLisle, R.K.; et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun. 2017, 8, 14357. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Vanderman, K.S.; Tremblay, M.; Zhu, W.; Shimojo, M.; Mienaltowski, M.J.; Coleman, S.J.; MacLeod, J.N. Brother of CDO (BOC) expression in equine articular cartilage. Osteoarthr. Cartil. 2011, 19, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Benchoula, K.; Parhar, I.S.; Wong, E.H. The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch. Biochem. Biophys. 2021, 698, 108743. [Google Scholar] [CrossRef]
- Chapouly, C.; Yao, Q.; Vandierdonck, S.; Larrieu-Lahargue, F.; Mariani, J.N.; Gadeau, A.P.; Renault, M.A. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: Implication in diabetes. Cardiovasc. Res. 2016, 109, 217–227. [Google Scholar] [CrossRef]
Study 1 Ctrl (n = 7) | Study 2 Ctrl (n = 23) | p-Value | Study 1 T2D (n = 10) | Study 2 T2D (n = 23) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 47 ± 6 | 60 ± 10 | 0.003 | 46 ± 6 | 64 ± 8 | <0.0001 |
Sex (M/F) | 4M/3F | 11M/12F | 7M/3F | 12M/11F | ||
BMI (kg/m2) | 29 ± 4 | 28 ± 3 | 0.640 | 36 ± 7 | 32 ± 4 | 0.03 |
Systolic BP (mmHg) | 126 ± 15 | 122 ± 8 | 0.280 | 127 ± 20 | 132 ± 8 | 0.31 |
Diastolic BP (mmHg) | 75 ± 13 | 75 ± 6 | 1.000 | 75 ± 11 | 81 ± 7 | 0.08 |
Duration of diabetes (years) | N/A | N/A | 3.3 ± 2.3 | 4.5 ± 2.2 | 0.14 | |
HbA1c (mmol/mol) | 33.6 ± 2.9 | 37.2 ± 2.2 | 0.004 | 49 ± 12 | 51 ± 11 | 0.62 |
HbA1c (%) | 5.2 ± 0.3 | 5.6 ± 0.2 | 0.006 | 6.6 ± 1.0 | 6.8 ± 1.0 | 0.48 |
Total cholesterol (mmol/L) | 5.1 ± 0.8 | 4.8 ± 0.77 | 0.230 | 5.3 ± 0.7 | 4.2 ± 1.0 | 0.36 |
Triglyceride (mmol/L) | 1.2 ± 0.5 | 1.3 ± 0.6 | 0.540 | 1.7 ± 0.8 | 1.7 ± 0.7 | 0.96 |
CRP (mg/L) | 0.8 ± 0.0 | 5.1 ± 10.3 | 0.26 | 2.8 ± 1.8 | 3.1 ± 2.9 | 0.94 |
Protein | Study1—Ctrl | Study2—Ctrl | Study1—T2D | Study2—T2D | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD BL vs. Hypo | p-Value | Mean ± SD BL vs. Hypo | p-Value | Mean ± SD BL vs. Hypo | p-Value | Mean ± SD BL vs. Hypo | p-Value | |
BMP6 | BL: 1916 ± 507 Hypo: 2006 ± 205 | 0.69 | BL: 14187 ± 4475 Hypo: 13753 ± 4286 | 0.73 | BL: 5034 ± 9854 Hypo: 5464 ± 9438 | 0.92 | BL: 13729 ± 5119 Hypo: 13054 ± 5144 | 0.65 |
SLAMF7 | BL: 58124 ± 20707 Hypo: 54791 ± 12294 | 0.73 | BL: 41917 ± 14548 Hypo: 38021 ± 13984 | 0.35 | BL: 73898 ± 26200 Hypo: 70961 ± 27635 | 0.81 | BL: 44153 ± 20302 Hypo: 37646 ± 17153 | 0.24 |
ADAMTS13 | BL: 4500 ± 1065 Hypo: 4988 ± 1230 | 0.98 | BL: 3921 ± 845 Hypo: 3949 ± 1049 | 0.92 | BL: 5231 ± 1164 Hypo: 5194 ± 1047 | 0.94 | BL: 4080 ± 1062 Hypo: 4118 ± 893 | 0.89 |
IL1RA | NA | BL: 5386 ± 3101 Hypo: 5261 ± 3012 | 0.89 | NA | BL: 4971 ± 2477 Hypo: 4490 ± 2118 | 0.47 | ||
BOC | BL: 1541 ± 359 Hypo: 1263 ± 199 | 0.12 | BL: 1618 ± 489 Hypo: 1489 ± 448 | 0.35 | BL: 1565 ± 343 Hypo: 992 ± 311 | 0.001 | BL: 1475.8 ± 355 Hypo: 1216 ± 309 | 0.01 |
ANGPT1 | BL: 942 ± 494 Hypo: 646 ± 99 | 0.17 | BL: 433 ± 156 Hypo: 815 ± 667 | 0.01 | BL: 766 ± 209 Hypo: 932 ± 598 | 0.42 | BL: 752 ± 610 Hypo: 1007.7 ± 695.0 | 0.18 |
DKK1 | BL: 15699 ± 6353 Hypo: 11425 ± 3511 | 0.17 | BL: 18152 ± 8054 Hypo: 27728 ± 16313 | 0.02 | BL: 14757 ± 2338 Hypo: 17166 ± 13612 | 0.59 | BL: 28249 ± 17077 Hypo: 34616 ± 16789 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandakumar, M.; Sathyapalan, T.; Atkin, S.L.; Butler, A.E. Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers. Biomedicines 2024, 12, 1137. https://doi.org/10.3390/biomedicines12061137
Nandakumar M, Sathyapalan T, Atkin SL, Butler AE. Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers. Biomedicines. 2024; 12(6):1137. https://doi.org/10.3390/biomedicines12061137
Chicago/Turabian StyleNandakumar, Manjula, Thozhukat Sathyapalan, Stephen L. Atkin, and Alexandra E. Butler. 2024. "Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers" Biomedicines 12, no. 6: 1137. https://doi.org/10.3390/biomedicines12061137
APA StyleNandakumar, M., Sathyapalan, T., Atkin, S. L., & Butler, A. E. (2024). Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers. Biomedicines, 12(6), 1137. https://doi.org/10.3390/biomedicines12061137