Long Intergenic Non-Coding RNAs of Human Chromosome 18: Focus on Cancers
Abstract
:1. Introduction
2. A Spectrum of Genes Encoding lincRNAs of Human Chromosome 18
2.1. Alterations of Genes Encoding lincRNAs of Human Chromosome 18
2.2. Promoter Methylation of Genes Encoding lincRNAs of Human Chromosome 18
2.3. Differentially Expressed Genes Encoding lincRNAs of Human Chromosome 18
2.4. Transcriptional Regulation of Genes Encoding lincRNAs of Human Chromosome 18
3. Interactomics of lincRNAs of Human Chromosome 18
3.1. Interactions of lincRNAs with microRNAs
3.2. Interactions of lincRNAs of Human Chromosome 18 with Other lncRNAs
3.3. Interactions of lincRNAs of Human Chromosome 18 with Cellular Proteins
3.4. Small Open-Reading Frame Proteins (smORF-Proteins)
4. Prognostic and Predictive Value of Genes Encoding lincRNAs of Human Chromosome 18
5. Pharmacologic Aspects of Genes Expression of lincRNAs
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long Non-Coding RNAs: Insights into Functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The Functions and Unique Features of Long Intergenic Non-Coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef]
- Jayasuriya, R.; Ganesan, K.; Xu, B.; Ramkumar, K.M. Emerging Role of Long Non-Coding RNAs in Endothelial Dysfunction and Their Molecular Mechanisms. Biomed. Pharmacother. 2022, 145, 112421. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Rivea Morales, D.; Thomas, K.; Presser, A.; Bernstein, B.E.; van Oudenaarden, A.; et al. Many Human Large Intergenic Noncoding RNAs Associate with Chromatin-Modifying Complexes and Affect Gene Expression. Proc. Natl. Acad. Sci. USA 2009, 106, 11667–11672. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xu, D.; Cai, Y.; Han, X.; Tang, L.; Gao, F.; Qi, Y.; Cai, D.; Wang, H.; Ri, M.; et al. Very Long Intergenic Non-Coding (Vlinc) RNAs Directly Regulate Multiple Genes in Cis and Trans. BMC Biol. 2021, 19, 108. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Chan, S.-J.; Liu, X.; Wei, A.-C.; Jian, R.-I.; Huang, K.-W.; Lang, Y.-D.; Shih, J.-H.; Liao, C.-C.; Luan, C.-L.; et al. Long Noncoding RNA Smyca Coactivates TGF-β/Smad and Myc Pathways to Drive Tumor Progression. J. Hematol. Oncol. 2022, 15, 85. [Google Scholar] [CrossRef]
- Chu, C.; Zhang, Q.C.; da Rocha, S.T.; Flynn, R.A.; Bharadwaj, M.; Calabrese, J.M.; Magnuson, T.; Heard, E.; Chang, H.Y. Systematic Discovery of Xist RNA Binding Proteins. Cell 2015, 161, 404–416. [Google Scholar] [CrossRef]
- Wahba, A.S.; Ibrahim, M.E.; Mesbah, N.M.; Saleh, S.M.; Abo-Elmatty, D.M.; Mehanna, E.T. Serum LINC00305 Expression and Its Genetic Variant Rs2850711 Are Associated with Clinical and Laboratory Features of Rheumatoid Arthritis. Br. J. Biomed. Sci. 2020, 77, 142–147. [Google Scholar] [CrossRef]
- Plewka, P.; Raczynska, K.D. Long Intergenic Noncoding RNAs Affect Biological Pathways Underlying Autoimmune and Neurodegenerative Disorders. Mol. Neurobiol. 2022, 59, 5785–5808. [Google Scholar] [CrossRef]
- Zhang, D.-D.; Wang, W.-T.; Xiong, J.; Xie, X.-M.; Cui, S.-S.; Zhao, Z.-G.; Li, M.J.; Zhang, Z.-Q.; Hao, D.-L.; Zhao, X.; et al. Long Noncoding RNA LINC00305 Promotes Inflammation by Activating the AHRR-NF-κB Pathway in Human Monocytes. Sci. Rep. 2017, 7, 46204. [Google Scholar] [CrossRef]
- Li, X.; Yu, M.; Han, L.; Chen, L.; Zhang, D.; Zhou, G.; Zhao, Q.; Sun, T. LINC00305 Represses miR-124 Expression to Trigger Inflammatory Insults in the Presence of Lipopolysaccharide. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2352–2360. [Google Scholar] [CrossRef]
- Alvarez-Dominguez, J.R.; Lodish, H.F. Emerging Mechanisms of Long Noncoding RNA Function during Normal and Malignant Hematopoiesis. Blood 2017, 130, 1965–1975. [Google Scholar] [CrossRef]
- Mao, W.; Liao, Y.; Tang, L. Long Intergenic Non-Protein Coding RNA 173 in Human Cancers. Cancers 2022, 14, 5923. [Google Scholar] [CrossRef]
- Ai, B.; Kong, X.; Wang, X.; Zhang, K.; Yang, X.; Zhai, J.; Gao, R.; Qi, Y.; Wang, J.; Wang, Z.; et al. LINC01355 Suppresses Breast Cancer Growth through FOXO3-Mediated Transcriptional Repression of CCND1. Cell Death Dis. 2019, 10, 502. [Google Scholar] [CrossRef]
- Dong, X.; Fu, X.; Yu, M.; Li, Z. Long Intergenic Non-Protein Coding RNA 1094 Promotes Initiation and Progression of Glioblastoma by Promoting microRNA-577-Regulated Stabilization of Brain-Derived Neurotrophic Factor. Cancer Manag. Res. 2020, 12, 5619–5631. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Su, H.; Wang, Z.; Lai, S.; Wang, Y.; Liu, X.; Dai, L.; Bi, Y.; Chen, W.; Huang, W.; et al. LINC00680 Enhances Hepatocellular Carcinoma Stemness Behavior and Chemoresistance by Sponging miR-568 to Upregulate AKT3. J. Exp. Clin. Cancer Res. 2021, 40, 45. [Google Scholar] [CrossRef] [PubMed]
- Archakov, A.I.; Aseev, A.L.; Bykov, V.A.; Grigoriev, A.I.; Govorun, V.M.; Ilgisonis, E.V.; Ivanov, Y.D.; Ivanov, V.T.; Kiseleva, O.I.; Kopylov, A.T.; et al. Challenges of the Human Proteome Project: 10-Year Experience of the Russian Consortium. J. Proteome Res. 2019, 18, 4206–4214. [Google Scholar] [CrossRef] [PubMed]
- Radko, S.P.; Poverennaya, E.V.; Kurbatov, L.K.; Ponomarenko, E.A.; Lisitsa, A.V.; Archakov, A.I. The “Missing” Proteome: Undetected Proteins, Not-Translated Transcripts, and Untranscribed Genes. J. Proteome Res. 2019, 18, 4273–4276. [Google Scholar] [CrossRef] [PubMed]
- Poverennaya, E.V.; Kopylov, A.T.; Ponomarenko, E.A.; Ilgisonis, E.V.; Zgoda, V.G.; Tikhonova, O.V.; Novikova, S.E.; Farafonova, T.E.; Kiseleva, Y.Y.; Radko, S.P.; et al. State of the Art of Chromosome 18-Centric HPP in 2016: Transcriptome and Proteome Profiling of Liver Tissue and HepG2 Cells. J. Proteome Res. 2016, 15, 4030–4038. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tan, P.; Wang, L.; Jin, N.; Li, Y.; Zhang, L.; Yang, H.; Hu, Z.; Zhang, L.; Hu, C.; et al. RNALocate: A Resource for RNA Subcellular Localizations. Nucleic Acids Res. 2017, 45, D135–D138. [Google Scholar] [CrossRef] [PubMed]
- Sallou, O.; Duek, P.D.; Darde, T.A.; Collin, O.; Lane, L.; Chalmel, F. PepPSy: A Web Server to Prioritize Gene Products in Experimental and Biocuration Workflows. Database 2016, 2016, baw070. [Google Scholar] [CrossRef] [PubMed]
- Dudekula, D.B.; Panda, A.C.; Grammatikakis, I.; De, S.; Abdelmohsen, K.; Gorospe, M. CircInteractome: A Web Tool for Exploring Circular RNAs and Their Interacting Proteins and microRNAs. RNA Biol. 2016, 13, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Q.; Shen, J.; Yang, B.B.; Ding, X. Circbank: A Comprehensive Database for circRNA with Standard Nomenclature. RNA Biol. 2019, 16, 899–905. [Google Scholar] [CrossRef]
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.-J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; et al. The BioGRID Database: A Comprehensive Biomedical Resource of Curated Protein, Genetic, and Chemical Interactions. Protein Sci. 2021, 30, 187–200. [Google Scholar] [CrossRef]
- Chen, J.; Lin, J.; Hu, Y.; Ye, M.; Yao, L.; Wu, L.; Zhang, W.; Wang, M.; Deng, T.; Guo, F.; et al. RNADisease v4.0: An Updated Resource of RNA-Associated Diseases, Providing RNA-Disease Analysis, Enrichment and Prediction. Nucleic Acids Res. 2023, 51, D1397–D1404. [Google Scholar] [CrossRef]
- Taniue, K.; Akimitsu, N. Fusion Genes and RNAs in Cancer Development. Noncoding RNA 2021, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.P. The Ever-Changing World of Gene Fusions in Cancer: A Secondary Gene Fusion and Progression. Oncogene 2019, 38, 7197–7199. [Google Scholar] [CrossRef]
- Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.; Krill-Burger, J.M.; et al. Defining a Cancer Dependency Map. Cell 2017, 170, 564–576.e16. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Ding, W.; Chen, J.; Feng, G.; Chen, G.; Wu, J.; Guo, Y.; Ni, X.; Shi, T. DNMIVD: DNA Methylation Interactive Visualization Database. Nucleic Acids Res. 2020, 48, D856–D862. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef] [PubMed]
- Koti, M.; Gooding, R.J.; Nuin, P.; Haslehurst, A.; Crane, C.; Weberpals, J.; Childs, T.; Bryson, P.; Dharsee, M.; Evans, K.; et al. Identification of the IGF1/PI3K/NF κB/ERK Gene Signalling Networks Associated with Chemotherapy Resistance and Treatment Response in High-Grade Serous Epithelial Ovarian Cancer. BMC Cancer 2013, 13, 549. [Google Scholar] [CrossRef] [PubMed]
- McMullin, R.P.; Wittner, B.S.; Yang, C.; Denton-Schneider, B.R.; Hicks, D.; Singavarapu, R.; Moulis, S.; Lee, J.; Akbari, M.R.; Narod, S.A.; et al. A BRCA1 Deficient-like Signature Is Enriched in Breast Cancer Brain Metastases and Predicts DNA Damage-Induced Poly (ADP-Ribose) Polymerase Inhibitor Sensitivity. Breast Cancer Res. 2014, 16, R25. [Google Scholar] [CrossRef]
- Bowen, N.J.; Walker, L.D.; Matyunina, L.V.; Logani, S.; Totten, K.A.; Benigno, B.B.; McDonald, J.F. Gene Expression Profiling Supports the Hypothesis That Human Ovarian Surface Epithelia Are Multipotent and Capable of Serving as Ovarian Cancer Initiating Cells. BMC Med. Genom. 2009, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Snipstad, K.; Fenton, C.G.; Kjaeve, J.; Cui, G.; Anderssen, E.; Paulssen, R.H. New Specific Molecular Targets for Radio-Chemotherapy of Rectal Cancer. Mol. Oncol. 2010, 4, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Fishilevich, S.; Nudel, R.; Rappaport, N.; Hadar, R.; Plaschkes, I.; Iny Stein, T.; Rosen, N.; Kohn, A.; Twik, M.; Safran, M.; et al. GeneHancer: Genome-Wide Integration of Enhancers and Target Genes in GeneCards. Database 2017, 2017, bax028. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. miRDB: An Online Database for Prediction of Functional microRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Feng, C.; Qin, Y.; Xiao, J.; Zhang, Z.; Ma, L. LncBook 2.0: Integrating Human Long Non-Coding RNAs with Multi-Omics Annotations. Nucleic Acids Res. 2023, 51, D186–D191. [Google Scholar] [CrossRef]
- Aparicio-Puerta, E.; Hirsch, P.; Schmartz, G.P.; Kern, F.; Fehlmann, T.; Keller, A. miEAA 2023: Updates, New Functional microRNA Sets and Improved Enrichment Visualizations. Nucleic Acids Res. 2023, 51, W319–W325. [Google Scholar] [CrossRef] [PubMed]
- Tastsoglou, S.; Miliotis, M.; Kavakiotis, I.; Alexiou, A.; Gkotsi, E.C.; Lambropoulou, A.; Lygnos, V.; Kotsira, V.; Maroulis, V.; Zisis, D.; et al. PlasmiR: A Manual Collection of Circulating microRNAs of Prognostic and Diagnostic Value. Cancers 2021, 13, 3680. [Google Scholar] [CrossRef] [PubMed]
- Pasieka, R.; Zasoński, G.; Raczyńska, K.D. Role of Long Intergenic Noncoding RNAs in Cancers with an Overview of MicroRNA Binding. Mol. Diagn. Ther. 2023, 27, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-H.; Abdelmohsen, K.; Gorospe, M. Functional Interactions among microRNAs and Long Noncoding RNAs. Semin. Cell Dev. Biol. 2014, 34, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-H.; Chang, M.-W.; Tsitsipatis, D.; Yang, X.; Martindale, J.L.; Munk, R.; Cheng, A.; Izydore, E.; Pandey, P.R.; Piao, Y.; et al. LncRNA OIP5-AS1-Directed miR-7 Degradation Promotes MYMX Production during Human Myogenesis. Nucleic Acids Res. 2022, 50, 7115–7133. [Google Scholar] [CrossRef]
- Pan, C.-Y.; Lin, W.-C. miR-TV: An Interactive microRNA Target Viewer for microRNA and Target Gene Expression Interrogation for Human Cancer Studies. Database 2020, 2020, baz148. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Fang, J.; Xu, Z.; Zhang, H.; Mao, M.; Chen, Y.; Zhang, L.; Pian, C. NcPath: A Novel Platform for Visualization and Enrichment Analysis of Human Non-Coding RNA and KEGG Signaling Pathways. Bioinformatics 2023, 39, btac812. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, X.; Xu, H.; Liu, K.; Liu, W.; Wang, L.; Zhang, C.; Bo, L.; Lan, X.; Lin, S.; et al. LncTarD 2.0: An Updated Comprehensive Database for Experimentally-Supported Functional lncRNA-Target Regulations in Human Diseases. Nucleic Acids Res. 2023, 51, D199–D207. [Google Scholar] [CrossRef]
- Kang, J.; Tang, Q.; He, J.; Li, L.; Yang, N.; Yu, S.; Wang, M.; Zhang, Y.; Lin, J.; Cui, T.; et al. RNAInter v4.0: RNA Interactome Repository with Redefined Confidence Scoring System and Improved Accessibility. Nucleic Acids Res. 2022, 50, D326–D332. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, H.; Teng, X.; Hao, X.; Yan, X.; Tang, Y.; Zhang, W.; Wang, Y.; Zhang, P.; Li, Y.; et al. NPInter v5.0: ncRNA Interaction Database in a New Era. Nucleic Acids Res. 2023, 51, D232–D239. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [PubMed]
- Sondka, Z.; Bamford, S.; Cole, C.G.; Ward, S.A.; Dunham, I.; Forbes, S.A. The COSMIC Cancer Gene Census: Describing Genetic Dysfunction across All Human Cancers. Nat. Rev. Cancer 2018, 18, 696–705. [Google Scholar] [CrossRef]
- Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. How Do lncRNAs Regulate Transcription? Sci. Adv. 2017, 3, eaao2110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Hou, Y. LncRNA MAGI2-AS3 Inhibits Tumor Progression and Angiogenesis by Regulating ACY1 via Interacting with Transcription Factor HEY1 in Clear Cell Renal Cell Carcinoma. Cancer Gene Ther. 2022, 29, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Karagkouni, D.; Paraskevopoulou, M.D.; Tastsoglou, S.; Skoufos, G.; Karavangeli, A.; Pierros, V.; Zacharopoulou, E.; Hatzigeorgiou, A.G. DIANA-LncBase v3: Indexing Experimentally Supported miRNA Targets on Non-Coding Transcripts. Nucleic Acids Res. 2020, 48, D101–D110. [Google Scholar] [CrossRef]
- Steinberg, R.; Koch, H.-G. The Largely Unexplored Biology of Small Proteins in Pro- and Eukaryotes. FEBS J. 2021, 288, 7002–7024. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Ling, Y.; Yu, J.; Wu, J.; Xiao, J. Small Proteins: Untapped Area of Potential Biological Importance. Front. Genet. 2013, 4, 286. [Google Scholar] [CrossRef]
- Li, X.L.; Pongor, L.; Tang, W.; Das, S.; Muys, B.R.; Jones, M.F.; Lazar, S.B.; Dangelmaier, E.A.; Hartford, C.C.; Grammatikakis, I.; et al. A Small Protein Encoded by a Putative lncRNA Regulates Apoptosis and Tumorigenicity in Human Colorectal Cancer Cells. eLife 2020, 9, e53734. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Chen, X.; Zheng, Y.; Kang, Q.; Hao, D.; Zhang, L.; Song, T.; Luo, H.; Hao, Y.; et al. SmProt: A Reliable Repository with Comprehensive Annotation of Small Proteins Identified from Ribosome Profiling. Genom. Proteom. Bioinform. 2021, 19, 602–610. [Google Scholar] [CrossRef]
- Bagheri, A.; Astafev, A.; Al-Hashimy, T.; Jiang, P. Tracing Translational Footprint by Ribo-Seq: Principle, Workflow, and Applications to Understand the Mechanism of Human Diseases. Cells 2022, 11, 2966. [Google Scholar] [CrossRef]
- Desiere, F.; Deutsch, E.W.; King, N.L.; Nesvizhskii, A.I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S.N.; Aebersold, R. The PeptideAtlas Project. Nucleic Acids Res. 2006, 34, D655–D658. [Google Scholar] [CrossRef]
- Paz, I.; Argoetti, A.; Cohen, N.; Even, N.; Mandel-Gutfreund, Y. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment. Methods Mol. Biol. 2022, 2404, 53–65. [Google Scholar] [CrossRef]
- Nie, Q.; Cao, H.; Yang, J.; Liu, T.; Wang, B. PI3K/Akt Signalling Pathway-Associated Long Noncoding RNA Signature Predicts the Prognosis of Laryngeal Cancer Patients. Sci. Rep. 2023, 13, 14764. [Google Scholar] [CrossRef]
- Győrffy, B. Discovery and Ranking of the Most Robust Prognostic Biomarkers in Serous Ovarian Cancer. Geroscience 2023, 45, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Lánczky, A.; Győrffy, B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef] [PubMed]
- Fekete, J.T.; Győrffy, B. ROCplot.Org: Validating Predictive Biomarkers of Chemotherapy/Hormonal Therapy/Anti-HER2 Therapy Using Transcriptomic Data of 3,104 Breast Cancer Patients. Int. J. Cancer 2019, 145, 3140–3151. [Google Scholar] [CrossRef]
- Jiménez-Santos, M.J.; Nogueira-Rodríguez, A.; Piñeiro-Yáñez, E.; López-Fernández, H.; García-Martín, S.; Gómez-Plana, P.; Reboiro-Jato, M.; Gómez-López, G.; Glez-Peña, D.; Al-Shahrour, F. PanDrugs2: Prioritizing Cancer Therapies Using Integrated Individual Multi-Omics Data. Nucleic Acids Res. 2023, 51, W411–W418. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, X.; Hou, F.; Huang, Y.-E.; Yuan, M.; Long, M.; Chen, S.; Lei, W.; Zhu, J.; Chen, J.; et al. ncRNADrug: A Database for Validated and Predicted ncRNAs Associated with Drug Resistance and Targeted by Drugs. Nucleic Acids Res. 2023, 52, gkad1042. [Google Scholar] [CrossRef]
- Evangelista, J.E.; Clarke, D.J.B.; Xie, Z.; Lachmann, A.; Jeon, M.; Chen, K.; Jagodnik, K.M.; Jenkins, S.L.; Kuleshov, M.V.; Wojciechowicz, M.L.; et al. SigCom LINCS: Data and Metadata Search Engine for a Million Gene Expression Signatures. Nucleic Acids Res. 2022, 50, W697–W709. [Google Scholar] [CrossRef] [PubMed]
- Luan, P.-B.; Sun, X.-M.; Yao, J. LINC00355 Inhibits Apoptosis and Promotes Proliferation of Gastric Cancer Cells by Regulating Wnt/β-Catenin Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8377–8383. [Google Scholar] [CrossRef]
- Yan, J.; Huang, X.; Zhang, X.; Chen, Z.; Ye, C.; Xiang, W.; Huang, Z. LncRNA LINC00470 Promotes the Degradation of PTEN mRNA to Facilitate Malignant Behavior in Gastric Cancer Cells. Biochem. Biophys. Res. Commun. 2020, 521, 887–893. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; She, X.; Fan, L.; Li, P.; Feng, J.; Fu, H.; Liu, Q.; Liu, Q.; Zhao, C.; et al. A Cytoplasmic Long Noncoding RNA LINC00470 as a New AKT Activator to Mediate Glioblastoma Cell Autophagy. J. Hematol. Oncol. 2018, 11, 77. [Google Scholar] [CrossRef]
- Huang, W.; Liu, J.; Yan, J.; Huang, Z.; Zhang, X.; Mao, Y.; Huang, X. LncRNA LINC00470 Promotes Proliferation through Association with NF45/NF90 Complex in Hepatocellular Carcinoma. Hum. Cell 2020, 33, 131–139. [Google Scholar] [CrossRef]
- Yan, J.; Li, Y.; Xu, C.; Tang, B.; Xie, S.; Hong, T.; Zeng, E. Long Noncoding RNA LINC00526 Represses Glioma Progression via Regulating miR-5581-3p/BEX1. J. Oncol. 2021, 2021, 8171250. [Google Scholar] [CrossRef]
- Yu, J.; Wang, F.; Zhang, J.; Li, J.; Chen, X.; Han, G. LINC00667/miR-449b-5p/YY1 Axis Promotes Cell Proliferation and Migration in Colorectal Cancer. Cancer Cell Int. 2020, 20, 322. [Google Scholar] [CrossRef]
- Yang, H.; Yang, W.; Dai, W.; Ma, Y.; Zhang, G. LINC00667 Promotes the Proliferation, Migration, and Pathological Angiogenesis in Non-Small Cell Lung Cancer through Stabilizing VEGFA by EIF4A3. Cell Biol. Int. 2020, 44, 1671–1680. [Google Scholar] [CrossRef]
- Pan, J.; Zang, Y. LINC00667 Promotes Progression of Esophageal Cancer Cells by Regulating miR-200b-3p/SLC2A3 Axis. Dig. Dis. Sci. 2022, 67, 2936–2947. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Liu, X.; Li, Z.; Wang, G.; Feng, Z.; Liu, Y.; Yang, H.; Tan, C.; Zhang, Z.; Li, K. LncRNA LINC00667 Aggravates the Progression of Hepatocellular Carcinoma by Regulating Androgen Receptor Expression as a miRNA-130a-3p Sponge. Cell Death Discov. 2021, 7, 387. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Dong, J.; Zhao, Z.; Li, J.; Cai, X. LncRNA LINC00668 Promotes the Progression of Breast Cancer by Inhibiting Apoptosis and Accelerating Cell Cycle. Onco Targets Ther. 2019, 12, 5615–5625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Yin, D.; Han, L.; He, X.; Si, X.; Chen, W.; Xia, R.; Xu, T.; Gu, D.; De, W.; et al. E2F1-Induced Upregulation of Long Noncoding RNA LINC00668 Predicts a Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation through Epigenetically Silencing of CKIs. Oncotarget 2016, 7, 23212–23226. [Google Scholar] [CrossRef] [PubMed]
- An, Y.-X.; Shang, Y.-J.; Xu, Z.-W.; Zhang, Q.-C.; Wang, Z.; Xuan, W.-X.; Zhang, X.-J. STAT3-Induced Long Noncoding RNA LINC00668 Promotes Migration and Invasion of Non-Small Cell Lung Cancer via the miR-193a/KLF7 Axis. Biomed. Pharmacother. 2019, 116, 109023. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, J.; Li, J.; Duan, Y.; Wang, K.; Kong, Q.; Zhang, H. LINC01255 Combined with BMI1 to Regulate Human Mesenchymal Stromal Senescence and Acute Myeloid Leukemia Cell Proliferation through Repressing Transcription of MCP-1. Clin. Transl. Oncol. 2021, 23, 1105–1116. [Google Scholar] [CrossRef]
- Qiao, D.; Qin, X.; Yang, H.; Liu, X.; Liu, L.; Liu, S.; Jia, Z. Estradiol Mediates the Interaction of LINC01541 and miR-429 to Promote Angiogenesis of G1/G2 Endometrioid Adenocarcinoma in-Vitro: A Pilot Study. Front. Oncol. 2022, 12, 951573. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, F.; Hu, L.; Zhang, F.; Wang, J.; Huang, K.; Wang, Y. lncRNA RP11-838N2.3 Promoted Cisplatin Resistance in Lung Adenocarcinoma. BioMed. Res. Int. 2020, 2020, 2806042. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, S.; Liu, D.; Zhou, J. LINC01915 Facilitates the Conversion of Normal Fibroblasts into Cancer-Associated Fibroblasts Induced by Colorectal Cancer-Derived Extracellular Vesicles through the miR-92a-3p/KLF4/CH25H Axis. ACS Biomater. Sci. Eng. 2021, 7, 5255–5268. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Deng, W.; Fu, F.; Yan, S.; Yang, H.; Liu, R.; Geng, J.; Xu, J.; Wu, Y.; et al. Viral Integration in BK Polyomavirus-Associated Urothelial Carcinoma in Renal Transplant Recipients: Multistage Carcinogenesis Revealed by next-Generation Virome Capture Sequencing. Oncogene 2020, 39, 5734–5742. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Pang, M.; Du, Y.; Yu, X.; Yuan, J.; Liu, W.; Wang, L.; Liu, X. The LINC01929/miR-6875-5p/ADAMTS12 Axis in the ceRNA Network Regulates the Development of Advanced Bladder Cancer. Front. Oncol. 2022, 12, 856560. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Wang, H.; Wang, S.; Liu, F. Long Non-Coding RNA LINC01929 Facilitates Cell Proliferation and Metastasis as a Competing Endogenous RNA Against MicroRNA miR-1179 in Non-Small Cell Lung Carcinoma. Br. J. Biomed. Sci. 2022, 79, 10598. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zheng, J.; Li, R.; Tian, Y.; Lin, J.; Liang, Y.; Sun, Q.; Xu, A.; Zheng, R.; Liu, M.; et al. Long Noncoding RNA LINC02582 Acts Downstream of miR-200c to Promote Radioresistance through CHK1 in Breast Cancer Cells. Cell Death Dis. 2019, 10, 764. [Google Scholar] [CrossRef]
- Rappaport, N.; Twik, M.; Plaschkes, I.; Nudel, R.; Iny Stein, T.; Levitt, J.; Gershoni, M.; Morrey, C.P.; Safran, M.; Lancet, D. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017, 45, D877–D887. [Google Scholar] [CrossRef]
- Ogris, C.; Castresana-Aguirre, M.; Sonnhammer, E.L.L. PathwAX II: Network-based pathway analysis with interactive visualization of network crosstalk. Bioinformatics 2022, 38, 2659–2660. [Google Scholar] [CrossRef] [PubMed]
- Sundfeld, D.; Havgaard, J.H.; de Melo, A.C.; Gorodkin, J. Foldalign 2.5: Multithreaded implementation for pairwise structural RNA alignment. Bioinformatics 2016, 32, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnaiah, Y.; Morris, A.P.; Dhaliwal, J.; Philip, M.; Kuhlmann, L.; Tyagi, S. Linc2function: A Comprehensive Pipeline and Webserver for Long Non-Coding RNA (lncRNA) Identification and Functional Predictions Using Deep Learning Approaches. Epigenomes 2023, 7, 22. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Reuter, J.S.; Mathews, D.H. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinform. 2010, 11, 129. [Google Scholar] [CrossRef]
- RNAcentral Consortium. RNAcentral 2021: Secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021, 49, D212–D220. [Google Scholar] [CrossRef] [PubMed]
Changes in Gene Expression (log2FC) * | Tumor Tissue | microRNA Expression (log2FC) ** |
---|---|---|
LINC00667 (2.9), (↓) | UCEC | miR-429-3p (5.3), (↑); miR-34a-5p (1.5), (↑); miR-877-5p (3.7), (↑); miR-142-5p (2.3), (↑); miR-183-5p (6.6), (↑); miR-106a-5p (3.4), (↑); miR-19a-3p (2.0), (↑); miR-3934-5p (2.8), (↑); miR-93-5p (2.4), (↑); miR-106b-5p (2.2), (↑); miR-17-5p (2.4), (↑); miR-454-3p (1.5), (↑); miR-3016-3p (3.2), (↑) |
LINC00668 (3.1), (↑) | STAD | miR-204-5p (2.0), (↓) |
LINC00668 (1.6), (↑) | READ | miR-236-3p (1.2), (↓) |
LINC01539 (1.8), (↓) | THCA | miR-34a-5p (2.0), (↑) |
Functional Terms, ID * | Proteins |
---|---|
mRNA surveillance pathway, hsa03015 | CSTF2T, NCBP2, UPF1, WDR33 |
Metabolism of RNA, R-HSA-8953854 | CSTF2T, FBL, FUS, HNRNPU, IGF2BP1, IGF2BP3, LSM11, NCBP2, POLR2A, PRPF8, U2AF1, UPF1, WDR33 |
mRNA processing, WP411 | CSTF2T, FUS, HNRNPU, NCBP2, POLR2A, PRPF8, U2AF1 |
Regulation of gene expression, epigenetic, GO:0040029 | AGO1, CTCF, ESR1, HNRNPU, MOV10, POLR2A, POU5F1, UPF1 |
RNA splicing, GO:0008380 | CSTF2T, FUS, HNRNPU, NCBP2, POLR2A, PPIG, PRPF8, QKI, RBM10, TIA1, WDR33 |
Post-transcriptional regulation of gene expression, GO:0010608 | AGO1, DDX3X, DHX36, ESR1, HNRNPU, IGF2BP1, IGF2BP3, MOV10, NCBP2, POLR2A, POU5F1, QKI, RBM10, TIA1, UPF1 |
Epithelial cancers, PA447242 | AR, ESR1, EWSR1, FOXA1, IGF2BP3, POU5F1, SOX2 |
Urogenital neoplasms, PA445995 | AR, ESR1, FOXA1, IGF2BP3, POU5F1, SMARCA4, SOX2 |
Adenocarcinoma, PA443265 | ESR1, FOXA1, HNF4A, IGF2BP3, POU5F1, SOX2 |
RNA-Seq Data | |||
---|---|---|---|
Genes | Cancer Type | Survival | Description |
LINC01443, LINC01538, LINC01910, LINC01916, LINC01925, LINC01929 | PAAD * | OS ** | Upper quartile survival: low and high expression cohorts—19.73 and 9.27 months, respectively; HR *** = 2.45 (1.51–4), p-value = 0.0002; FDR = 2%; follow-up threshold = 24 months. Cancer specificity: absolute |
LINC01416, LINC01544, LINC01900, LINC01910, LINC01922, LINC01926, LINC02565 | STAD | PFS | Median survival: low and high expression cohorts—(no data); HR = 3.47 (1.72–6.98), p-value = 0.0002; FDR = 2%; follow-up threshold = 24 months. Cancer specificity: absolute |
LINC01443, LINC01478, LINC01900, LINC01899, LINC01538, LINC01541 | HNSC | PFS | Median survival: low and high expression cohorts—(no data); HR = 0.2 (0.09–0.48), p-value = 0.00004; FDR = 1%; follow-up threshold = 24 months. Cancer specificity: absolute |
LINC00305, LINC01254, LINC01387, LINC01477 | LIHC | OS | Upper quartile survival: low and high expression cohorts—11.47 and 23.7 months, respectively; HR = 0.48 (0.33–0.7), p-value = 0.00008; FDR = 1%; follow-up threshold = 48 months. Cancer specificity: absolute |
LINC01478, LINC01538, LINC01539, LINC01541 | LIHC | OS | Upper quartile survival: low and high expression cohorts—12.17 and 25.6 months, respectively; HR = 0.44 (0.3–0.65), p-value = 0.00005; FDR = 1%; follow-up threshold = 36 months. Cancer specificity: absolute |
Gene chip data | |||
LINC00470, LINC00907, LINC01477 | COAD | PPS | Median survival: low and high expression cohorts—(no data); HR = 5.87 (1.97–17.5), p-value = 0.00032; FDR = 2%; follow-up threshold = 24 months. |
LINC01539, LINC01541 | STAD | PPS | Median survival: low and high expression cohorts—21 and 8.5 months, respectively; HR = 1.94 (1.47–2.55), p-value = 0.0000018; FDR = 1%; follow-up threshold = 36 months. |
Genes | Description | References |
---|---|---|
LINC00305 | LINC00305 exhibits an upregulated expression in gastric cancer and regulates the Wnt/β-catenin signaling pathway to promote cell proliferation and inhibit apoptosis. | [70] |
LINC00470 | LINC00470 is associated with PTEN mRNA and suppresses its stability through interaction with methyltransferase 3. | [71] |
LINC00470 directly interacts with FUS RNA-binding protein, serving as an AKT activator to promote glioblastoma progression. | [72] | |
Functional studies show that knockdown of LINC00470 expression inhibits hepatocellular carcinoma cell proliferation and cell cycle progression, while overexpression of LINC00470 shows the opposite effects. | [73] | |
LINC00526 | Silencing the expression of LINC00526 inhibits glioma cell growth and invasion. LINC00526 functions as a sponge for miR-5581-3p to regulate brain-expressed X-linked 1 (BEX1) expression. | [74] |
LINC00667 | LINC00667 knockdown significantly inhibits colorectal cancer cell growth and migration. YY1 transcription factor induces the upregulation of LINC00667, and miR-449b-5p interacts with LINC00667. | [75] |
LINC00667, acting as a tumor promoter, recruits eukaryotic translation initiation factor 4A3 (EIF4A3) to stabilize vascular endothelial growth factor A (VEGFA) mRNA for modulation of non-small cell lung cancer (NSCLC) progression. | [76] | |
LINC00667 plays a critical role in metastatic esophageal cancer by mediating the sponge regulatory axis miR-200b-3p/SLC2A3 (glucose transporter). | [77] | |
LINC00667 is a molecular sponge in the miR-130s-3p/AR (androgen receptor) signal pathway in the progression of hepatocellular carcinoma, in which it relieves the repressive function of miR-130a-3p on the AR expression. | [78] | |
LINC00668 | LINC00668 is highly expressed in breast cancer (BC) tissues and can promote the progression of BC by inhibiting apoptosis and accelerating cell cycle progression. | [79] |
Transcription factor E2F1-activated LINC00668 enriches the mechanistic link between lncRNA and the E2F1-mediated cell cycle regulation pathway and may serve as a target for new therapies in gastric cancer. | [80] | |
STAT3-induced LINC00668 contributes to NSCLC progression through upregulating Krüppel-Like Factor 7 (KLF7) expression by sponging miR-193a and may serve as a potential target for therapies. | [81] | |
LINC01255 | LINC01255 can interact with proto-oncogene BMI1 and repress the transcription of MCP-1 (C-C motif chemokine ligand 2) to active the p53–p21 pathway, thus inhibiting the senescence of human mesenchymal stromal cells and proliferation of acute myeloid leukemia cells. | [82] |
LINC01541 | Estradiol promotes the synthesis of VEGFA by altering the expression levels of LINC01541 and miR-429, thereby affecting the angiogenesis process of endometrioid adenocarcinoma. | [83] |
LINC01895 | LINC01895 overexpression enhances cell proliferation, migration, and invasion, and inhibition of cell apoptosis. Results obtained illustrate the role of LINC01895 in cisplatin resistance of lung adenocarcinoma, suggesting the potential of LINC01895 as a new therapeutic target. | [84] |
LINC01915 | LINC01915 inhibits the normal fibroblast uptake of colorectal cancer-derived extracellular vesicles via the miR-92a-3p/KLF4/CH25H axis, thus preventing tumor growth. | [85] |
LINC01924 | For BK polyomavirus, there are three consensus integration sites between the primary and metastatic tumors, which affect LINC01924. | [86] |
LINC01929 | Overexpression of LINC01929 promotes bladder cancer development, while overexpression of miR-6785-5p inhibits bladder cancer development. LINC01929 acts as a sponge for miR-6785-5p and partially reverses the role of miR-6785-5p. | [87] |
LINC01929 is upregulated in NSCLC tissues and cell lines and associated with later clinical stages. Downregulation of LINC01929 inhibits cellular proliferation, migration, and invasion by targeting miR-1179. | [88] | |
LINC02582 | LINC02582 is a downstream target of miR-200c linking miR-200c to CHK1, and miR-200c increases radio-sensitivity by downregulation of CHK1. Overexpression of LINC02582 promotes radio-resistance of cancer cells. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershov, P.V.; Yablokov, E.O.; Mezentsev, Y.V.; Ivanov, A.S. Long Intergenic Non-Coding RNAs of Human Chromosome 18: Focus on Cancers. Biomedicines 2024, 12, 544. https://doi.org/10.3390/biomedicines12030544
Ershov PV, Yablokov EO, Mezentsev YV, Ivanov AS. Long Intergenic Non-Coding RNAs of Human Chromosome 18: Focus on Cancers. Biomedicines. 2024; 12(3):544. https://doi.org/10.3390/biomedicines12030544
Chicago/Turabian StyleErshov, Pavel V., Evgeniy O. Yablokov, Yuri V. Mezentsev, and Alexis S. Ivanov. 2024. "Long Intergenic Non-Coding RNAs of Human Chromosome 18: Focus on Cancers" Biomedicines 12, no. 3: 544. https://doi.org/10.3390/biomedicines12030544
APA StyleErshov, P. V., Yablokov, E. O., Mezentsev, Y. V., & Ivanov, A. S. (2024). Long Intergenic Non-Coding RNAs of Human Chromosome 18: Focus on Cancers. Biomedicines, 12(3), 544. https://doi.org/10.3390/biomedicines12030544