Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale
Abstract
:1. Introduction
2. The Chondrocyte and the Chondron
3. Experimental Methods for the Mechanical Characterisation of the Chondrocyte and Chondron
3.1. Atomic Force Microscopy
3.2. Micropipette Aspiration
3.3. Cytoindentation and Micromanipulation
4. Experimental Results on Chondrocytes and Chondrons
4.1. Influence of the Site and Depth
4.2. Human vs. Animal
5. Factors That May Influence the Experimental Results
5.1. Sample Harvesting Techniques and Culturing
5.2. Influence of the Mechanical Test
5.3. Sample Storage
6. Theoretical Models for Cells Biomechanics
7. Mechanical Role of the Subcomponents
7.1. Mechanical Role of the Cellular Subcomponents
7.2. Mechanical Role of the Major ECM Subcomponents
8. Pathological Changes in Osteoarthritis
9. Correlations between OA and Changes in the Mechanical Properties
9.1. Changes at the Cellular Scale
9.2. Changes at the Chondron Scale
10. Critical Points, Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, T.-W.; Chang, C.-F. Biomechanics of human movement and its clinical applications. Kaohsiung J. Med. Sci. 2012, 28, S13–S25. [Google Scholar] [CrossRef]
- Van Oosterwyck, H.; Geris, L.; García Aznar, J.M. Cell Mechanics and Mechanobiology. In Biomechanics; Doblare, M., Merodio, J., Eds.; Eolss Publishers/UNESCO: Paris, France, 2015; pp. 271–300. ISBN 978-1-78021-523-5. [Google Scholar]
- Huang, H.; Kamm, R.D.; Lee, R.T.; Schilder, R.J.; Kimball, S.R.; Jefferson, L.S.; Shoham, N.; Gottlieb, R.; Sharabani-Yosef, O.; Zaretsky, U.; et al. Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am. J. Physiol. Physiol. 2004, 287, C1–C11. [Google Scholar] [CrossRef]
- Ingber, D.E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 2003, 35, 564–577. [Google Scholar] [CrossRef]
- Pravincumar, P.; Bader, D.L.; Knight, M.M. Viscoelastic Cell Mechanics and Actin Remodelling Are Dependent on the Rate of Applied Pressure. PLoS ONE 2012, 7, e43938. [Google Scholar] [CrossRef] [Green Version]
- Belluzzi, E.; Todros, S.; Pozzuoli, A.; Ruggieri, P.; Carniel, E.L.; Berardo, A. Human Cartilage Biomechanics: Experimental and Theoretical Approaches towards the Identification of Mechanical Properties in Healthy and Osteoarthritic Conditions. Processes 2023, 11, 1014. [Google Scholar] [CrossRef]
- Benninghoff, A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Z. Zellforsch. Mikrosk. Anat. 1925, 2, 783–862. [Google Scholar] [CrossRef]
- Guilak, F.; Alexopoulos, L.G.; Upton, M.L.; Youn, I.; Choi, J.B.; Cao, L.; Setton, L.A.; Haider, M.A. The Pericellular Matrix as a Transducer of Biomechanical and Biochemical Signals in Articular Cartilage. Ann. N. Y. Acad. Sci. 2006, 1068, 498–512. [Google Scholar] [CrossRef]
- Griffin, T.M.; Guilak, F. The Role of Mechanical Loading in the Onset and Progression of Oestoarthritis: Exercise and Sport Sciences Reviews. Exerc. Sport Sci. Rev. 2005, 33, 195–200. [Google Scholar] [CrossRef]
- Grodzinsky, A.J.; Levenston, M.E.; Jin, M.; Frank, E.H. Cartilage Tissue Remodeling in Response to Mechanical Forces. Annu. Rev. Biomed. Eng. 2000, 2, 691–713. [Google Scholar] [CrossRef]
- Morgenroth, D.C.; Gellhorn, A.C.; Suri, P. Osteoarthritis in the Disabled Population: A Mechanical Perspective. PM&R 2012, 4, S20–S27. [Google Scholar] [CrossRef]
- Arduino, A.; Pettenuzzo, S.; Berardo, A.; Salomoni, V.A.; Majorana, C.; Carniel, E.L. A Continuum-Tensegrity Computational Model for Chondrocyte Biomechanics in AFM Indentation and Micropipette Aspiration. Ann. Biomed. Eng. 2022, 50, 1911–1922. [Google Scholar] [CrossRef]
- Masson, A.O.; Krawetz, R.J. Understanding cartilage protection in OA and injury: A spectrum of possibilities. BMC Musculoskelet. Disord. 2020, 21, 432. [Google Scholar] [CrossRef]
- McGlashan, S.R.; Jensen, C.G.; Poole, C.A. Localization of Extracellular Matrix Receptors on the Chondrocyte Primary Cilium. J. Histochem. Cytochem. 2006, 54, 1005–1014. [Google Scholar] [CrossRef] [Green Version]
- Ruhlen, R.; Marberry, K. The chondrocyte primary cilium. Osteoarthr. Cartil. 2014, 22, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.J.; Blain, E.J. Cartilage mechanobiology: How chondrocytes respond to mechanical load. In Mechanobiology in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 99–126. [Google Scholar] [CrossRef]
- Zhang, M.; Meng, N.; Wang, X.; Chen, W.; Zhang, Q. TRPV4 and PIEZO Channels Mediate the Mechanosensing of Chondrocytes to the Biomechanical Microenvironment. Membranes 2022, 12, 237. [Google Scholar] [CrossRef]
- Liu, H.; Hu, J.; Zheng, Q.; Feng, X.; Zhan, F.; Wang, X.; Xu, G.; Hua, F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front. Immunol. 2022, 13, 1–20. [Google Scholar] [CrossRef]
- Emmi, A.; Stocco, E.; Boscolo-Berto, R.; Contran, M.; Belluzzi, E.; Favero, M.; Ramonda, R.; Porzionato, A.; Ruggieri, P.; De Caro, R.; et al. Infrapatellar Fat Pad-Synovial Membrane Anatomo-Fuctional Unit: Microscopic Basis for Piezo1/2 Mechanosensors Involvement in Osteoarthritis Pain. Front. Cell Dev. Biol. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Savadipour, A.; Palmer, D.; Ely, E.V.; Collins, K.H.; Garcia-Castorena, J.M.; Harissa, Z.; Kim, Y.S.; Oestrich, A.; Qu, F.; Rashidi, N.; et al. The role of PIEZO ion channels in the musculoskeletal system. Am. J. Physiol. Physiol. 2023, 324, C728–C740. [Google Scholar] [CrossRef]
- Bhosale, A.M.; Richardson, J.B. Articular cartilage: Structure, injuries and review of management. Br. Med. Bull. 2008, 87, 77–95. [Google Scholar] [CrossRef]
- Goldring, M.B.; Marcu, K.B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 2009, 11, 224. [Google Scholar] [CrossRef] [Green Version]
- Akkiraju, H.; Nohe, A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J. Dev. Biol. 2015, 3, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Vincent, T.L.; McClurg, O.; Troeberg, L. The Extracellular Matrix of Articular Cartilage Controls the Bioavailability of Pericellular Matrix-Bound Growth Factors to Drive Tissue Homeostasis and Repair. Int. J. Mol. Sci. 2022, 23, 6003. [Google Scholar] [CrossRef]
- Allen, D.M.; Mao, J.J. Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy. J. Struct. Biol. 2004, 145, 196–204. [Google Scholar] [CrossRef]
- Guilak, F.; Mow, V.C. The mechanical environment of the chondrocyte: A biphasic finite element model of cell–matrix interactions in articular cartilage. J. Biomech. 2000, 33, 1663–1673. [Google Scholar] [CrossRef]
- Wilusz, R.; Zauscher, S.; Guilak, F. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage. Osteoarthr. Cartil. 2013, 21, 1895–1903. [Google Scholar] [CrossRef] [Green Version]
- Hing, W.; Sherwin, A.; Ross, J.; Poole, C. The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge. Osteoarthr. Cartil. 2002, 10, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Peters, H.C.; Otto, T.J.; Enders, J.T.; Jin, W.; Moed, B.R.; Zhang, Z.; Smeriglio, P.; Dhulipala, L.; Lai, J.H.; Goodman, S.B.; et al. The Protective Role of the Pericellular Matrix in Chondrocyte Apoptosis. Tissue Eng. Part A 2011, 17, 2017–2024. [Google Scholar] [CrossRef] [Green Version]
- Ateshian, G.A.; Chahine, N.O.; Basalo, I.M.; Hung, C.T. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J. Biomech. 2004, 37, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Poole, A.R.; Kojima, T.; Yasuda, T.; Mwale, F.; Kobayashi, M.; Laverty, S. Composition and Structure of Articular Cartilage. Clin. Orthop. Relat. Res. 2001, 391, S26–S33. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health A Multidiscip. Approach 2009, 1, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Tambe, D.T.; Deng, L.; Yang, L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am. J. Physiol. Cell Physiol. 2013, 305, C1202–C1208. [Google Scholar] [CrossRef] [Green Version]
- Florea, C.; Jakorinne, A.; Lammi, M.; Davidescu, A.; Korhonen, R.K. Determination of Mechanical Properties of Chondrocytes in Articular Cartilage Using Atomic Force Microscopy. Solid State Phenom. 2014, 216, 134–139. [Google Scholar] [CrossRef]
- Darling, E.; Zauscher, S.; Guilak, F. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 2006, 14, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Darling, E.M.; Topel, M.; Zauscher, S.; Vail, T.P.; Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 2008, 41, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.T.; Gu, Y. Determination of Strain-Rate-Dependent Mechanical Behavior of Living and Fixed Osteocytes and Chondrocytes Using Atomic Force Microscopy and Inverse Finite Element Analysis. J. Biomech. Eng. 2014, 136, 101004. [Google Scholar] [CrossRef]
- Florea, C.; Tanska, P.; Mononen, M.E.; Qu, C.; Lammi, M.J.; Laasanen, M.S.; Korhonen, R.K. A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells. Biomech. Model. Mechanobiol. 2017, 16, 297–311. [Google Scholar] [CrossRef]
- Jones, W.R.; Ting-Beall, H.P.; Lee, G.M.; Kelley, S.S.; Hochmuth, R.M.; Guilak, F. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 1999, 32, 119–127. [Google Scholar] [CrossRef]
- González-Bermúdez, B.; Guinea, G.V.; Plaza, G.R. Advances in Micropipette Aspiration: Applications in Cell Biomechanics, Models, and Extended Studies. Biophys. J. 2019, 116, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Guilak, F.; Tedrow, J.R.; Burgkart, R. Viscoelastic Properties of the Cell Nucleus. Biochem. Biophys. Res. Commun. 2000, 269, 781–786. [Google Scholar] [CrossRef]
- Ohashi, T.; Hagiwara, M.; Bader, D.L.; Knight, M. Intracellular mechanics and mechanotransduction associated with chondrocyte deformation during pipette aspiration. Biorheology 2006, 43, 201–214. [Google Scholar]
- Shin, D.; Athanasiou, K. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res. 1999, 17, 880–890. [Google Scholar] [CrossRef]
- Koay, E.J.; Shieh, A.C.; Athanasiou, K.A. Creep Indentation of Single Cells. J. Biomech. Eng. 2003, 125, 334–341. [Google Scholar] [CrossRef]
- Leipzig, N.D.; Athanasiou, K.A. Unconfined creep compression of chondrocytes. J. Biomech. 2005, 38, 77–85. [Google Scholar] [CrossRef]
- Shieh, A.C.; Athanasiou, K.A. Biomechanics of single zonal chondrocytes. J. Biomech. 2006, 39, 1595–1602. [Google Scholar] [CrossRef]
- Ofek, G.; Wiltz, D.C.; Athanasiou, K.A. Contribution of the Cytoskeleton to the Compressive Properties and Recovery Behavior of Single Cells. Biophys. J. 2009, 97, 1873–1882. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.V.; Wang, Q.; Kuiper, N.J.; El Haj, A.J.; Thomas, C.R.; Zhang, Z. Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression. Biotechnol. Lett. 2009, 31, 803–809. [Google Scholar] [CrossRef]
- Nguyen, B.V.; Wang, Q.G.; Kuiper, N.J.; El Haj, A.J.; Thomas, C.R.; Zhang, Z. Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling. J. R. Soc. Interface 2010, 7, 1723–1733. [Google Scholar] [CrossRef]
- Wozniak, M.J.; Kawazoe, N.; Tateishi, T.; Chen, G. Monitoring of mechanical properties of serially passaged bovine articular chondrocytes by atomic force microscopy. Micron 2009, 40, 870–875. [Google Scholar] [CrossRef]
- Trickey, W.R.; Lee, G.M.; Guilak, F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 2000, 18, 891–898. [Google Scholar] [CrossRef]
- Bader, D.L.; Ohashi, T.; Knight, M.; Lee, D.; Sato, M. Deformation properties of articular chondrocytes: A critique of three separate techniques. Biorheology 2002, 39, 69–78. [Google Scholar]
- Trickey, W.R.; Vail, T.P.; Guilak, F. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 2004, 22, 131–139. [Google Scholar] [CrossRef]
- Trickey, W.R.; Baaijens, F.P.; Laursen, T.A.; Alexopoulos, L.G.; Guilak, F. Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 2006, 39, 78–87. [Google Scholar] [CrossRef]
- Zhang, Z. Chondrons and the Pericellular Matrix of Chondrocytes. Tissue Eng. Part B Rev. 2015, 21, 267–277. [Google Scholar] [CrossRef]
- Wilusz, R.E.; Guilak, F. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase. J. Mech. Behav. Biomed. Mater. 2014, 38, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Guilak, F.; Ratcliffe, A.; Mow, V.C. Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study. J. Orthop. Res. 1995, 13, 410–421. [Google Scholar] [CrossRef]
- Alexopoulos, L.G.; Haider, M.; Vail, T.P.; Guilak, F. Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix with Osteoarthritis. J. Biomech. Eng. 2003, 125, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Darling, E.M.; Wilusz, R.E.; Bolognesi, M.P.; Zauscher, S.; Guilak, F. Spatial Mapping of the Biomechanical Properties of the Pericellular Matrix of Articular Cartilage Measured In Situ via Atomic Force Microscopy. Biophys. J. 2010, 98, 2848–2856. [Google Scholar] [CrossRef] [Green Version]
- Guilak, F.; Alexopoulos, L.G.; Haider, M.A.; Ting-Beall, H.P.; Setton, L.A. Zonal Uniformity in Mechanical Properties of the Chondrocyte Pericellular Matrix: Micropipette Aspiration of Canine Chondrons Isolated by Cartilage Homogenization. Ann. Biomed. Eng. 2005, 33, 1312–1318. [Google Scholar] [CrossRef]
- Youn, I.; Choi, J.; Cao, L.; Setton, L.; Guilak, F. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthr. Cartil. 2006, 14, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Freeman, P.M.; Natarajan, R.N.; Kimura, J.H.; Andriacchi, T.P. Chondrocyte cells respond mechanically to compressive loads. J. Orthop. Res. 1994, 12, 311–320. [Google Scholar] [CrossRef]
- Han, S.-K.; Madden, R.; Abusara, Z.; Herzog, W. In situ chondrocyte viscoelasticity. J. Biomech. 2012, 45, 2450–2456. [Google Scholar] [CrossRef]
- Chahine, N.O.; Blanchette, C.; Thomas, C.B.; Lu, J.; Haudenschild, D.; Loots, G.G. Effect of Age and Cytoskeletal Elements on the Indentation-Dependent Mechanical Properties of Chondrocytes. PLoS ONE 2013, 8, e61651. [Google Scholar] [CrossRef] [Green Version]
- Dowling, E.P.; Ronan, W.; Ofek, G.; Deshpande, V.S.; McMeeking, R.M.; Athanasiou, K.A.; McGarry, J.P. The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: A computational and experimental investigation. J. R. Soc. Interface 2012, 9, 3469–3479. [Google Scholar] [CrossRef]
- McLeod, M.A.; Wilusz, R.E.; Guilak, F. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. J. Biomech. 2013, 46, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.; Hung, H.-H.; Sprunt, A.; Chubinskaya, S.; Ortiz, C.; Grodzinsky, A. Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. J. Biomech. 2007, 40, 1011–1023. [Google Scholar] [CrossRef]
- Alexopoulos, L.G.; Williams, G.M.; Upton, M.L.; Setton, L.A.; Guilak, F. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage. J. Biomech. 2005, 38, 509–517. [Google Scholar] [CrossRef]
- Hogan, B.; Babataheri, A.; Hwang, Y.; Barakat, A.I.; Husson, J. Characterizing Cell Adhesion by Using Micropipette Aspiration. Biophys. J. 2015, 109, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Rico, F.; Roca-Cusachs, P.; Gavara, N.; Farré, R.; Rotger, M.; Navajas, D. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 72, 021914. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Pinto, R.; Gong, H.; Vahabikashi, A.; Johnson, M. The Effect of the Endothelial Cell Cortex on Atomic Force Microscopy Measurements. Biophys. J. 2013, 105, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Knight, M.; Ross, J.; Sherwin, A.; Lee, D.; Bader, D.; Poole, C. Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim. Biophys. Acta BAA—Gen. Subj. 2001, 1526, 141–146. [Google Scholar] [CrossRef]
- Kelly, T.-A.N.; Wang, C.C.-B.; Mauck, R.; Ateshian, G.A.; Hung, C.T. Role of cell-associated matrix in the development of free-swelling and dynamically loaded chondrocyte-seeded agarose gels. Biorheology 2004, 41, 223–237. [Google Scholar]
- Graff, R.D.; Kelley, S.S.; Lee, G.M. Role of pericellular matrix in development of a mechanically functional neocartilage. Biotechnol. Bioeng. 2003, 82, 457–464. [Google Scholar] [CrossRef]
- Chery, D.R.; Han, B.; Li, Q.; Zhou, Y.; Heo, S.-J.; Kwok, B.; Chandrasekaran, P.; Wang, C.; Qin, L.; Lu, X.L.; et al. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis. Acta Biomater. 2020, 111, 267–278. [Google Scholar] [CrossRef]
- Darling, E.M.; Zauscher, S.; Block, J.A.; Guilak, F. A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential? Biophys. J. 2007, 92, 1784–1791. [Google Scholar] [CrossRef] [Green Version]
- Theret, D.P.; Levesque, M.J.; Sato, M.; Nerem, R.M.; Wheeler, L.T. The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements. J. Biomech. Eng. 1988, 110, 190–199. [Google Scholar] [CrossRef]
- Sato, M.; Theret, D.P.; Wheeler, L.T.; Ohshima, N.; Nerem, R.M. Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties. J. Biomech. Eng. 1990, 112, 263–268. [Google Scholar] [CrossRef]
- Guilak, F. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology 2000, 37, 27–44. [Google Scholar]
- Zhou, E.H.; Lim, C.T.; Quek, S.T. Finite Element Simulation of the Micropipette Aspiration of a Living Cell Undergoing Large Viscoelastic Deformation. Mech. Adv. Mater. Struct. 2005, 12, 501–512. [Google Scholar] [CrossRef]
- Williantarra, I.; Leung, S.; Choi, Y.S.; Chhana, A.; McGlashan, S.R. Chondrocyte-specific response to stiffness-mediated primary cilia formation and centriole positioning. Am. J. Physiol. Physiol. 2022, 323, C236–C247. [Google Scholar] [CrossRef]
- Irianto, J.; Ramaswamy, G.; Serra, R.; Knight, M.M. Depletion of chondrocyte primary cilia reduces the compressive modulus of articular cartilage. J. Biomech. 2014, 47, 579–582. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Li, L.; Zhang, X.; Liu, J.; Hao, J.; Zhu, J.; Wu, H.; Chen, W.; Zhang, Q. Roles of TRPV4 and piezo channels in stretch-evoked Ca2+ response in chondrocytes. Exp. Biol. Med. 2020, 245, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Alcaide-Ruggiero, L.; Molina-Hernández, V.; Granados, M.M.; Domínguez, J.M. Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int. J. Mol. Sci. 2021, 22, 13329. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, J.; Carter, A.; Casey, D.C.; Charlson, F.J.; Coates, M.M.; Coggeshall, M.; et al. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1603–1658. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Liu, Q.; Yin, H.; Wang, K.; Diao, N.; Zhang, Y.; Lin, J.; Guo, A. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022, 74, 1172–1183. [Google Scholar] [CrossRef]
- Favero, M.; Belluzzi, E.; Ortolan, A.; Lorenzin, M.; Oliviero, F.; Doria, A.; Scanzello, C.R.; Ramonda, R. Erosive hand osteoarthritis: Latest findings and outlook. Nat. Rev. Rheumatol. 2022, 18, 171–183. [Google Scholar] [CrossRef]
- Belluzzi, E.; Stocco, E.; Pozzuoli, A.; Granzotto, M.; Porzionato, A.; Vettor, R.; De Caro, R.; Ruggieri, P.; Ramonda, R.; Rossato, M.; et al. Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain. BioMed Res. Int. 2019, 2019, 1–18. [Google Scholar] [CrossRef]
- Belluzzi, E.; El Hadi, H.; Granzotto, M.; Rossato, M.; Ramonda, R.; Macchi, V.; De Caro, R.; Vettor, R.; Favero, M. Systemic and Local Adipose Tissue in Knee Osteoarthritis. J. Cell. Physiol. 2017, 232, 1971–1978. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 2022, 18, 258–275. [Google Scholar] [CrossRef]
- Englund, M.; Guermazi, A.; Lohmander, S.L. The Role of the Meniscus in Knee Osteoarthritis: A Cause or Consequence? Radiol. Clin. North Am. 2009, 47, 703–712. [Google Scholar] [CrossRef]
- Battistelli, M.; Favero, M.; Burini, D.; Trisolino, G.; Dallari, D.; De Franceschi, L.; Goldring, S.R.; Goldring, M.B.; Belluzzi, E.; Filardo, G.; et al. Morphological and ultrastructural analysis of normal, injured and osteoarthritic human knee menisci. Eur. J. Histochem. 2019, 63, 2998. [Google Scholar] [CrossRef] [Green Version]
- Donell, S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev. 2019, 4, 221–229. [Google Scholar] [CrossRef]
- Favero, M.; Belluzzi, E.; Trisolino, G.; Goldring, M.B.; Goldring, S.R.; Cigolotti, A.; Pozzuoli, A.; Ruggieri, P.; Ramonda, R.; Grigolo, B.; et al. Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: A coculture study. J. Cell. Physiol. 2019, 234, 11176–11187. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.-P. Osteoarthritis. Nat. Rev. Dis. Prim. 2016, 2, 16072. [Google Scholar] [CrossRef] [Green Version]
- Fontanella, C.G.; Belluzzi, E.; Pozzuoli, A.; Favero, M.; Ruggieri, P.; Macchi, V.; Carniel, E.L. Mechanical behavior of infrapatellar fat pad of patients affected by osteoarthritis. J. Biomech. 2022, 131, 110931. [Google Scholar] [CrossRef]
- Vincent, K.R.; Conrad, B.P.; Fregly, B.J.; Vincent, H.K. The Pathophysiology of Osteoarthritis: A Mechanical Perspective on the Knee Joint. PM&R 2012, 4, S3–S9. [Google Scholar] [CrossRef] [Green Version]
- Temple-Wong, M.; Bae, W.; Chen, M.; Bugbee, W.; Amiel, D.; Coutts, R.; Lotz, M.; Sah, R. Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle. Osteoarthr. Cartil. 2009, 17, 1469–1476. [Google Scholar] [CrossRef] [Green Version]
- Statham, P.; Jones, E.; Jennings, L.M.; Fermor, H.L. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering. Tissue Eng. Part B Rev. 2022, 28, 405–420. [Google Scholar] [CrossRef]
- Englund, M. Osteoarthritis, part of life or a curable disease? A bird’s-eye view. J. Intern. Med. 2023, 293, 681–693. [Google Scholar] [CrossRef]
- Olivotto, E.; Belluzzi, E.; Pozzuoli, A.; Cigolotti, A.; Scioni, M.; Goldring, S.R.; Goldring, M.B.; Ruggieri, P.; Ramonda, R.; Grigolo, B.; et al. Do Synovial Inflammation and Meniscal Degeneration Impact Clinical Outcomes of Patients Undergoing Arthroscopic Partial Meniscectomy? A Histological Study. Int. J. Mol. Sci. 2022, 23, 3903. [Google Scholar] [CrossRef]
- Palazzo, C.; Nguyen, C.; Lefevre-Colau, M.-M.; Rannou, F.; Poiraudeau, S. Risk factors and burden of osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 134–138. [Google Scholar] [CrossRef]
- Loeser, R.F. The Role of Aging in the Development of Osteoarthritis. Trans. Am. Clin. Clim. Assoc. 2017, 128, 44–54. [Google Scholar]
- Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.-J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Berardo, A.; Pugno, N.M. A model for hierarchical anisotropic friction, adhesion and wear. Tribol. Int. 2020, 152, 106549. [Google Scholar] [CrossRef]
- Xiao, Z.-F.; Su, G.-Y.; Hou, Y.; Chen, S.-D.; Lin, D.-K. Cartilage degradation in osteoarthritis: A process of osteochondral remodeling resembles the endochondral ossification in growth plate? Med. Hypotheses 2018, 121, 183–187. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [Green Version]
- Torzilli, P.A.; Allen, S.N. Effect of Articular Surface Compression on Cartilage Extracellular Matrix Deformation. J. Biomech. Eng. 2022, 144, 091007. [Google Scholar] [CrossRef]
- Liu, C.; Wang, B.; Xiao, L.; Li, Y.; Xu, L.; Zhao, Z.; Zhang, L. Protective effects of the pericellular matrix of chondrocyte on articular cartilage against the development of osteoarthritis. Histol. Histopathol. 2018, 33, 757–764. [Google Scholar] [CrossRef]
- Goldring, M.B. Articular Cartilage Degradation in Osteoarthritis. HSS J. 2012, 8, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Belluzzi, E.; Olivotto, E.; Toso, G.; Cigolotti, A.; Pozzuoli, A.; Biz, C.; Trisolino, G.; Ruggieri, P.; Grigolo, B.; Ramonda, R.; et al. Conditioned media from human osteoarthritic synovium induces inflammation in a synoviocyte cell line. Connect. Tissue Res. 2019, 60, 136–145. [Google Scholar] [CrossRef]
- Singh, P.; Marcu, K.B.; Goldring, M.B.; Otero, M. Phenotypic instability of chondrocytes in osteoarthritis: On a path to hypertrophy. Ann. N. Y. Acad. Sci. 2019, 1442, 17–34. [Google Scholar] [CrossRef]
- Maldonado, M.; Nam, J. The Role of Changes in Extracellular Matrix of Cartilage in the Presence of Inflammation on the Pathology of Osteoarthritis. BioMed Res. Int. 2013, 2013, 284873. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; Bayliss, M.T.; Heinegård, D. Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol. 2004, 23, 381–391. [Google Scholar] [CrossRef]
- Martínez-Moreno, D.; Jiménez, G.; Gálvez-Martín, P.; Rus, G.; Marchal, J. Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2019, 1865, 1067–1075. [Google Scholar] [CrossRef]
- Roach, H.I.; Aigner, T.; Kouri, J.B. Chondroptosis: A variant of apoptotic cell death in chondrocytes? Apoptosis 2004, 9, 265–277. [Google Scholar] [CrossRef]
- Salucci, S.; Falcieri, E.; Battistelli, M. Chondrocyte death involvement in osteoarthritis. Cell Tissue Res. 2022, 389, 159–170. [Google Scholar] [CrossRef]
- Loeser, R.F. Aging processes and the development of osteoarthritis. Curr. Opin. Rheumatol. 2013, 25, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Yang, S. Primary Cilia and Intraflagellar Transport Proteins in Bone and Cartilage. J. Dent. Res. 2016, 95, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- McGlashan, S.; Cluett, E.; Jensen, C.; Poole, C. Primary cilia in osteoarthritic chondrocytes: From chondrons to clusters. Dev. Dyn. 2008, 237, 2013–2020. [Google Scholar] [CrossRef]
- Steinecker-Frohnwieser, B.; Lohberger, B.; Toegel, S.; Windhager, R.; Glanz, V.; Kratschmann, C.; Leithner, A.; Weigl, L. Activation of the Mechanosensitive Ion Channels Piezo1 and TRPV4 in Primary Human Healthy and Osteoarthritic Chondrocytes Exhibits Ion Channel Crosstalk and Modulates Gene Expression. Int. J. Mol. Sci. 2023, 24, 7868. [Google Scholar] [CrossRef]
- Guilak, F.; Nims, R.J.; Dicks, A.; Wu, C.-L.; Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 2018, 71–72, 40–50. [Google Scholar] [CrossRef]
- Poole, C.A.; Matsuoka, A.; Schofield, J.R. Chondrons from articular cartilage. III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthritis Rheum. 1991, 34, 22–35. [Google Scholar] [CrossRef]
- Lee, G.; Paul, T.; Slabaugh, M.; Kelley, S. The incidence of enlarged chondrons in normal and osteoarthritic human cartilage and their relative matrix density. Osteoarthr. Cartil. 2000, 8, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-H.; Lin, Y.-H.; Lin, S.; Tsai-Wu, J.-J.; Wu, C.H.; Jiang, C.-C. Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy. Osteoarthr. Cartil. 2008, 16, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Nims, R.J.; Savadipour, A.; Zhang, Q.; Leddy, H.A.; Liu, F.; McNulty, A.L.; Chen, Y.; Guilak, F.; Liedtke, W.B. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc. Natl. Acad. Sci. USA 2021, 118, e2001611118. [Google Scholar] [CrossRef]
- Zhuang, H.; Ren, X.; Zhang, Y.; Jiang, F.; Zhou, P. Trimethylamine-N-oxide sensitizes chondrocytes to mechanical loading through the upregulation of Piezo1. Food Chem. Toxicol. 2023, 175, 113726. [Google Scholar] [CrossRef]
- Young, C.; Kobayashi, T. Limited roles of Piezo mechanosensing channels in articular cartilage development and osteoarthritis progression. Osteoarthr. Cartil. 2023, 31, 775–779. [Google Scholar] [CrossRef]
- Khoshgoftar, M.; Torzilli, P.A.; Maher, S.A. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J. Orthop. Res. 2017, 36, 721–729. [Google Scholar] [CrossRef]
- Alexopoulos, L.G.; Setton, L.A.; Guilak, F. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Biomater. 2005, 1, 317–325. [Google Scholar] [CrossRef]
- Julkunen, P.; Wilson, W.; Jurvelin, J.S.; Korhonen, R.K. Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading. Med. Biol. Eng. Comput. 2009, 47, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
Reference | Tip Radius | Tip Shape | Elastic Modulus (kPa) |
---|---|---|---|
[35] | 2.5 µm | Spherical | Eelastic = 1.27 ± 0.61 |
[36] | 2.5 µm | Spherical | Eelastic = 1.4 ± 1.1 |
[34] | 20 nm | - | Eelastic = 10 ± 4.1 |
[37] | 2.5 µm | Colloidal | C1 = 0.669 ± 0.365 |
[38] | 35 nm | Spherical | E = 10.9 − 23.9 |
Mechanical Test | Origin | Reference | Cell Source | Cartilage Depth | Material Model | H/OA | Parameters |
---|---|---|---|---|---|---|---|
AFM | Human | [36] | Femoral heads, ages: 34–47 years | full thickness | Linear elastic | H | E = 1.4 ± 1.1 |
Viscoelastic | E0 = 0.914 ± 0.967 | ||||||
E∞ = 0.45 ± 0.44 | |||||||
µ = 4.5 ± 3.74 | |||||||
[37] | N/A | N/A | Viscohyperelastic | H | C1 = 0.669 ± 0.365 | ||
D1 = 4.06 ± 2.4 (×10−3) | |||||||
g1 = 0.6 ± 0.14 | |||||||
k1 = 99.76 ± 0.08 (×10−2) | |||||||
τ1 = 0.082 ± 0.002 | |||||||
Animal | [35] | femoral condyles; 2–3 year--old pig | Superficial | Linear elastic | H | E = 1.27 ± 0.61 | |
Viscoelastic | E0 = 0.55 ± 0.23 | ||||||
E∞ = 0.31 ± 0.15 | |||||||
µ = 1.15 ± 0.66 | |||||||
Middle/ deep | Linear elastic | E = 0.61 ± 0.34 | |||||
viscoelastic | E0 = 0.29 ± 0.14 | ||||||
E∞ = 0.17 ± 0.09 | |||||||
µ = 0.61 ± 0.69 | |||||||
[34] | femoral condyles; 13–22-month-old bovine | full thickness | Linear elastic | H | E = 10 ± 4.1 | ||
[38] | femoral condyles; 18–22-month-old bovine | full thickness | Porohyperleastic | H | E = 23.9 | ||
k = 0.08 × 10−16 | |||||||
Viscohyperelastic | E = 11.9 | ||||||
g1 = 0.55 | |||||||
τ1 = 6 | |||||||
Poroviscohyperelastic | E = 10.9 | ||||||
k = 0.66 × 10−16 | |||||||
g1 = 0.55 | |||||||
τ1 = 15 | |||||||
MPA | Human | [39] | knees, hip, ankles and elbows; ages: 37–83 years old | full thickness | Linear elastic | H | E = 0.65 ± 0.63 |
OA | E = 0.67 ± 0.86 | ||||||
[51] | knees and hips, ages; 28–86 years old | full thickness | Viscoelastic | H | E0 = 0.41 ± 0.17 | ||
E∞ = 0.24 ± 0.11 | |||||||
µ = 3.0 ± 1.80 | |||||||
OA | E0 = 0.63 ± 0.51 | ||||||
E∞ = 0.33 ± 0.23 | |||||||
µ = 5.8 ± 6.5 | |||||||
[53] | femoral heads, ages; 20–79 years old | N/A | Viscoelastic | H | E0 = from 0.45 ± 0.2 to 0.7 ± 0.6 | ||
E∞ = from 0.2 ± 0.1 to 0.3 ± 0.23 | |||||||
µ = from 7.8 ± 8 to 9.5 ± 10 | |||||||
OA | E0 = from 0.52 ± 0.25 to 0.65 ± 0.4 | ||||||
E∞ = from 0.25 ± 0.13 to 0.28 ± 0.18 | |||||||
µ = from 4.8 ± 5 to 10.1 ± 15 | |||||||
Animal | [41] | femoral condyles; 2-year-old pig | N/A | Viscoelastic | H | E0 = 0.43 ± 0.07 | |
E∞ = 0.18 ± 0.05 | |||||||
µ = 2.5 ± 1.80 | |||||||
[35] | femoral condyles; 2–3-year-old pig | Middle/ deep | Viscoelastic | H | E0 = 0.45 ± 0.14 | ||
E∞ = 0.14 ± 0.05 | |||||||
µ = 2.57 ± 1.83 | |||||||
[42] | metacarpal phalangeal joints | full thickness | Linear Elastic | H | E = 0.97 ± 0.45 | ||
Cytoindentation | Animal | [44] | distal portion of the first metatarsal; cow | full thickness | Linear elastic | H | E = 1.10 ± 0.48 |
Viscoelastic | E0 = 8.0 ± 4.41 | ||||||
E∞ = 1.09 ± 0.54 | |||||||
µ = 1.50 ± 0.92 | |||||||
Modified Cytoindentation | Animal | [45] | distal metatarsal joint; 1–2-year-old heifers | Middle/ deep | Linear elastic | H | E = 2.55 ± 0.85 |
Viscoelastic | E0 = 2.47 ± 0.85 | ||||||
E∞ = 1.48 ± 0.35 | |||||||
µ = 1.92 ± 1.80 | |||||||
Biphasic | HA = 2.58 ± 0.87 | ||||||
k = 2.57 × 10−12 | |||||||
[46] | distal metatarsal of 12–24-month-old heifers and steers | Superficial | Viscoelastic | H | E0 = 1.20 ± 1.00 | ||
E∞ = 0.80 ± 0.55 | |||||||
µ = 3.75 ± 9.46 | |||||||
Middle/ deep | E0 = 0.78 ± 0.38 | ||||||
E∞ = 0.64 ± 0.31 | |||||||
µ = 3.18 ± 7.33 | |||||||
Micromanipulation | Animal | [49] | trochleal humerus; 18-mont-old cows | Full thickness | Non-linear elastic (hyperelastic) | H | E = 14± 1.0 |
Non-linear viscoelastic (viscohyperelastic) | E0 = 21 ± 3 | ||||||
E∞ = 9.3 ± 0.8 | |||||||
µ = 2.8 ± 0.5 |
Mechanical Test | Reference | Cell Source | Cartilage Depth | Material Model | Parameters |
---|---|---|---|---|---|
AFM 1 | [25] | Murine spheno-occipital synchondrosis | full thickness | Linear Elastic | E = 265 ± 53 |
[66] 4 | Porcine medial condyles | superficial | Linear Elastic | E = 54.9 ± 4.5 | |
middle | E = 49.4 ± 4.5 | ||||
deep | E = 50.6 ± 4.5 | ||||
[59] | Human femoral condyles | full thickness | Linear Elastic | E = 306 ± 133 | |
Porcine medial condyles | E = 81 ± 19 | ||||
Murine knee joint | E = 197 ± 92 | ||||
[27] | Human femoral medial condyle | full thickness | Linear Elastic | E = 137 ± 22 | |
[67] 5 | Bovine femoral condyles | cultured | Linear Elastic | E = 4.14 ± 0.4 | |
MPA 2 | [58] | Human femoral head | superficial | Linear Elastic | E 6 = 68.9 ± 18.9 |
middle/deep | E 6 = 62.0 ± 30.5 | ||||
full thickness | E 6 = 66.5 ± 23.3 | ||||
E 7 = 43.1 ± 17.9 | |||||
[68] | Human femoral head | superficial | Biphasic | E = 39.7 ± 13.9 k = 4.71 ± 4.18 | |
middle/deep | E = 36.8 ± 20.6 k = 3.69 ± 3.4 | ||||
[60] | Canine femoral condyles | superficial | Linear Elastic | E 6 = 24.0 ± 10.9 | |
E 8 = 25.1 ± 11.5 | |||||
E 7 = 10.8 ± 4.3 | |||||
middle/deep | E 6 = 23.2 ± 7.1 | ||||
E 8 = 23.6 ± 7.3 | |||||
E 7 = 12.1 ± 3.9 | |||||
Cytomanipulation 3 | [49] | Bovine trochlear humerus | full thickness | Linear Elastic | E = 19 ± 2 |
Viscoelastic | E0 = 27 ± 4 E∞ = 12 ± 1 µ = 3.4 ± 0.6 |
Mechanical Test | Reference | Material Model | Poisson’s Ratio ν (−) |
---|---|---|---|
AFM | [35] | Linear elastic, viscoelastic | 0.38 |
[36] | Linear elastic, viscoelastic | 0.5 (parametric studies show that varying ν from 0.3–0.5 altered the measured properties by less than 20%) | |
[34] | Linear elastic | 0.4 | |
[37] | Viscohyperelastic | 0.499 (high strain rate) 0.35 (low strain rate) | |
[38] | Viscohyperelastic, porohyperelastic, poroviscohyperelastic | 0.25–0.45 | |
MPA | [41] | Viscoelastic | 0.5 |
[35] | Viscoelastic | 0.38 | |
Cytoindentation | [44] | Linear elastic, Viscoelastic | 0.5 |
Modified cytoindentation | [45] | Linear elastic, Viscoelastic | 0.5 |
[46] | Viscoelastic | 0.26 | |
Micromanipulation | [49] | Non-linear elastic, non-linear viscoelastic | 0.5 |
Mechanical Test. | Reference | Cell Source | Cartilage Depth | Material Model | Parameters |
---|---|---|---|---|---|
AFM | [27] | Human femoral condyle | full thickness | Linear Elastic | E = 96 ± 16 |
MPA | [58] | Human femoral head | superficial | Linear Elastic | E 1 = 39.1 ± 19.6 |
middle/deep | E 1 = 43.9 ± 23.0 | ||||
full thickness | E 2 = 41.8 ± 21.3 | ||||
E 3 = 33.1 ± 22.9 | |||||
[68] | Human femoral head | superficial | Biphasic | E = 20.8 ± 19.5 k = 10.46 ± 6.96 | |
middle/deep | E = 24.4 ± 12.7 k = 9.91 ± 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettenuzzo, S.; Arduino, A.; Belluzzi, E.; Pozzuoli, A.; Fontanella, C.G.; Ruggieri, P.; Salomoni, V.; Majorana, C.; Berardo, A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines 2023, 11, 1942. https://doi.org/10.3390/biomedicines11071942
Pettenuzzo S, Arduino A, Belluzzi E, Pozzuoli A, Fontanella CG, Ruggieri P, Salomoni V, Majorana C, Berardo A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines. 2023; 11(7):1942. https://doi.org/10.3390/biomedicines11071942
Chicago/Turabian StylePettenuzzo, Sofia, Alessandro Arduino, Elisa Belluzzi, Assunta Pozzuoli, Chiara Giulia Fontanella, Pietro Ruggieri, Valentina Salomoni, Carmelo Majorana, and Alice Berardo. 2023. "Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale" Biomedicines 11, no. 7: 1942. https://doi.org/10.3390/biomedicines11071942
APA StylePettenuzzo, S., Arduino, A., Belluzzi, E., Pozzuoli, A., Fontanella, C. G., Ruggieri, P., Salomoni, V., Majorana, C., & Berardo, A. (2023). Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines, 11(7), 1942. https://doi.org/10.3390/biomedicines11071942