Approaching Personalized Medicine: The Use of Machine Learning to Determine Predictors of Mortality in a Population with SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Method
2.1. Data Source and Description
2.2. Machine Learning Methods
2.3. Performance Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Situation by Region, Country, Territory & Area [Internet]. WHO Coronavirus COVID-19 Dashboard. Available online: https://covid19.who.int/table (accessed on 3 October 2023).
- Cheong, K.H.; Jones, M.C. Introducing the 21st Century’s New Four Horsemen of the Coronapocalypse. BioEssays 2020, 42, 2000063. [Google Scholar] [CrossRef]
- Both, L.M.; Zoratto, G.; Calegaro, V.C.; Ramos-Lima, L.F.; Negretto, B.L.; Hauck, S.; Freitas, L.H.M. COVID-19 Pandemic and Social Distancing: Economic, Psychological, Family, and Technological Effects. Trends Psychiatry Psychotherapy [Internet]. 2021. Available online: https://www.scielo.br/j/trends/a/cZNsN9kYFmd5ZNsgtk4dnYm/?lang=en (accessed on 3 October 2023).
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Legido-Quigley, H.; Mateos-García, J.T.; Campos, V.R.; Gea-Sánchez, M.; Muntaner, C.; McKee, M. The resilience of the Spanish health system against the COVID-19 pandemic. Lancet Public Health 2020, 5, e251–e252. [Google Scholar] [CrossRef] [PubMed]
- Ochoa Sangrador, C.; Garmendia Leiza, J.R.; Pérez Boillos, M.J.; Pastrana Ara, F.; Lorenzo Lobato, M.D.P.; Andrés de Llano, J.M. Impacto de la COVID-19 en la mortalidad de la comunidad autónoma de Castilla y León. Gac. Sanit. 2021, 35, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Asha, K.S.; Singh, V.; Singi, Y.; Ranjan, R. The Association of Hematological and Biochemical Parameters with Mortality among COVID-19 Patients: A Retrospective Study from North India. Cureus [Internet]. 2022. Available online: https://www.cureus.com/articles/98268-the-association-of-hematological-and-biochemical-parameters-with-mortality-among-covid-19-patients-a-retrospective-study-from-north-india (accessed on 13 December 2023).
- Bukreieva, T.; Svitina, H.; Nikulina, V.; Vega, A.; Chybisov, O.; Shablii, I.; Ustymenko, A.; Nemtinov, P.; Lobyntseva, G.; Skrypkina, I.; et al. Treatment of Acute Respiratory Distress Syndrome Caused by COVID-19 with Human Umbilical Cord Mesenchymal Stem Cells. Int. J. Mol. Sci. 2023, 24, 4435. [Google Scholar] [CrossRef] [PubMed]
- Pius-Sadowska, E.; Kulig, P.; Niedźwiedź, A.; Baumert, B.; Łuczkowska, K.; Rogińska, D.; Sobuś, A.; Ulańczyk, Z.; Kawa, M.; Paczkowska, E.; et al. VEGFR and DPP-IV as Markers of Severe COVID-19 and Predictors of ICU Admission. Int. J. Mol. Sci. 2023, 24, 17003. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kanwar, B.; Khattak, A.; Balentine, J.; Nguyen, N.H.; Kast, R.E.; Lee, C.J.; Bourbeau, J.; Altschuler, E.L.; Sergi, C.M.; et al. COVID-19 Molecular Pathophysiology: Acetylation of Repurposing Drugs. Int. J. Mol. Sci. 2022, 23, 13260. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.G.D.S.; Schor, P. Machine learning in image analysis in ophthalmology. Einstein São Paulo 2021, 19, eED6860. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, W.P.; Conti, V.; Gambino, O.; Naik, G.R. Editorial: Machine learning and applied neuroscience. Front. Neurorobot. 2023, 17, 1191045. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Goto, T.; Fujiogi, M.; Lefor, A.K. Machine learning in gastrointestinal surgery. Surg. Today 2022, 52, 995–1007. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Elsevier: Burlington, MA, USA, 2012. [Google Scholar]
- Suárez, M.; Martínez, R.; Torres, A.M.; Ramón, A.; Blasco, P.; Mateo, J. Personalized Risk Assessment of Hepatic Fibrosis after Cholecystectomy in Metabolic-Associated Steatotic Liver Disease: A Machine Learning Approach. J. Clin. Med. 2023, 12, 6489. [Google Scholar] [CrossRef] [PubMed]
- Usategui, I.; Barbado, J.; Torres, A.M.; Cascón, J.; Mateo, J. Machine learning, a new tool for the detection of immunodeficiency patterns in systemic lupus erythematosus. J. Investig. Med. 2023, 71, 742–752. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, T.; Shao, L.; Li, X.; He, C.K.; Jamal, M.; Luo, Y.; Wang, Y.; Liu, Y.; Shang, Y.; et al. Novel biomarkers for the prediction of COVID-19 progression a retrospective, multi-center cohort study. Virulence 2020, 11, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, M.; Pham, T.-M.; Wang, K.; Usman, H.; Norris, C.M.; MacDonald, J.; Oudit, G.Y.; Saini, V.; Sikdar, K.C. Predicting the Risk Factors Associated with Severe Outcomes among COVID-19 Patients–Decision Tree Modeling Approach. Front. Public Health 2022, 10, 838514. [Google Scholar] [CrossRef]
- Nieto-Codesido, I.; Calvo-Alvarez, U.; Diego, C.; Hammouri, Z.; Mallah, N.; Ginzo-Villamayor, M.J.; Salgado, F.J.; Carreira, J.M.; Rábade, C.; Barbeito, G.; et al. Risk Factors of Mortality in Hospitalized Patients with COVID-19 Applying a Machine Learning Algorithm. Open Respir. Arch. 2022, 4, 100162. [Google Scholar] [CrossRef] [PubMed]
- Styrzynski, F.; Zhakparov, D.; Schmid, M.; Roqueiro, D.; Lukasik, Z.; Solek, J.; Nowicki, J.; Dobrogowski, M.; Makowska, J.; Sokolowska, M.; et al. Machine Learning Successfully Detects Patients with COVID-19 Prior to PCR Results and Predicts Their Survival Based on Standard Laboratory Parameters in an Observational Study. Infect. Dis. Ther. 2023, 12, 111–129. [Google Scholar] [CrossRef]
- Banoei, M.M.; Rafiepoor, H.; Zendehdel, K.; Seyyedsalehi, M.S.; Nahvijou, A.; Allameh, F.; Amanpour, S. Unraveling complex relationships between COVID-19 risk factors using machine learning based models for predicting mortality of hospitalized patients and identification of high-risk group: A large retrospective study. Front. Med. 2023, 10, 1170331. [Google Scholar] [CrossRef]
- Izquierdo, J.L.; Ancochea, J.; Savana COVID-19 Research Group; Soriano, J.B. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients with COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing. J. Med. Internet Res. 2020, 22, e21801. [Google Scholar] [CrossRef]
- Pal, M.; Parija, S.; Mohapatra, R.K.; Mishra, S.; Rabaan, A.A.; Al Mutair, A.; Alhumaid, S.; Al-Tawfiq, J.A.; Dhama, K. Symptom-Based COVID-19 Prognosis through AI-Based IoT: A Bioinformatics Approach. BioMed Res. Int. 2022, 2022, 3113119. [Google Scholar] [CrossRef]
- Montomoli, J.; Romeo, L.; Moccia, S.; Bernardini, M.; Migliorelli, L.; Berardini, D.; Donati, A.; Carsetti, A.; Bocci, M.G.; Garcia, P.D.W.; et al. Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients. J. Intensive Med. 2021, 1, 110–116. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Ontivero-Ortega, M.; Lage-Castellanos, A.; Valente, G.; Goebel, R.; Valdes-Sosa, M. Fast Gaussian Naïve Bayes for searchlight classification analysis. NeuroImage 2017, 163, 471–479. [Google Scholar] [CrossRef]
- Mu, J.; Dai, L.; Liu, J.-X.; Shang, J.; Xu, F.; Liu, X.; Yuan, S. Automatic detection for epileptic seizure using graph-regularized nonnegative matrix factorization and Bayesian linear discriminate analysis. Biocybern. Biomed. Eng. 2021, 41, 1258–1271. [Google Scholar] [CrossRef]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Torner, N. The end of COVID-19 public health emergency of international concern (PHEIC): And now what? Vacunas Engl. Ed. 2023, 24, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Alharbi, O.M.L. COVID-19: Disease, management, treatment, and social impact. Sci. Total Environ. 2020, 728, 138861. [Google Scholar] [CrossRef]
- Lai, J.W.; Cheong, K.H. Superposition of COVID-19 waves, anticipating a sustained wave, and lessons for the future. BioEssays 2020, 42, 2000178. [Google Scholar] [CrossRef] [PubMed]
- Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017, 4, 159–169. [Google Scholar] [CrossRef]
- Yang, F.; Peng, C.; Peng, L.; Wang, J.; Li, Y.; Li, W. A Machine Learning Approach for the Prediction of Traumatic Brain Injury Induced Coagulopathy. Front. Med. 2021, 8, 792689. [Google Scholar] [CrossRef]
- Escobar-Ipuz, F.A.; Torres, A.M.; García-Jiménez, M.A.; Basar, C.; Cascón, J.; Mateo, J. Prediction of patients with idiopathic generalized epilepsy from healthy controls using machine learning from scalp EEG recordings. Brain Res. 2023, 1798, 148131. [Google Scholar] [CrossRef]
- Kushwaha, S.; Srivastava, R.; Jain, R.; Sagar, V.; Aggarwal, A.K.; Bhadada, S.K.; Khanna, P. Harnessing machine learning models for non-invasive pre-diabetes screening in children and adolescents. Comput. Methods Programs Biomed. 2022, 226, 107180. [Google Scholar] [CrossRef]
- Wei, H.; Wu, C.; Yuan, Y.; Lai, L. Uncovering the Achilles heel of genetic heterogeneity: Machine learning-based classification and immunological properties of necroptosis clusters in Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1249682. [Google Scholar] [CrossRef]
- Khan, Y.F.; Kaushik, B.; Chowdhary, C.L.; Srivastava, G. Ensemble Model for Diagnostic Classification of Alzheimer’s Disease Based on Brain Anatomical Magnetic Resonance Imaging. Diagnostics 2022, 12, 3193. [Google Scholar] [CrossRef]
- Cai, Q.; Yuan, R.; He, J.; Li, M.; Guo, Y. Predicting HIV drug resistance using weighted machine learning method at target protein sequence-level. Mol. Divers. 2021, 25, 1541–1551. [Google Scholar] [CrossRef]
- Ridgway, J.P.; Ajith, A.; Friedman, E.E.; Mugavero, M.J.; Kitahata, M.M.; Crane, H.M.; Moore, R.D.; Webel, A.; Cachay, E.R.; Christopoulos, K.A.; et al. Multicenter Development and Validation of a Model for Predicting Retention in Care among People with HIV. AIDS Behav. 2022, 26, 3279–3288. [Google Scholar] [CrossRef] [PubMed]
- González-Castro, L.; Chávez, M.; Duflot, P.; Bleret, V.; Martin, A.G.; Zobel, M.; Nateqi, J.; Lin, S.; Pazos-Arias, J.J.; Del Fiol, G.; et al. Machine Learning Algorithms to Predict Breast Cancer Recurrence Using Structured and Unstructured Sources from Electronic Health Records. Cancers 2023, 15, 2741. [Google Scholar] [CrossRef] [PubMed]
- Rafid, A.K.M.R.H.; Azam, S.; Montaha, S.; Karim, A.; Fahim, K.U.; Hasan, Z. An Effective Ensemble Machine Learning Approach to Classify Breast Cancer Based on Feature Selection and Lesion Segmentation Using Preprocessed Mammograms. Biology 2022, 11, 1654. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, K.; Huang, Z.; Huang, X.; Wang, Z.; He, F.; Qin, M.; Long, C.; Tang, B.; Mo, X.; et al. Identification of intestinal microbiome associated with lymph-vascular invasion in colorectal cancer patients and predictive label construction. Front. Cell Infect. Microbiol. 2023, 13, 1098310. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, S.; Mou, Z.; Wen, J.Y.; Wei, H.; Zou, J.; Li, Q.; Liu, Z.; Xu, S.; Kang, M.; et al. Prediction model of ocular metastasis from primary liver cancer: Machine learning-based development and interpretation study. Cancer Med. 2023, 12, cam4.6540. [Google Scholar] [CrossRef]
- Zheng, Q.; Jiang, Z.; Ni, X.; Yang, S.; Jiao, P.; Wu, J.; Xiong, L.; Yuan, J.; Wang, J.; Jian, J.; et al. Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer. Int. J. Mol. Sci. 2023, 24, 2746. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, W.; Yao, J.; Nicholson, C.J.; Li, R.H.; Sigurslid, H.H.; Wooster, L.; Rotter, J.I.; Guo, X.; Malhotra, R. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Med. Virol. 2020, 92, 1875–1883. [Google Scholar] [CrossRef]
- Satici, M.O.; Islam, M.M.; Satici, C.; Uygun, C.N.; Ademoglu, E.; Altunok, I.; Aksel, G.; Eroglu, S.E. The role of a noninvasive index ‘Spo2/Fio2’ in predicting mortality among patients with COVID-19 pneumonia. Am. J. Emerg. Med. 2022, 57, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Carson-Chahhoud, K.; Kolahi, A.A.; Safiri, S. Epidemiology, prognosis and management of potassium disorders in COVID-19. Rev. Med. Virol. 2022, 32, e2262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ruan, H.; Sheng, Z.; Sun, X.; Li, S.; Cui, W.; Li, C. Nanoantidote for repression of acidosis pH promoting COVID-19 infection. View 2022, 3, 20220004. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yuan, N.; Huang, Z.; Hu, Z.; Bao, Q.; Shao, Z.; Mei, Q.; Xu, Y.; Wang, W.; Liu, D.; et al. Assessment of hypokalemia and clinical prognosis in Patients with COVID-19 in Yangzhou, China. PLoS ONE 2022, 17, e0271132. [Google Scholar] [CrossRef] [PubMed]
- Nahkuri, S.; Becker, T.; Schueller, V.; Massberg, S.; Bauer-Mehren, A. Prior fluid and electrolyte imbalance is associated with COVID-19 mortality. Commun. Med. 2021, 1, 51. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Di Gioacchino, M.; Greco, M.; Borro, M.; Paladin, F.; Petrarca, C.; Gangemi, S. Basophils and Mast Cells in COVID-19 Pathogenesis. Cells 2021, 10, 2754. [Google Scholar] [CrossRef] [PubMed]
- Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for COVID-19 severity and fatality: A structured literature review. Infection 2021, 49, 15–28. [Google Scholar] [CrossRef]
- Lee, L.Y.; Cazier, J.-B.; Angelis, V.; Arnold, R.; Bisht, V.; Campton, N.A.; Chackathayil, J.; Cheng, V.W.T.; Curley, H.M.; Fittall, M.W.T.; et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet 2020, 395, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Gupta, R.; Advani, S.; Ouellette, L.; Kuderer, N.M.; Lyman, G.H.; Li, A. Mortality in hospitalized patients with cancer and coronavirus disease 2019: A systematic review and meta-analysis of cohort studies. Cancer 2021, 127, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Kaliszewski, K.; Diakowska, D.; Nowak, Ł.; Tokarczyk, U.; Sroczyński, M.; Sępek, M.; Dudek, A.; Sutkowska-Stępień, K.; Kilis-Pstrusinska, K.; Matera-Witkiewicz, A.; et al. Assessment of Gastrointestinal Symptoms and Dyspnea in Patients Hospitalized due to COVID-19: Contribution to Clinical Course and Mortality. J. Clin. Med. 2022, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Marcon, G.; Accardi, G.; Aiello, A.; Calabrò, A.; Ligotti, M.E.; Tettamanti, M.; Franceschi, C.; Candore, G. Role of Sex and Age in Fatal Outcomes of COVID-19: Women and Older Centenarians Are More Resilient. Int. J. Mol. Sci. 2023, 24, 2638. [Google Scholar] [CrossRef]
- Ho, F.K.; Petermann-Rocha, F.; Gray, S.R.; Jani, B.D.; Katikireddi, S.V.; Niedzwiedz, C.L.; Foster, H.; Hastie, C.E.; Mackay, D.F.; Gill, J.M.R.; et al. Is older age associated with COVID-19 mortality in the absence of other risk factors? General population cohort study of 470,034 participants. PLoS ONE 2020, 15, e0241824. [Google Scholar] [CrossRef]
Global (291 Patients) | Alive (231 Patients) | Deceased (60 Patients) | |||||
---|---|---|---|---|---|---|---|
(n) | (% Total) | (n) | (% Total) | (n) | (% Total) | ||
Sex | Men | 156 | 54 | 121 | 42 | 35 | 11 |
Women | 135 | 46 | 110 | 38 | 25 | 9 | |
Smoking | 8 | 3 | 7 | 2 | 1 | 0 | |
Drinking | 2 | 1 | 1 | 0 | 1 | 0 | |
Diabetes mellitus | 56 | 19 | 45 | 15 | 11 | 4 | |
Hypertension | 128 | 44 | 97 | 33 | 31 | 11 | |
Dyslipidemia | 104 | 36 | 88 | 30 | 16 | 5 | |
Asthma | 26 | 9 | 23 | 8 | 3 | 1 | |
Other chronic lung diseases | 25 | 9 | 18 | 6 | 7 | 2 | |
Congestive heart failure | 77 | 26 | 53 | 18 | 24 | 8 | |
Overweight/Obesity | 28 | 10 | 24 | 8 | 4 | 1 | |
Active tumors | 18 | 6 | 13 | 4 | 5 | 2 | |
Other relevant pathologies | 8 | 3 | 8 | 3 | 0 | 0 | |
Immunosuppressive chronic treatment | 10 | 3 | 8 | 3 | 2 | 1 | |
Biological chronic treatment | 1 | 0 | 1 | 0 | 0 | 0 | |
Other relevant chronic treatments | 198 | 68 | 156 | 54 | 42 | 14 | |
Need of ICU admission | 65 | 22 | 59 | 20 | 6 | 2 | |
Cough | 181 | 62 | 141 | 48 | 40 | 14 | |
Sputum | 35 | 12 | 27 | 9 | 8 | 3 | |
Dyspnea | 157 | 54 | 129 | 44 | 28 | 10 | |
Loss of smell (anosmia) | 14 | 5 | 11 | 4 | 3 | 1 | |
Loss of taste (ageusia) | 20 | 7 | 17 | 6 | 3 | 1 | |
Nausea | 22 | 8 | 17 | 6 | 5 | 2 | |
Vomiting | 19 | 7 | 15 | 5 | 4 | 1 | |
Diarrhea | 51 | 18 | 41 | 14 | 10 | 3 | |
Asthenia | 104 | 36 | 87 | 30 | 17 | 6 | |
Dizziness | 9 | 3 | 7 | 2 | 2 | 1 | |
Myalgia | 39 | 13 | 29 | 10 | 10 | 3 |
MEAN ± SEM | |||
---|---|---|---|
Global (291 Patients) | Alive (231 Patients) | Deceased (60 Patients) | |
Age | 67.1 ± 1 | 64.5 ± 1.1 | 77.13 ± 1.5 |
Temperature (°C) | 36.9 ± 0.1 | 36.9 ± 0.1 | 36.18 ± 0.7 |
Leucocytes (×103 µL) | 6.2 ± 0.1 | 6.7 ± 0.2 | 9.5 ± 2 |
Neutrophils (×103 µL) | 4.6 ± 0.1 | 5 ± 0.2 | 6.5 ± 0.6 |
Lymphocytes (×103 µL) | 1.02 ± 0.09 | 1.10 ± 0.11 | 0.73 ± 0.05 |
Monocytes (×103 µL) | 0.51 ± 0.02 | 0.53 ± 0.02 | 0.45 ± 0.04 |
Eosinophils (×103 µL) | 0.009 ± 0.002 | 0.009 ± 0.002 | 0.007 ± 0.004 |
Basophils (×103 µL) | 0.014 ± 0.002 | 0.013 ± 0.002 | 0.016 ± 0.005 |
Erythrocytes (×106 µL) | 4.7 ± 0 | 5 ± 0.2 | 4.6 ± 0.1 |
Hemoglobin (g/dL) | 13.8 ± 0.1 | 13.8 ± 0.1 | 13.3 ± 0.2 |
Hematocrit (%) | 41.5 ± 0.3 | 41.8 ± 0.3 | 40.5 ± 0.7 |
V.C.M. (fL) | 88.3 ± 0.3 | 88.1 ± 0.3 | 88.8 ± 0.9 |
Platelets (×103 µL) | 183 ± 4.1 | 191.8 ± 5.5 | 181.9 ± 10 |
D-dimer (ng/mL) | 459 ± 16.9 | 647.4 ± 69.1 | 1403 ± 610.6 |
Prothrombin activity (TP) (%) | 84.7 ± 0.9 | 83 ± 1.2 | 79.3 ± 3.4 |
Ratio (TP) | 1.1 ± 0 | 1.2 ± 0 | 1.6 ± 0.2 |
I.N.R. | 1.1 ± 0 | 1.2 ± 0 | 1.5 ± 0.2 |
Patient (TTPA) (s) | 31.7 ± 0.2 | 32.8 ± 0.5 | 33.9 ± 1.2 |
Ratio (TTPA) | 1.05 ± 0.01 | 1.04 ± 0.01 | 1.09 ± 0.01 |
Fibrinogen (Derived) (mg/dL) | 699 ± 10.2 | 698.1 ± 11.5 | 703.7 ± 22.1 |
Sodium (mmol/L) | 135 ± 0.2 | 134.6 ± 0.7 | 134.5 ± 0.6 |
Potassium (mmol/L) | 3.9 ± 0 | 5.7 ± 1.8 | 4 ± 0.1 |
Chloride (mmol/L) | 99.9 ± 0.3 | 108.5 ± 6.5 | 100.4 ± 1.1 |
Glucose (mg/dL) | 117 ± 1.4 | 126.8 ± 3.6 | 144.9 ± 6.5 |
Urea (mg/dL) | 40.5 ± 1.1 | 44.3 ± 2.4 | 57.9 ± 3.9 |
Creatinine (mg/dL) | 0.9 ± 0 | 1.7 ± 0.5 | 1.2 ± 0.1 |
Estimated glomerular filtrate (CKD-EPI 2009) (mL/min/1.73 m2) | 66.6 ± 1.3 | 69.4 ± 1.5 | 57.7 ± 2.8 |
Alanine aminotransferase (ALT/GPT) (U/L) | 29.7 ± 1 | 39.9 ± 2.2 | 34.9 ± 3.8 |
Aspartate aminotransferase (AST/GOT) (U/L) | 40.3 ± 1.1 | 48.4 ± 2.1 | 60.3 ± 7.2 |
Gammaglutamil transferase (GGT) (U/L) | 101 ± 43.5 | 107.5 ± 66.3 | 88 ± 42 |
Total bilirubin (mg/dL) | 0.6 ± 0 | 0.9 ± 0.3 | 0.7 ± 0 |
Alkaline phosphatase (U/L) | 70.6 ± 15.1 | 66.8 ± 18.8 | 86 ± 0 |
Lactate dehydrogenase (LDH) (U/L) | 348 ± 7.7 | 347 ± 9.4 | 427.4 ± 29.1 |
Phosphate (mg/dL) | 3.2 ± 0.2 | 3.1 ± 0.3 | 3.4 ± 0.4 |
C-reactive protein (mg/dL) | 93 ± 4.5 | 95.9 ± 5.7 | 136.7 ± 14.5 |
Procalcitonin (ng/mL) | 0.1 ± 0 | 0.4 ± 0.1 | 15.3 ± 13.1 |
pH | 7.442 ± 0.003 | 7.446 ± 0.004 | 7.426 ± 0.008 |
FIO2 (%) | 21 ± 0 | 24 ± 1 | 33.8 ± 4.1 |
pO2/FIO2 | 262 ± 7.5 | 270.8 ± 7.9 | 227.4 ± 19.1 |
Lactate (mmol/L) | 1.5 ± 0 | 1.4 ± 0 | 2 ± 0.1 |
Methods | Balanced Accuracy | Precision | MCC | F1 Score | AUC |
---|---|---|---|---|---|
SVM | 87.48 ± 0.65 | 86.85 ± 0.73 | 77.62 ± 0.54 | 87.22 ± 0.65 | 87.34 ± 0.53 |
DT | 86.02 ± 0.54 | 85.40 ± 0.62 | 76.32 ± 0.43 | 85.76 ± 0.55 | 86.25 ± 0.47 |
BLDA | 81.91 ± 0.79 | 81.33 ± 0.82 | 72.68 ± 0.76 | 81.67 ± 0.73 | 81.43 ± 0.76 |
GNB | 78.75 ± 0.64 | 78.19 ± 0.71 | 69.88 ± 0.63 | 78.52 ± 0.66 | 78.35 ± 0.67 |
KNN | 89.44 ± 0.46 | 88.80 ± 0.47 | 79.36 ± 0.43 | 89.17 ± 0.48 | 89.32 ± 0.57 |
XGB | 96.02 ± 0.24 | 95.33 ± 0.26 | 85.20 ± 0.21 | 95.73 ± 0.23 | 96.03 ± 0.25 |
Methods | Recall | Specificity | Kappa | DYI |
---|---|---|---|---|
SVM | 87.58 ± 0.67 | 87.38 ± 0.74 | 77.88 ± 0.56 | 87.48 ± 0.65 |
DT | 86.12 ± 0.56 | 85.91 ± 0.53 | 76.58 ± 0.46 | 86.02 ± 0.54 |
BLDA | 82.01 ± 0.73 | 81.82 ± 0.75 | 72.92 ± 0.67 | 81.91 ± 0.73 |
GNB | 78.84 ± 0.67 | 78.66 ± 0.69 | 70.11 ± 0.65 | 78.75 ± 0.66 |
KNN | 89.55 ± 0.44 | 89.34 ± 0.45 | 79.63 ± 0.42 | 89.44 ± 0.45 |
XGB | 96.13 ± 0.25 | 95.91 ± 0.23 | 85.48 ± 0.22 | 96.02 ± 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queipo, M.; Barbado, J.; Torres, A.M.; Mateo, J. Approaching Personalized Medicine: The Use of Machine Learning to Determine Predictors of Mortality in a Population with SARS-CoV-2 Infection. Biomedicines 2024, 12, 409. https://doi.org/10.3390/biomedicines12020409
Queipo M, Barbado J, Torres AM, Mateo J. Approaching Personalized Medicine: The Use of Machine Learning to Determine Predictors of Mortality in a Population with SARS-CoV-2 Infection. Biomedicines. 2024; 12(2):409. https://doi.org/10.3390/biomedicines12020409
Chicago/Turabian StyleQueipo, Mónica, Julia Barbado, Ana María Torres, and Jorge Mateo. 2024. "Approaching Personalized Medicine: The Use of Machine Learning to Determine Predictors of Mortality in a Population with SARS-CoV-2 Infection" Biomedicines 12, no. 2: 409. https://doi.org/10.3390/biomedicines12020409
APA StyleQueipo, M., Barbado, J., Torres, A. M., & Mateo, J. (2024). Approaching Personalized Medicine: The Use of Machine Learning to Determine Predictors of Mortality in a Population with SARS-CoV-2 Infection. Biomedicines, 12(2), 409. https://doi.org/10.3390/biomedicines12020409