Novel Biomaterials in Glaucoma Treatment
Abstract
:1. Introduction
2. Method
3. Types of Biomaterials
3.1. Novel Biomaterials in the Surgical Treatment of Glaucoma
Type of GDI | Biomaterial | Author, Year | Type of Study |
---|---|---|---|
XEN Gel Implant | Animal-based gelatin | Chaudhary, 2016 [16] | In vivo |
Magnesium alloy | Magnesium alloy | Li, 2018 [25] | In vitro |
Hyaluronic acid hydrogel filling stent | Hyaluronic acid hydrogel | Thaller, 2018 [26] | In vitro |
MINIject (iSTAR Medical SA) | Medical-grade silicone | Denis, 2019 [18] | In vivo |
PVDF implant | Polyvinylidene fluoride | Klapstova, 2021 [20] | In vitro |
VisiPlate | Aluminum oxide + paryleneC coating | Kao, 2021 [21] | In vivo |
Nanofiber-based GDI | PET/PGA | Josyula, 2023 [22] | In vivo |
Silicone elastomer-based microstent | Silicone elastomer-based | Siewert, 2023 [23] | In vitro + Preclinical In vivo |
3.2. Novel Biomaterials in the Prevention of Fibrosis in Glaucoma Filtration Surgery
3.3. Novel Biomaterials in Conservative Glaucoma Treatment
3.3.1. Natural Biomaterials in Drug Delivery Systems (DDSs)
Chitosan-Based/Coated DDSs
Montmorillonite-Based/Loaded DDSs
Other DDSs
3.3.2. Synthetic Biomaterials in DDSs
3.3.3. Biomaterials in DDSs Used for Neuroprotective Treatment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bourne, R.R.A.; Taylor, H.R.; Flaxman, S.R.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; White, R.A.; Wong, T.Y.; Resnikoff, S.; et al. Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990–2010: A meta-analysis. PLoS ONE 2016, 11, e0162229. [Google Scholar] [CrossRef] [PubMed]
- Hložánek, M.; Ošmera, J.; Ležatková, P.; Sedláčková, P.; Filouš, A. The retinal nerve fiber layer thickness in glaucomatous hydrophthalmic eyes assessed by scanning laser polarimetry with variable corneal compensation in comparison with age-matched healthy children. Acta Ophthalmol. 2021, 90, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Overview on biocompatibilities of implantable biomaterials. In Advances in Biomaterials Science and Biomedical Applications in Biomedicine; IntechOpen: London, UK, 2013; pp. 111–155. [Google Scholar]
- Zuo, W.; Yu, L.; Lin, J.; Yang, Y.; Fei, Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: A literature review. Ann. Transl. Med. 2021, 9, 1259. [Google Scholar] [CrossRef] [PubMed]
- Keino, H.; Horie, S.; Sugita, S. Immune privilege and eye-derived t-regulatory cells. J. Immunol. Res. 2018, 2018, 1679197. [Google Scholar] [CrossRef] [PubMed]
- Seah, I.; Ong, C.; Liu, Z.; Su, X. Polymeric biomaterials in the treatment of posterior segment diseases. Front. Med. 2022, 9, 949543. [Google Scholar] [CrossRef] [PubMed]
- Folgar, F.A.; De Moraes, C.G.; Teng, C.C.; Tello, C.; Ritch, R.; Liebmann, J.M. Effect of successful and partly successful filtering surgery on the velocity of glaucomatous visual field progression. J. Glaucoma 2012, 21, 615–618. [Google Scholar] [CrossRef]
- Cardakli, N.; Weinreb, S.F.; ScM, J.L.J.; Quigley, H.A. Long-term Functional Outcomes of Trabeculectomy Revision Surgery. Ophthalmol. Glaucoma 2019, 2, 240–250. [Google Scholar] [CrossRef]
- Gedde, S.J.; Herndon, L.W.; Brandt, J.D.; Budenz, D.L.; Feuer, W.J.; Schiffman, J.C. Postoperative Complications in the Tube Versus Trabeculectomy (TVT) Study During Five Years of Follow-up. Am. J. Ophthalmol. 2012, 153, 804–814.e1. [Google Scholar] [CrossRef]
- Corradetti, B.; Scarritt, M.E.; Londono, R.; Badylak, S.F.; Hildebrandt, M. The Immune Response to Implanted Materials and Devices; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Cairns, J.E. Trabeculectomy. Preliminary report of a new method. Am. J. Ophthalmol. 1968, 66, 673–679. [Google Scholar] [CrossRef]
- Agrawal, P.; Bhardwaj, P. Glaucoma drainage implants. Int. J. Ophthalmol. 2020, 13, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Gurnani, B.; Tripathy, K. Minimally Invasive Glaucoma Surgery. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; PMID: 35881761, Bookshelf ID: NBK582156. [Google Scholar]
- Gupta, S.; Jeria, S. A Review on Glaucoma Drainage Devices and its Complications. Cureus 2022, 14, e29072. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Salinas, L.; Guidotti, J.; Mermoud, A.; Mansouri, K. XEN Gel Implant: A new surgical approach in glaucoma. Expert Rev. Med. Devices 2018, 15, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Vera, V.; Sheybani, A.; Wustenberg, W.; Romoda, L.; Camejo, L.; Liu, X.; Lewis, R. Compatibility and durability of the gel stent material. Expert Rev. Med. Devices 2022, 19, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Denis, P.; Hirneiß, C.; Reddy, K.P.; Kamarthy, A.; Calvo, E.; Hussain, Z.; Ahmed, I.I.K. A First-in-Human Study of the Efficacy and Safety of MINIject in Patients with Medically Uncontrolled Open-Angle Glaucoma (STAR-I). Ophthalmol. Glaucoma 2019, 2, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Grierson, I.; Minckler, D.; Rippy, M.K.; Marshall, A.J.; Collignon, N.; Bianco, J.; Detry, B.; Johnstone, M.A. A novel suprachoroidal microinvasive glaucoma implant: In vivo biocompatibility and biointegration. BMC Biomed. Eng. 2020, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Klapstova, A.; Horakova, J.; Tunak, M.; Shynkarenko, A.; Erben, J.; Hlavata, J.; Bulir, P.; Chvojka, J. A PVDF electrospun antifibrotic composite for use as a glaucoma drainage implant. Mater. Sci. Eng. C 2021, 119, 111637. [Google Scholar] [CrossRef] [PubMed]
- Kao, B.W.; Meer, E.; Barbolt, T.A.; Lewis, R.A.; Ahmed, I.I.; Lee, V.; Nicaise, S.M.; Griggs, G.; Miller-Ellis, E.G. Biocompatibility and feasibility of VisiPlate, a novel ultrathin, multichannel glaucoma drainage device. J. Mater. Sci. Mater. Med. 2021, 32, 141. [Google Scholar] [CrossRef] [PubMed]
- Josyula, A.; Mozzer, A.; Szeto, J.; Ha, Y.; Richmond, N.; Chung, S.W.; Rompicharla, S.V.K.; Narayan, J.; Ramesh, S.; Hanes, J.; et al. Nanofiber-based glaucoma drainage implant improves surgical outcomes by modulating fibroblast behavior. Bioeng. Transl. Med. 2023, 8, e10487. [Google Scholar] [CrossRef]
- Siewert, S.; Kischkel, S.; Brietzke, A.; Kinzel, L.; Lindner, T.; Hinze, U.; Chichkov, B.; Schmidt, W.; Stiehm, M.; Grabow, N.; et al. Development of a Novel Valve-Controlled Drug-Elutable Microstent for Microinvasive Glaucoma Surgery: In Vitro and Preclinical In Vivo Studies. Transl. Vis. Sci. Technol. 2023, 12, 4. [Google Scholar] [CrossRef]
- Lubiński, W.; Krzystolik, K.; Gosławski, W.; Kuprjanowicz, L.; Mularczyk, M. Comparison of polypropylene and silicone Ahmed® glaucoma valves in the treatment of neovascular glaucoma: A 2-year follow-up. Adv. Clin. Exp. Med. 2018, 27, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.; Xie, L.; Pan, F.-S.; Wang, Y.; Liu, H.; Tang, Y.-R.; Hutnik, C.M. A feasibility study of using biodegradable magnesium alloy in glaucoma drainage device. Int. J. Ophthalmol. 2018, 11, 135–142. [Google Scholar] [PubMed]
- Thaller, M.; Böhm, H.; Lingenfelder, C.; Geiger, F. Hyaluronic acid gels for pressure regulation in glaucoma treatment. Ophthalmologe 2018, 115, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.G.; Sinha, N.R.; Mohan, R.R.; Webel, A.D. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines 2023, 11, 657. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Han, Y.; Wang, Y.; Lin, Q. Preparation of 5-fluorouracil oaded chitosan microtube via in situ precipitation for glaucoma drainage device application: In vitro and in vivo investigation. J. Biomater. Sci. Polym. Ed. Sv. 2021, 32, 1849–1864. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, N.; Luo, J.; Qin, M.; Di Luca, M.; Mathew, E.; Tagalakis, A.D.; Lamprou, D.A.; Yu-Wai-Man, C. 3D-printed long-acting 5-fluorouracil implant to prevent conjunctival fibrosis in glaucoma. J. Pharm. Pharmacol. 2023, 75, 276–286. [Google Scholar] [CrossRef]
- Dong, A.; Han, L.; Shao, Z.; Fan, P.; Zhou, X.; Yuan, H. Glaucoma Drainage Device Coated with Mitomycin C Loaded Opal Shale Microparticles to Inhibit Bleb Fibrosis. ACS Appl. Mater. Interfaces 2019, 11, 10244–10253. [Google Scholar] [CrossRef]
- Chun, Y.Y.; Yap, Z.L.; Seet, L.F.; Chan, H.H.; Toh, L.Z.; Chu, S.W.L.; Lee, Y.S.; Wong, T.T.; Tan, T.T.Y. Positive-charge tuned gelatin hydrogel-siSPARC injectable for siRNA anti-scarring therapy in post glaucoma filtration surgery. Sci. Rep. 2021, 11, 1470. [Google Scholar] [CrossRef]
- Ali, J.; Bhatnagar, A.; Kumar, N.; Ali, A. Chitosan nanoparticles amplify the ocular hypotensice effect of cateolol in rabbits. Int. J. Biol. Macromol. 2014, 65, 479–491. [Google Scholar]
- Guglielmi, P.; Carradori, S.; Campestre, C.; Poce, G. Novel therapies for glaucoma: A patent review (2013-2019). Expert Opin. Ther. Pat. 2019, 29, 769–780. [Google Scholar] [CrossRef]
- Singh, M.; Dev, D.; Prasad, D. A Recent Overview: In Situ Gel Smart Carriers for Ocular Drug Delivery. J. Drug Deliv. Ther. 2021, 11, 195–205. [Google Scholar] [CrossRef]
- Wu, K.Y.; Ashkar, S.; Jain, S.; Marchand, M.; Tran, S.D. Breaking Barriers in Eye Treatment: Polymeric Nano-Based Drug-Delivery System for Anterior Segment Diseases and Glaucoma. Polymers 2023, 15, 1373. [Google Scholar] [CrossRef]
- Bahram, M.; Mohseni, N.; Moghtader, M. An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels; IntechOpen: London, UK, 2016. [Google Scholar]
- Silva, M.M.; Calado, R.; Marto, J.; Bettencourt, A.; Almeida, A.J.; Gonçalves, L.M. Chitosan Nanoparticles ad a Mucoadhesive Drug Delivery System for Ocular Administration. Drugs 2017, 15, 370. [Google Scholar]
- Zhang, M.; Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef]
- Akulo, K.A.; Adali, T.; Moyo MT, G.; Bodamyali, T. Inravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers 2022, 14, 2359. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2010, 110, 2574. [Google Scholar] [CrossRef]
- Gorantla, S.; Rapalli, V.K.; Waghule, T.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020, 10, 27835–27855. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, K.; Dosanjh, P.; Payá, J.S. Biodegradable Polymers and their Role in Drug Delivery Systems. Biomed. J. Sci. Tech. Res. 2018, 11, 001–006. [Google Scholar] [CrossRef]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef]
- Cegielska, O.; Sajkiewicz, P. Targeted Drug Delivery Systems for the Treatment of Glaucoma: Most Advanced Systems Review. Polymers 2019, 11, 1742. [Google Scholar] [CrossRef]
- Allyn, M.M.; Luo, R.H.; Hellwarth, E.B.; Swindle-Reilly, K.E. Considerations for Polymers Used in Ocular Drug Delivery. Front. Med. 2022, 8, 787644. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Ali, A. Development and validation of UPLC/ESI-Q-TOF-MS for carteolol in aqueous humour: Stability, stress degradation and application in pharmacokinetics of nanoformulation. Arab. J. Chem. 2017, 10, S2969–S2978. [Google Scholar]
- Khan, N.; Khanna, K.; Bhatnagar, A.; Ahmad, F.J.; Ali, A. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin:statistical design, characterization and in vivo studies. Int. J. Biol. Macromol. 2018, 116, 648–663. [Google Scholar] [CrossRef] [PubMed]
- Kumara, B.; Shambhu, R.; Prasad, K.S. Why chitosan could be apt candidate for glaucoma drug delivery—An overview. Int. J. Biol. Macromol. 2021, 176, 47–65. [Google Scholar] [CrossRef] [PubMed]
- El-Feky, G.S.; Zayed, G.M.; Elshaier, Y.A.; Alsharif, F.M. Chitosan-Gelatin Hydrogel Crosslinked With Oxidized Sucrose for the Ocular Delivery of Timolol Maleate. J. Pharm. Sci. 2018, 107, 3098–3104. [Google Scholar] [CrossRef] [PubMed]
- Pakzad, Y.; Fathi, M.; Omidi, Y.; Mozafari, M.; Zamanian, A. Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. Int. J. Biol. Macromol. 2020, 159, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Luo, L.-J.; Lue, S.J.; Lai, J.-Y. The role of aromatic ring number in phenolic compound-conjugated chitosan injectables for sustained therapeutic antiglaucoma efficacy. Carbohydr. Polym. 2020, 231, 115770. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Luo, L.; Lai, J. Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucoma-Associated Degradation of Extracellular Matrix. Adv. Healthc. Mater. 2019, 8, e1900702. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tian, S.; Tao, Q.; Zhao, Y.; Gui, R.; Yang, F.; Zang, L.; Chen, Y.; Ping, Q.; Hou, D. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int. J. Nanomed. 2018, 13, 3975–3987. [Google Scholar] [CrossRef]
- Radwan SE, S.; El-Moslemany, R.M.; Mehanna, R.A.; Thabet, E.H.; Abdelfattah EZ, A.; El-Kamel, A. Chitosan-coated bovine serum albumin nanoparticles for topical tatrandrine delivery in glaucoma:in vitro and in vivo assessment. Drug Deliv. 2022, 29, 1150–1163. [Google Scholar] [CrossRef]
- Luo, L.-J.; Nguyen, D.D.; Lai, J.-Y. Dually functional hollow ceria nanoparticle platform for intraocular drug delivery: A push beyond the limits of static and dynamic ocular barriers toward glaucoma therapy. Biomaterials 2020, 243, 119961. [Google Scholar] [CrossRef]
- Luo, L.-J.; Nguyen, D.D.; Lai, J.-Y. Benzoic acid derivative-modified chitosan-g-poly(N-isopropylacrylamide): Methoxylation effects and pharmacological treatments of Glaucoma-related neurodegeneration. J. Control. Release 2020, 317, 246–258. [Google Scholar] [CrossRef]
- Cesar, A.L.A.; Navarro, L.C.; Castilho, R.O.; Goulart, G.A.C.; Foureaux, G.; Ferreira, A.J.; Cronemberger, S.; Faraco, A.A.G. New antiglaucomatous agent for the treatment of open angle glaucoma: Polymeric inserts for drug release and in vitro and in vivo study. J. Biomed. Mater. Res. Part A 2021, 109, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Franca, J.R.; Foureaux, G.; Fuscaldi, L.L.; Ribeiro, T.G.; Castilho, R.O.; Yoshida, M.I.; Cardoso, V.N.; Fernandes, S.O.A.; Cronemberger, S.; Nogueira, J.C.; et al. Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: In vitro and in vivo evaluation. Int. J. Pharm. 2019, 30, 118662. [Google Scholar] [CrossRef]
- Dubey, V.; Mohan, P.; Dangi, J.S.; Kesavan, K. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study. Int. J. Biol. Macromol. 2020, 152, 1224–1232. [Google Scholar] [CrossRef]
- Zafar, A.; Alruwaili, N.K.; Imam, S.S.; Alsaidan, O.A.; Alharbi, K.S.; Yasir, M.; Elmowafy, M.; Ansari, M.J.; Salahuddin, M.; Alshehri, S. Formulation of carteolol chitosomes for ocular delivery: Formulation optimization, ex-vivo permeation, and ocular toxicity examination. Cutan. Ocul. Toxicol. 2021, 40, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jin, X.; Zhang, L.; Yang, Y.; Liu, R.; Li, Z. Comparison of Different Chitosan Lipid Nanoparticles for Improved Ophthalmic Tetrandrine Delivery: Formulation, Characterization, Pharmacokinetic and Molecular Dynamics Simulation. J. Pharm. Sci. 2020, 109, 3625–3635. [Google Scholar] [CrossRef]
- Liu, S.; Han, X.; Liu, H.; Zhao, Y.; Li, H.; Rupenthal, I.D.; Lv, Z.; Chen, Y.; Yang, F.; Ping, Q.; et al. Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment. Drug Deliv. 2020, 27, 652–661. [Google Scholar] [CrossRef]
- Tian, S.; Li, J.; Tao, Q.; Zhao, Y.; Lv, Z.; Yang, F.; Duan, H.; Chen, Y.; Zhou, Q.; Hou, D. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-echange carrier. Int. J. Nanomed. 2018, 12, 415–428. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ye, T.; Chen, F.; Yu, S.; Chen, J.; Yang, X.; Yang, N.; Zhang, J.; Liu, J.; et al. Nanostructured lipid carrier surface modi fied with Eudragit RS 100 and its potential ophthalmic functions. Int. J. Nanomed. 2014, 9, 4305–4315. [Google Scholar]
- Liu, H.; Han, X.; Li, H.; Tao, Q.; Hu, J.; Liu, S.; Liu, H.; Zhou, J.; Li, W.; Yang, F.; et al. Wettability and contact angle affect precorneal retention and pharmacodynamic behavior of microspheres. Drug Deliv. 2021, 28, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-H.; Ko, Y.-C.; Chang, Y.-F.; Huang, S.-H.; Liu, C.J.-L. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp. Eye Res. 2019, 179, 179–187. [Google Scholar] [CrossRef]
- Donia, M.; Osman, R.; Awad, G.A.S.; Mortada, N. Polypeptide and glycosaminoglycan polysacharide as stabilizing polymers in nanocrystals for a safe ocular hypotensive effect. Int. J. Biol. Macromol. 2020, 162, 1699–1710. [Google Scholar] [CrossRef]
- Wani, S.U.D.; Masoodi, M.H.; Gautam, S.P.; Shivakumar, H.G.; Alshehri, S.; Ghoneim, M.M.; Alam, P.; Shakeel, F. Promising Role of Silk-Based Biomaterials for Ocular-Based Drug Delivery and Tissue Engineering. Polymers 2022, 14, 5475. [Google Scholar] [CrossRef]
- Cegielska, O.; Sierakowski, M.; Sajkiewicz, P.; Lorenz, K.; Kogermann, K. Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment. Eur. J. Pharm. Biopharm. 2022, 180, 48–62. [Google Scholar] [CrossRef]
- Sharma, P.K.; Chauhan, M.K. Optimization and Characterization of Brimonidine Tartrate Nanoparticles-loaded In Situ Gel for the Treatment of Glaucoma. Curr. Eye Res. 2021, 46, 1703–1716. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Huang, D.; Norat, P.; Grannonico, M.; Cooper, R.C.; Gui, Q.; Chow, W.N.; Liu, X.; Yang, H. Nano-in-Nano Dendrimer Gel Particles for Efficient Topical Delivery of Antiglaucoma Drugs into the Eye. Chem. Eng. J. 2021, 425, 130498. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, S.; Park, K.; Kim, M.; Hong, J. Sustained Nitric Oxide-Providing Small Molecule and Precise Release Behavior Study for Glaucoma Treatment. Mol. Pharm. 2020, 17, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Sun, J.; Zhang, Y.; Chen, J.; Lei, Y.; Sun, X.; Deng, Y. Local Delivery and Sustained-Release of Nitric Oxide Donor Loaded in Mesoporous Silica Particles for Efficient Treatment of Primary Open-Angle Glaucoma. Adv. Healthc. Mater. 2018, 7, e1801047. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Z. Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020942712. [Google Scholar] [CrossRef]
- Vishwaraj, C.R.; Kavitha, S.; Venkatesh, R.; Shukla, A.G.; Chandran, P.; Tripathi, S. Neuroprotection in glaucoma. Indian. J. Ophthalmol. 2022, 70, 380–385. [Google Scholar] [PubMed]
- Arranz-Romera, A.; Davis, B.M.; Bravo-Osuna, I.; Esteban-Pérez, S.; Molina-Martínez, I.T.; Shamsher, E.; Ravindran, N.; Guo, L.; Cordeiro, M.F.; Herrero-Vanrell, R. Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J. Control. Release 2019, 297, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Gonçalves, L.M.; Braz, B.S.; Delgado, E. Chitosan and Hyaluronic Acid Nanoparticles as Vehicles of Epoetin Beta for Subconjunctival Ocular Delivery. Mar. Drugs 2022, 20, 151. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Feijoo, J. CyPass stent withdrawal: The end of suprachoroidal MIGS? Arch. Soc. Esp. Oftalmol. (Engl. Ed.) 2019, 94, 1–3. [Google Scholar] [CrossRef] [PubMed]
Natural Biomaterials | Type of Biomaterial | Drug to Be Delivered | Author, Year | Type of Study |
---|---|---|---|---|
Chitosan (CH)-based/loaded | CH-Gelatin hydrogel | Timolol maleate | El-Feky, 2018 [49] | In vitro, In vivo |
Montmorillonite/CH nanoparticles | Betaxolol hydrochloride | Li, 2018 [53] | In vitro | |
CH/hydroxyethyl cellulose-based ocular inserts | Dorzolamide | Franca, 2019 [58] | In vivo | |
CH-based thermosensitive hydrogel | Timolol maleate | Pakzad, 2020 [50] | In vitro | |
CH and ZM241385 hollow ceria nanoparticles | Pilocarpine | Luo, 2020 [55] | In vitro, In vivo | |
CH-g-poly(N-isopropylacrylamide) (CN) | Pilocarpine | Luo, 2020 [56] | - | |
Chitosan nanoparticles | - | Li, 2020 [61] | In vitro | |
Chitosan-pectin mucoadhesive nanocapsules | Brinzolamide | Dubey, 2020 [59] | In vivo | |
Niosomes coated with CH | Carteolol | Zafar, 2021 [60] | - | |
Mucoadhesive polymeric inserts prepared using CH and chondroitin sulfate | Benzamidine | Cesar, 2021 [57] | - | |
CH-coated bovine serum albumin nanoparticles | Tetrandrine | Radwan, 2022 [54] | Ex vivo | |
Montmorillonite (MO)-based/loaded | MO/BH complex encapsulated into Eudragit microspheres | Betaxolol hydrochloride | Tian, 2018 [63] | In vitro |
Montmorillonite-loaded solid lipid nanoparticles | Betaxolol hydrochloride | Liu, 2020 [62] | ||
MIDFDS | Betaxolol hydrochloride | Liu, 2021 [65] | - | |
Others | Thermosensitive hydrogel with curcumin-loaded nanoparticles | Latanoprost | Cheng, 2019 [66] | - |
Silk-based biomaterials | - | Wani, 2022 [68] | - | |
Nanofibrous drug delivery system- β-cyclodextrin | Brinzolamide | Cegielska, 2022 [69] | In vivo | |
Nanofibrous drug delivery system- Hydroxypropyl cellulose | Brinzolamide | Cegielska, 2022 [69] | In vivo |
Type of Biomaterial | Drug to Be Delivered | Author, Year | Type of Study |
---|---|---|---|
Nanosuspension (NS) stabilized by anionic polypeptide, poly-γ-glutamic acid (PG), and the glycosaminoglycan, hyaluronic acid | Acetazolamide | Donia, 2020 [67] | - |
Type of Biomaterial | Drug to Be Delivered | Author, Year | Type of Study |
---|---|---|---|
Mesoporous silica nanoparticles | Sodium nitroprusside | Hu, 2018 [73] | - |
Core–shell nanoparticles | Brinzolamide-loaded PS/PLGA | Song, 2020 [74] | In vitro |
Carbon-bound polydiazeniumdiolate | NO | Jeong, 2020 [72] | In vivo |
Poly(lactic-co-glycolic acid) acid vitamin E-tocopheryl polyethylene glycol 1000 succinate (BRT-PLGA-TPGS) nanoparticles | Brimonidine tartrate | Sharma, 2021 [70] | - |
Polyamidoamine dendrimers | Brimonidine tartrate/Timolol maleate | Wang, 2021 [71] | Ex vivo |
Nanofibrous drug delivery system with polycaprolactone | Brinzolamide | Cegielska, 2022 [69] | In vivo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klézlová, A.; Bulíř, P.; Klápšťová, A.; Netuková, M.; Šenková, K.; Horáková, J.; Studený, P. Novel Biomaterials in Glaucoma Treatment. Biomedicines 2024, 12, 813. https://doi.org/10.3390/biomedicines12040813
Klézlová A, Bulíř P, Klápšťová A, Netuková M, Šenková K, Horáková J, Studený P. Novel Biomaterials in Glaucoma Treatment. Biomedicines. 2024; 12(4):813. https://doi.org/10.3390/biomedicines12040813
Chicago/Turabian StyleKlézlová, Adéla, Petr Bulíř, Andrea Klápšťová, Magdaléna Netuková, Kateřina Šenková, Jana Horáková, and Pavel Studený. 2024. "Novel Biomaterials in Glaucoma Treatment" Biomedicines 12, no. 4: 813. https://doi.org/10.3390/biomedicines12040813
APA StyleKlézlová, A., Bulíř, P., Klápšťová, A., Netuková, M., Šenková, K., Horáková, J., & Studený, P. (2024). Novel Biomaterials in Glaucoma Treatment. Biomedicines, 12(4), 813. https://doi.org/10.3390/biomedicines12040813