Next Article in Journal
Oral Lesions as the Primary Manifestations of Behçet’s Disease: The Importance of Interdisciplinary Diagnostics—A Case Report
Previous Article in Journal
Post-Traumatic Stress Response and Appendicitis in Children—Clinical Usefulness of Selected Biomarkers
Previous Article in Special Issue
Haloperidol Induced Cell Cycle Arrest and Apoptosis in Glioblastoma Cells
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Special Issue: Principal Challenges in the Adjuvant Treatment of Glioblastoma

Marc-Eric Halatsch
Department of Neurosurgery, Cantonal Hospital of Winterthur, CH-8400 Winterthur, Switzerland
Biomedicines 2023, 11(7), 1881;
Submission received: 29 May 2023 / Accepted: 13 June 2023 / Published: 3 July 2023
(This article belongs to the Special Issue Principal Challenges in the Adjuvant Treatment of Glioblastoma)
Despite advances in local treatments, such as supramaximal resection (even in eloquent locations [1]) and guidance of surgery and radiotherapy by metabolic imaging [2], patients with glioblastoma, the most common malignant intrinsic brain tumor in adults, continue to face a dismal prognosis following so-called standard therapy, which has recently evolved to include alternating electric fields [3]. While a plethora of rational experimental strategies for additive therapy is currently under clinical development [4], the failure of new approaches during clinical translation has been the rule rather than the exception [5], with alternating electric fields (a device rather than a drug) being this exception.
Prominent failures include unsuccessful molecular targeting of the epidermal growth factor receptor (EGFR). This approach can achieve promising results in vitro and in some preclinical models [6,7,8,9,10], and EGFR amplification, overexpression, and ligand-independent activation are molecular hallmarks of a substantial fraction of glioblastomas. Nonetheless, this type of therapy has not lived up to its apparent promises [11]. Remarkably, the EGFR has recently been declared a Lazarus molecular target in glioblastoma, and draws parallels with the tenacious “undruggability” of oncogenic RAS [12,13]. It would be truly telling if a biomarker-independent combination of multiple, originally non-oncological, repurposed drugs, as well as low-dose metronomic temozolomide [14,15,16], performed better against glioblastoma in the clinical setting than the current molecular targeting of aberrant EGFR.
Until new therapies have been validated, and likely beyond that point, chemotherapy with temozolomide will remain an integral part of postoperative first-line treatment. For this reason, experts are currently taking a closer look at some of the controversies surrounding temozolomide, and this Special Issue is dedicated to their findings. Strobel et al.; Kaina; Stepanenko and Chekhonin; and Westhoff et al. [17,18,19,20] have engaged in a highly instructive scholarly debate on temozolomide’s predominant biological effects under different experimental conditions and how these conditions can be used to optimize modeling of clinical situations in vitro. In this vein, Herbener et al. provide an extensive review of the experimental use of temozolomide in glioblastoma research, concluding that conciliating two ambivalent properties of temozolomide, i.e., immunogenicity and immunosuppression, is among the most challenging issues from both research and clinical perspectives [21].
Last but not least, in a study conducted by Papadopoulos et al., haloperidol, a typical antipsychotic drug that permeates the blood–brain barrier, caused cell cycle arrest and the inhibition of cellular migration in glioblastoma cell lines when combined with radiation and temozolomide in vitro [22], once more highlighting the potential of repurposed drugs to enhance the efficacy of existing treatment regimens.
In summary, this Special Issue brings together a variety of inspiring perspectives on different aspects of this field of inquiry, providing a valuable resource for anyone performing and/or evaluating research on this complex subject. Readers are invited to assess the data and different arguments presented, as these will undoubtedly widen our perspective on the most important issues currently under discussion.

Conflicts of Interest

The author declares no conflict of interest.


  1. Di, L.; Shah, A.H.; Mahavadi, A.; Eichberg, D.G.; Reddy, R.; Sanjurjo, A.D.; Morell, A.A.; Lu, V.M.; Ampie, L.; Luther, E.M.; et al. Radical supramaximal resection for newly diagnosed left-sided eloquent glioblastoma: Safety and improved survival over gross-total resection. J. Neurosurg. 2022, 138, 62–69. [Google Scholar] [CrossRef] [PubMed]
  2. Brendle, C.; Maier, C.; Bender, B.; Schittenhelm, J.; Paulsen, F.; Renovanz, M.; Roder, C.; Castaneda-Vega, S.; Tabatabai, G.; Ernemann, U.; et al. Impact of 18F-FET PET/MRI on clinical management of brain tumor patients. J. Nucl. Med. 2022, 63, 522–527. [Google Scholar] [CrossRef]
  3. Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of tumor-treating fields plus maintenance temozolomide vs. maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [Green Version]
  4. Rong, L.; Li, N.; Zhang, Z. Emerging therapies for glioblastoma: Current state and future directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef]
  5. Mandel, J.J.; Yust-Katz, S.; Patel, A.J.; Cachia, D.; Liu, D.; Park, M.; Yuan, Y.; Kent, T.A.; de Groot, J.F. Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro Oncol. 2018, 20, 113–122. [Google Scholar] [CrossRef] [Green Version]
  6. Halatsch, M.-E.; Schmidt, U.; Bötefür, I.C.; Holland, J.F.; Ohnuma, T. Marked inhibition of glioblastoma target cell tumorigenicity in vitro by retrovirus-mediated transfer of a hairpin ribozyme against deletion-mutant epidermal growth factor receptor messenger RNA. J. Neurosurg. 2000, 92, 297–305. [Google Scholar] [CrossRef] [PubMed]
  7. Halatsch, M.-E.; Gehrke, E.E.; Vougioukas, V.I.; Bötefür, I.C.; A.-Borhani, F.; Efferth, T.; Gebhart, E.; Domhof, S.; Schmidt, U.; Buchfelder, M. Inverse correlation of epidermal growth factor receptor messenger RNA induction and suppression of anchorage-independent growth by OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in glioblastoma multiforme cell lines. J. Neurosurg. 2004, 100, 523–533. [Google Scholar] [CrossRef]
  8. Halatsch, M.-E.; Löw, S.; Mursch, K.; Hielscher, T.; Schmidt, U.; Unterberg, A.; Vougioukas, V.I.; Feuerhake, F. Candidate genes for sensitivity and resistance of human glioblastoma multiforme cell lines to erlotinib. Laboratory investigation. J. Neurosurg. 2009, 111, 211–218. [Google Scholar] [CrossRef]
  9. Martens, T.; Laabs, Y.; Günther, H.S.; Kemming, D.; Zhu, Z.; Witte, L.; Hagel, C.; Westphal, M.; Lamszus, K. Inhibition of glioblastoma growth in a highly invasive nude mouse model can be achieved by targeting epidermal growth factor receptor but not vascular endothelial growth factor receptor-2. Clin. Cancer Res. 2008, 14, 5447–5458. [Google Scholar] [CrossRef] [Green Version]
  10. Zahonero, C.; Aguilera, P.; Ramirez-Castillejo, C.; Pajares, M.; Bolos, M.V.; Cantero, D.; Perez-Nunez, A.; Hernandez-Lain, A.; Sanchez-Gomez, P.; Sepulveda, J.M. Preclinical test of dacomitinib, an irreversible EGFR inhibitor, confirms its effectiveness for glioblastoma. Mol. Cancer Ther. 2015, 14, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
  11. Lee, A.; Arasaratnam, M.; Chan, D.L.H.; Khasraw, M.; Howell, V.M.; Wheeler, H. Anti-epidermal growth factor receptor therapy for glioblastoma in adults. Cochrane Database Syst. Rev. 2020, 5, CD013238. [Google Scholar] [CrossRef]
  12. Lin, B.; Ziebro, J.; Smithberger, E.; Skinner, K.R.; Zhao, E.; Cloughesy, T.F.; Binder, Z.A.; O’Rourke, D.M.; Nathanson, D.A.; Furnari, F.B.; et al. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol. 2022, 24, 2035–2062. [Google Scholar] [CrossRef]
  13. Höhne, M.W.; Halatsch, M.-E.; Kahl, G.F.; Weinel, R.J. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma. Cancer Res. 1992, 52, 2616–2619. [Google Scholar] [PubMed]
  14. Halatsch, M.-E.; Kast, R.E.; Dwucet, A.; Hlavac, M.; Heiland, T.; Westhoff, M.-A.; Debatin, K.-M.; Wirtz, C.R.; Siegelin, M.D.; Karpel-Massler, G. Bcl-2/Bcl-xL inhibition predominantly synergistically enhances the anti-neoplastic activity of a low-dose CUSP9 repurposed drug regime against glioblastoma. Br. J. Pharmacol. 2019, 176, 3681–3694. [Google Scholar] [CrossRef] [PubMed]
  15. Halatsch, M.-E.; Dwucet, A.; Schmidt, C.J.; Cao, Q.; Mühlnickel, J.; Heiland, T.; Zeiler, K.; Siegelin, M.D.; Kast, R.E.; Karpel-Massler, G. In vitro and clinical compassionate use experiences with the drug-repurposing approach CUSP9 in glioblastoma. Pharmaceuticals 2021, 14, 1241. [Google Scholar] [CrossRef] [PubMed]
  16. Halatsch, M.-E.; Kast, R.E.; Karpel-Massler, G.; Mayer, B.; Zolk, O.; Schmitz, B.; Scheuerle, A.; Maier, L.; Bullinger, L.; Mayer-Steinacker, R.; et al. A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. Neurooncol. Adv. 2021, 3, vdab075. [Google Scholar] [CrossRef] [PubMed]
  17. Strobel, H.; Baisch, T.; Fitzel, R.; Schilberg, K.; Siegelin, M.D.; Karpel-Massler, G.; Debatin, K.-M.; Westhoff, M.-A. Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
  18. Kaina, B. Temozolomide in glioblastoma therapy: Role of apoptosis, senescence and autophagy. Comment on Strobel et al., Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines 2019, 7, 69. Biomedicines 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
  19. Stepanenko, A.A.; Chekhonin, V.P. On the critical issues in temozolomide research in glioblastoma: Clinically relevant concentrations and MGMT-independent resistance. Biomedicines 2019, 7, 92. [Google Scholar] [CrossRef] [Green Version]
  20. Westhoff, M.-A.; Baisch, T.; Herbener, V.J.; Karpel-Massler, G.; Debatin, K.-M.; Strobel, H. Comment in response to “Temozolomide in glioblastoma therapy: Role of apoptosis, senescence and autophagy etc. by B. Kaina”. Biomedicines 2020, 8, 93. [Google Scholar] [CrossRef] [Green Version]
  21. Herbener, V.J.; Burster, T.; Goreth, A.; Pruss, M.; von Bandemer, H.; Baisch, T.; Fitzel, R.; Siegelin, M.D.; Karpel-Massler, G.; Debatin, K.-M.; et al. Considering the experimental use of temozolomide in glioblastoma research. Biomedicines 2020, 8, 151. [Google Scholar] [CrossRef] [PubMed]
  22. Papadopoulos, F.; Isihou, R.; Alexiou, G.A.; Tsalios, T.; Vartholomatos, E.; Markopoulos, G.S.; Sioka, C.; Tsekeris, P.; Kyritsis, A.P.; Galani, V. Haloperidol-induced cell cycle arrest and apoptosis in glioblastoma cells. Biomedicines 2020, 8, 595. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Halatsch, M.-E. Special Issue: Principal Challenges in the Adjuvant Treatment of Glioblastoma. Biomedicines 2023, 11, 1881.

AMA Style

Halatsch M-E. Special Issue: Principal Challenges in the Adjuvant Treatment of Glioblastoma. Biomedicines. 2023; 11(7):1881.

Chicago/Turabian Style

Halatsch, Marc-Eric. 2023. "Special Issue: Principal Challenges in the Adjuvant Treatment of Glioblastoma" Biomedicines 11, no. 7: 1881.

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop