Efficacy, Safety and Feasibility of Superior Vena Cava Isolation in Patients Undergoing Atrial Fibrillation Catheter Ablation: An Up-to-Date Review
Abstract
:1. Introduction
Superior Vena Cava Arrhythmogenicity and Isolation
2. Material and Methods
3. Results
3.1. Randomized Studies and Meta-Analyses
3.2. Cohorts Comparing Different Superior Vena Cava Isolation Approaches
3.2.1. Empiric vs. As-Needed SVCI
3.2.2. As-Needed SVCI on Top of PVI
3.2.3. Empiric SVCI on Top of PVI
3.3. Other Non-Comparative Cohorts Reporting on Superior Vena Cava Isolation
3.4. SVC Foci and Reconnection during Repeated AF Ablation
3.5. Non RF Ablation Sources
4. Summary and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.F.; Tai, C.T.; Hsieh, M.H.; Lin, W.S.; Yu, W.C.; Ueng, K.C.; Ding, Y.A.; Chang, M.S.; Chen, S.A. Initiation of Atrial Fibrillation by Ectopic Beats Originating from the Superior Vena Cava: Electrophysiological Characteristics and Results of Radiofrequency Ablation. Circulation 2000, 102, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-H.; Chang, S.-L.; Lin, Y.-J.; Lo, L.-W.; Hu, Y.-F.; Chung, F.-P.; Chao, T.-F.; Lin, C.-Y.; Tuan, T.-C.; Liao, J.-N.; et al. Distribution of Triggers Foci and Outcomes of Catheter Ablation in Atrial Fibrillation Patients in Different Age Groups. Pacing Clin. Electrophysiol. 2021, 44, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-Y.; Lo, L.-W.; Lin, Y.-J.; Chang, S.-L.; Hu, Y.-F.; Li, C.-H.; Chao, T.-F.; Chung, F.-P.; Ha, T.L.; Singhal, R.; et al. Long-Term Outcome of Catheter Ablation in Patients with Atrial Fibrillation Originating from Nonpulmonary Vein Ectopy. J. Cardiovasc. Electrophysiol. 2013, 24, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Inamura, Y.; Nitta, J.; Inaba, O.; Sato, A.; Takamiya, T.; Murata, K.; Ikenouchi, T.; Kono, T.; Matsumura, Y.; Takahashi, Y.; et al. Presence of Non-Pulmonary Vein Foci in Patients with Atrial Fibrillation Undergoing Standard Ablation of Pulmonary Vein Isolation: Clinical Characteristics and Long-Term Ablation Outcome. IJC Heart Vasc. 2021, 32, 100717. [Google Scholar] [CrossRef]
- Tohoku, S.; Fukunaga, M.; Nagashima, M.; Korai, K.; Hirokami, J.; Yamamoto, K.; Takeo, A.; Niu, H.; Ando, K.; Hiroshima, K. Clinical Impact of Eliminating Nonpulmonary Vein Triggers of Atrial Fibrillation and Nonpulmonary Vein Premature Atrial Contractions at Initial Ablation for Persistent Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2021, 32, 224–234. [Google Scholar] [CrossRef]
- Lo, L.-W.; Lin, Y.-J.; Chang, S.-L.; Hu, Y.-F.; Chao, T.-F.; Chung, F.-P.; Liao, J.-N.; Chiou, C.-W.; Tsao, H.-M.; Chen, S.-A. Predictors and Characteristics of Multiple (More Than 2) Catheter Ablation Procedures for Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2015, 26, 1048–1056. [Google Scholar] [CrossRef]
- Lin, W.-S.; Tai, C.-T.; Hsieh, M.-H.; Tsai, C.-F.; Lin, Y.-K.; Tsao, H.-M.; Huang, J.-L.; Yu, W.-C.; Yang, S.-P.; Ding, Y.-A.; et al. Catheter Ablation of Paroxysmal Atrial Fibrillation Initiated by Non-Pulmonary Vein Ectopy. Circulation 2003, 107, 3176–3183. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Tsuchiya, T.; Miyamoto, K.; Nagamoto, Y.; Takahashi, N. Characterization of Non-Pulmonary Vein Foci with an Ensite Array in Patients with Paroxysmal Atrial Fibrillation. Europace 2010, 12, 1698–1706. [Google Scholar] [CrossRef]
- Takigawa, M.; Takahashi, A.; Kuwahara, T.; Okubo, K.; Takahashi, Y.; Watari, Y.; Nakashima, E.; Nakajima, J.; Yamao, K.; Takagi, K.; et al. Long-Term Outcome after Catheter Ablation of Paroxysmal Atrial Fibrillation: Impact of Different Atrial Fibrillation Foci. Int. J. Cardiol. 2017, 227, 407–412. [Google Scholar] [CrossRef]
- Lee, K.-N.; Roh, S.-Y.; Baek, Y.-S.; Park, H.-S.; Ahn, J.; Kim, D.-H.; Lee, D.I.; Shim, J.; Choi, J.-I.; Park, S.-W.; et al. Long-Term Clinical Comparison of Procedural End Points after Pulmonary Vein Isolation in Paroxysmal Atrial Fibrillation: Elimination of Nonpulmonary Vein Triggers Versus Noninducibility. Circ. Arrhythm. Electrophysiol. 2018, 11, e005019. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Nitta, J.; Inaba, O.; Sato, A.; Inamura, Y.; Kato, N.; Suzuki, M.; Goya, M.; Hirao, K.; Sasano, T. Predictors of Non-Pulmonary Vein Foci in Paroxysmal Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2021, 61, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Zipes, D.P.; Knope, R.F. Electrical Properties of the Thoracic Veins. Am. J. Cardiol. 1972, 29, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Arita, M.; Saeki, K.; Tanoue, M.; Fukushima, I. Functional Properties of Sinocaval Conduction. Jpn. J. Physiol. 1967, 17, 174–189. [Google Scholar] [CrossRef]
- Spach, M.S.; Barr, R.C.; Jewett, P.H. Spread of Excitation from the Atrium into Thoracic Veins in Human Beings and Dogs. Am. J. Cardiol. 1972, 30, 844–854. [Google Scholar] [CrossRef]
- Desimone, C.V.; Noheria, A.; Lachman, N.; Edwards, W.D.; Gami, A.S.; Maleszewski, J.J.; Friedman, P.A.; Munger, T.M.; Hammill, S.C.; Packer, D.L.; et al. Myocardium of the Superior Vena Cava, Coronary Sinus, Vein of Marshall, and the Pulmonary Vein Ostia: Gross Anatomic Studies in 620 Hearts. J. Cardiovasc. Electrophysiol. 2012, 23, 1304–1309. [Google Scholar] [CrossRef]
- Kholová, I.; Kautzner, J. Morphology of Atrial Myocardial Extensions into Human Caval Veins: A Postmortem Study in Patients with and without Atrial Fibrillation. Circulation 2004, 110, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Hachiya, H.; Yagishita, A.; Tanaka, Y.; Higuchi, K.; Kawabata, M.; Sasano, T.; Hirao, K. The Relationship Between the Profiles of SVC and Sustainability of SVC Fibrillation Induced by Provocative Electrical Stimulation. Pacing Clin. Electrophysiol. 2016, 39, 352–360. [Google Scholar] [CrossRef]
- Sicouri, S.; Blazek, J.; Belardinelli, L.; Antzelevitch, C. Electrophysiological Characteristics of Canine Superior Vena Cava Sleeve Preparations: Effect of Ranolazine. Circ. Arrhythm. Electrophysiol. 2012, 5, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yang, X.; Liu, X.; Bao, R.; Liu, T. The Characteristics of Action Potential and Nonselective Cation Current of Cardiomyocytes in Rabbit Superior Vena Cava. Sci. China Ser. C Life Sci. 2008, 51, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Baba, M.; Hasebe, H.; Shinoda, Y.; Harunari, T.; Ebine, M.; Uehara, Y.; Watabe, H.; Takeyasu, N.; Horigome, H.; et al. Structural Relation Between the Superior Vena Cava and Pulmonary Veins in Patients with Atrial Fibrillation. Heart Vessel. 2019, 34, 2052–2058. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Takigawa, M.; Kusa, S.; Kuwahara, T.; Taniguchi, H.; Okubo, K.; Nakamura, H.; Hachiya, H.; Hirao, K.; Takahashi, A.; et al. Role of Arrhythmogenic Superior Vena Cava on Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2014, 25, 380–386. [Google Scholar] [CrossRef]
- Lu, Z.; Scherlag, B.J.; Niu, G.; Lin, J.; Fung, K.-M.; Zhao, L.; Yu, L.; Jackman, W.M.; Lazzara, R.; Jiang, H.; et al. Functional Properties of the Superior Vena Cava (SVC)-Aorta Ganglionated Plexus: Evidence Suggesting an Autonomic Basis for Rapid SVC Firing. J. Cardiovasc. Electrophysiol. 2010, 21, 1392–1399. [Google Scholar] [CrossRef]
- Sugimura, S.; Kurita, T.; Kaitani, K.; Yasuoka, R.; Miyazaki, S. Ectopies from the Superior Vena Cava after Pulmonary Vein Isolation in Patients with Atrial Fibrillation. Heart Vessel. 2016, 31, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, K.; Yamauchi, Y.; Hirao, K.; Sasaki, T.; Hachiya, H.; Sekiguchi, Y.; Nitta, J.; Isobe, M. Superior Vena Cava as Initiator of Atrial Fibrillation: Factors Related to Its Arrhythmogenicity. Heart Rhythm 2010, 7, 1186–1191. [Google Scholar] [CrossRef]
- Da Costa, A.; Levallois, M.; Romeyer-Bouchard, C.; Bisch, L.; Gate-Martinet, A.; Isaaz, K. Remote-Controlled Magnetic Pulmonary vein isolation combined with superior vena cava isolation for paroxysmal atrial fibrillation: A prospective randomized Study. Arch. Cardiovasc. Dis. 2015, 108, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-H.; Liu, X.; Sun, Y.-M.; Shi, H.-F.; Zhou, L.; Gu, J.-N. Pulmonary Vein Isolation Combined with Superior Vena Cava Isolation for Atrial Fibrillation Ablation: A Prospective Randomized Study. Europace 2008, 10, 600–605. [Google Scholar] [CrossRef]
- Corrado, A.; Bonso, A.; Madalosso, M.; Rossillo, A.; Themistoclakis, S.; Di Biase, L.; Natale, A.; Raviele, A. Impact of Systematic Isolation of Superior Vena Cava in Addition to Pulmonary Vein Antrum Isolation on the Outcome of Paroxysmal, Persistent, and Permanent Atrial Fibrillation Ablation: Results from A Randomized Study. J. Cardiovasc. Electrophysiol. 2010, 21, 1–5. [Google Scholar] [CrossRef]
- Ejima, K.; Kato, K.; Iwanami, Y.; Henmi, R.; Yagishita, D.; Manaka, T.; Fukushima, K.; Arai, K.; Ashihara, K.; Shoda, M.; et al. Impact of an Empiric Isolation of the Superior Vena Cava in Addition to Circumferential Pulmonary Vein Isolation on the Outcome of Paroxysmal Atrial Fibrillation Ablation. Am. J. Cardiol. 2015, 116, 1711–1716. [Google Scholar] [CrossRef]
- Li, J.-Y.; Jiang, J.-B.; Zhong, G.-Q.; Ke, H.-H.; He, Y. Comparison of Empiric Isolation and Conventional Isolation of Superior Vena Cava in Addition to Pulmonary Vein Isolation on the Outcome of Paroxysmal Atrial Fibrillation Ablation. Int. Hear. J. 2017, 58, 500–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.-Y.; Lo, L.-W.; Lin, Y.-J.; Chang, S.-L.; Hu, Y.-F.; Feng, A.-N.; Yin, W.-H.; Li, C.-H.; Chao, T.-F.; Hartono, B.; et al. Long-Term Outcome of Catheter Ablation in Patients with Atrial Fibrillation Originating from the Superior Vena Cava. J. Cardiovasc. Electrophysiol. 2012, 23, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, Y.; Liang, Z.; Zhao, H.; Han, Z.; Wang, Y.; Wu, Y.; Ren, X. Effect of Combined Pulmonary Vein and Superior Vena Cava Isolation on the Outcome of Second Catheter Ablation for Paroxysmal Atrial Fibrillation. Am. J. Cardiol. 2020, 125, 1845–1850. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Hattori, A.; Tsuneoka, H.; Tsumagari, Y.; Yui, Y.; Kimata, A.; Ito, Y.; Ebine, M.; Uehara, Y.; Koda, N.; et al. Electrophysiological Relation between the Superior Vena Cava and Right Superior Pulmonary Vein in Patients with Paroxysmal Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2017, 28, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Yoshiga, Y.; Shimizu, A.; Ueyama, T.; Ono, M.; Fukuda, M.; Fumimoto, T.; Ishiguchi, H.; Omuro, T.; Kobayashi, S.; Yano, M. Strict Sequential Catheter Ablation Strategy Targeting the Pulmonary Veins and Superior Vena Cava for Persistent Atrial Fibrillation. J. Cardiol. 2018, 72, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knecht, S.; Zeljkovic, I.; Badertscher, P.; Krisai, P.; Spies, F.; Vognstrup, J.; Pavlovic, N.; Manola, S.; Osswald, S.; Kühne, M.; et al. Role of Empirical Isolation of the Superior Vena Cava in Patients with Recurrence of Atrial Fibrillation after Pulmonary Vein Isolation—A Multi-Center Analysis. J. Interv. Card. Electrophysiol. 2023, 66, 435–443. [Google Scholar] [CrossRef]
- Jin, M.; Lim, B.; Yu, H.T.; Kim, T.; Uhm, J.; Joung, B.; Lee, M.; Hwang, C.; Pak, H. Long-Term Outcome of Additional Superior Vena Cava to Septal Linear Ablation in Catheter Ablation of Atrial Fibrillation. J. Am. Heart Assoc. 2019, 8, e013985. [Google Scholar] [CrossRef]
- Overeinder, I.; Osório, T.G.; Călburean, P.-A.; Bisignani, A.; Bala, G.; Sieira, J.; Ströker, E.; Al Houssari, M.; Mojica, J.; Boveda, S.; et al. Comparison Between Superior Vena Cava Ablation in Addition to Pulmonary Vein Isolation and Standard Pulmonary Vein Isolation in Patients with Paroxysmal Atrial Fibrillation with the Cryoballoon Technique. J. Interv. Card. Electrophysiol. 2021, 62, 579–586. [Google Scholar] [CrossRef]
- Kataoka, S.; Ejima, K.; Yazaki, K.; Kanai, M.; Yagishita, D.; Shoda, M.; Hagiwara, N. Feasibility of Superior Vena Cava Isolation in Patients with Cardiac Implantable Electronic Devices. J. Cardiovasc. Electrophysiol. 2020, 31, 3132–3140. [Google Scholar] [CrossRef]
- Simu, G.; Deneke, T.; Ene, E.; Nentwich, K.; Berkovitz, A.; Sonne, K.; Halbfass, P.; Arvaniti, E.; Waechter, C.; Müller, J. Empirical Superior Vena Cava Isolation in Patients Undergoing Repeat Catheter Ablation Procedure after Recurrence of Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2022, 65, 551–558. [Google Scholar] [CrossRef]
- Nyuta, E.; Takemoto, M.; Sakai, T.; Mito, T.; Masumoto, A.; Todoroki, W.; Yagyu, K.; Ueno, J.; Antoku, Y.; Koga, T.; et al. Importance of the Length of the Myocardial Sleeve in the Superior Vena Cava in Patients with Atrial Fibrillation. J. Arrhythm. 2021, 37, 43–51. [Google Scholar] [CrossRef]
- Arruda, M.; Mlcochova, H.; Prasad, S.K.; Kilicaslan, F.; Saliba, W.; Patel, D.; Fahmy, T.; Morales, L.S.; Schweikert, R.; Martin, D.; et al. Electrical Isolation of the Superior Vena Cava: An Adjunctive Strategy to Pulmonary Vein Antrum Isolation Improving the Outcome of AF Ablation. J. Cardiovasc. Electrophysiol. 2007, 18, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Ichihara, N.; Nakamura, H.; Taniguchi, H.; Hachiya, H.; Araki, M.; Takagi, T.; Iwasawa, J.; Kuroi, A.; Hirao, K.; et al. Prospective Evaluation of Electromyography-Guided Phrenic Nerve Monitoring during Superior Vena Cava Isolation to Anticipate Phrenic Nerve Injury. J. Cardiovasc. Electrophysiol. 2016, 27, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Dong, J.Z.; Liu, X.P.; Zhang, X.Y.; Long, D.Y.; Sang, C.H.; Ning, M.; Tang, R.B.; Jiang, C.X.; Ma, C.S. Sinus Node Injury as A Result of Superior Vena Cava Isolation During Catheter Ablation for Atrial Fibrillation and Atrial Flutter. Pacing Clin. Electrophysiol. 2011, 34, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Takahashi, A.; Takagi, T.; Nakajima, J.; Takagi, K.; Hikita, H.; Goya, M.; Hirao, K. Novel Ablation Strategy for Isolating the Superior Vena Cava Using Ultra High-Resolution Mapping. Circ. J. 2018, 82, 2007–2015. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, S.; Yamao, K.; Hasegawa, K.; Ishikawa, E.; Mukai, M.; Aoyama, D.; Kaseno, K.; Hachiya, H.; Iesaka, Y.; Tada, H. SVC Mapping using an Ultra-High Resolution 3-Dimensional Mapping System in Patients with and without AF. JACC Clin. Electrophysiol. 2019, 5, 958–967. [Google Scholar] [CrossRef]
- Gianni, C.; Sanchez, J.E.; Mohanty, S.; Trivedi, C.; Della Rocca, D.G.; Al-Ahmad, A.; Burkhardt, J.D.; Gallinghouse, G.J.; Hranitzky, P.M.; Horton, R.P.; et al. Isolation of the Superior Vena Cava from the Right Atrial Posterior Wall: A Novel Ablation Approach. EP Eur. 2018, 20, e124–e132. [Google Scholar] [CrossRef]
- Nishiyama, N.; Hashimoto, K.; Yamashita, T.; Miyama, H.; Fujisawa, T.; Katsumata, Y.; Kimura, T.; Fukuda, K.; Takatsuki, S. Visualization of the Electrophysiologically Defined Junction between the Superior Vena Cava and Right Atrium. J. Cardiovasc. Electrophysiol. 2020, 31, 1964–1969. [Google Scholar] [CrossRef]
- Fukumoto, K.; Takatsuki, S.; Kimura, T.; Nishiyama, N.; Tanimoto, K.; Aizawa, Y.; Tanimoto, Y.; Fukuda, Y.; Miyoshi, S.; Fukuda, K. Electrophysiological Properties of the Superior Vena Cava and Venoatrial Junction in Patients with Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2014, 25, 16–22. [Google Scholar] [CrossRef]
- Miyazaki, S.; Taniguchi, H.; Kusa, S.; Uchiyama, T.; Hirao, K.; Iesaka, Y. Conduction Recovery after Electrical Isolation of Superior Vena Cava. Circ. J. 2013, 77, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, S.; Taniguchi, H.; Kusa, S.; Ichihara, N.; Nakamura, H.; Hachiya, H.; Iesaka, Y. Factors Predicting an Arrhythmogenic Superior Vena Cava in Atrial Fibrillation Ablation: Insight into the Mechanism. Heart Rhythm 2014, 11, 1560–1566. [Google Scholar] [CrossRef]
- Inada, K.; Matsuo, S.; Tokutake, K.; Yokoyama, K.; Hioki, M.; Narui, R.; Ito, K.; Tanigawa, S.; Yamashita, S.; Tokuda, M.; et al. Predictors of Ectopic Firing from the Superior Vena Cava in Patients with Paroxysmal Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2015, 42, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Omuro, T.; Yoshiga, Y.; Ueyama, T.; Shimizu, A.; Ono, M.; Fukuda, M.; Kato, T.; Ishiguchi, H.; Fujii, S.; Hisaoka, M.; et al. An impact of Superior Vena Cava Isolation in Non-Paroxysmal Atrial Fibrillation Patients with Low Voltage Areas. J. Arrhythm. 2021, 37, 965–974. [Google Scholar] [CrossRef]
- Takamiya, T.; Inaba, O.; Nitta, J.; Sato, A.; Inamura, Y.; Murata, K.; Ikenouchi, T.; Kono, T.; Nitta, G.; Takahashi, Y.; et al. Association between the Locations of Non-Pulmonary Vein Triggers and Ablation Outcomes in Repeat Procedures after Cryoballoon Ablation of Paroxysmal Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2021, 62, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Yang, G.; Ju, W.; Li, M.; Chen, H.; Gu, K.; Liu, H.; Chen, M. Empirical Superior Vena Cava Isolation Improves Outcomes of Radiofrequency Re-Ablation in Pulmonary Vein Isolation Non-Responders: A 2-Center Retrospective Study in China. Front. Cardiovasc. Med. 2022, 9, 1049414. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Guo, X.; Sun, Q.; Yang, J.; Xie, H.; Cao, Z.; Chen, Y.; Zhang, S.; Wu, S.; Ma, J. Electrical Isolation of the Superior Vena Cava using Second-Generation Cryoballoon in Patients with Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2020, 31, 1307–1314. [Google Scholar] [CrossRef]
- Rubio Campal, J.M.; Sánchez Borque, P.; Miracle Blanco, Á.; Bravo Calero, L.; Crosa, J.; Tuñón Fernández, J. A Novel Simple, Fast, and Safe Approach for Effective Superior Vena Cava Isolation using the Third-Generation Cryoballoon. Pacing Clin. Electrophysiol. 2020, 43, 62–67. [Google Scholar] [CrossRef]
- Arceluz, M.R.; Cruz, P.F.; Falconi, E.; de Oca, R.M.; Delgado, R.; Figueroa, J.; Ortega, M.; Merino, J.L. Electrical Isolation of the Superior Vena Cava by Laser Balloon Ablation in Patients with Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2018, 53, 217–223. [Google Scholar] [CrossRef]
- Papathanasiou, K.; Giotaki, S.; Kossyvakis, C.; Kazantzis, D.; Vrachatis, D.; Deftereos, G.; Raisakis, K.; Kaoukis, A.; Avramides, D.; Siasos, G.; et al. Hot Balloon Versus Cryoballoon Ablation in Patients with Atrial Fibrillation: A Systematic Review and Meta-Analysis. EP Eur. 2022, 24, euac053.197. [Google Scholar] [CrossRef]
- Hori, Y.; Nakahara, S.; Aoki, H.; Sato, H.; Fukuda, R.; Hua, Z.; Koshikawa, Y.; Mizutani, Y.; Nakamura, H.; Hisauchi, I.; et al. Comparison of Phrenic Nerve Injury and Its Effect on the Extrapulmonary Vein Structures with Cryoballoon and Hot-Balloon Ablation Systems: Considering the Lesion Created on the Superior Vena Cava as A Surrogate Marker. Heart Vessel. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Imada, H.; Fukuzawa, K.; Kiuchi, K.; Matsumoto, A.; Konishi, H.; Ichibori, H.; Hyogo, K.; Kurose, J.; Mori, S.; Takaya, T.; et al. Anatomical Dilatation of the Superior Vena Cava Associated with an Arrhythmogenic Response Induced by SVC Scan Pacing after Atrial Fibrillation Ablation. J. Arrhythm. 2017, 33, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kühne, M.; Schaer, B.; Osswald, S.; Sticherling, C. Superior Vena Cava Stenosis after Radiofrequency Catheter Ablation for Electrical Isolation of the Superior Vena Cava. Pacing Clin. Electrophysiol. 2010, 33, e36–e38. [Google Scholar] [CrossRef] [PubMed]
Author | Ablation | N | Index | AF Type | SVC-Trigger | Female (%) | Age | HF (%) | FU | Monitoring Protocol | Post-AFCA AAD | Recurrence (%) | Complications | Feasibility | SVCI Procedural Data |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wang et al., 2008 China [28] | RF CPVI + SVC I vs. CPVI | 106 (52/54) | Yes | PAF | No | 45 | 66 ± 9 | N/R | 12 mo | ECG D1, W1, 1, 2, 3, 6, 9, & 12 mo, 24 h Holter ECG q 2 mo | Amio at least 1 mo | 6 vs. 7 (p = 0.73) | 2 vs. 1 FAPA 0 PNI 0 SNI 0 PVS. 0 SVCS | 96% | mean SVC IT (min): 7.8 ± 2.7 mean RF app times: 6 ± 2 mean PT (min): 185.7 + 19.3 (vs. 182.7 + 17.7; p = 0.40) mean FT (min): 17.6 + 3.6 (vs. 16.4 + 2.7; p = 0.07) |
Corrado et al., 2010 Italy [29] | RF CPVI + SVCI vs. CPVI | 320 (160/160) | Yes | PAF, PeAF | No | 26 vs. 26 | 55 ± 10 vs. 57 ± 9 | N/R | 12 mo | ECG & 48 h Holter ECG 1, 3, 6, 9, & 12 mo | No | Total 19 vs. 26 (p = NS); PAF 10 vs. 23 (p = 0.04); PeAF 20 vs. 26 (p = NS) | 0 PNI 0 SNI 0 SVCS 1 vs. 0 PVS. 1 vs. 0 CAE 0 vs. 1 tamponade 0 vs. 1 stroke | 84% | mean SVCI PT (min): 25 ± 10 mean PT (h): 3.1 ± 1.4 (vs. 2.5 ± 1.2) mean FT (min): 91 ± 27 (vs. 74 ± 23) |
Da Costa et al., 2015 France [27] | RF CPVI + SVCI vs. CPVI | 100 (51/49) | Yes | PAF | No | 17 | 56 ± 9 | N/R | 15 ± 8 mo | 24 h Holter upon symptoms & q 6 mo | at least 3 mo | 12 vs. 18 (p = 0.6) | 2 vs. 0 PNI 0 SNI 0 tamponade 0 vs. 1 stroke 0 vs. 1 PVS. | 100% | mean PT (h): 2.4 ± 0.6 vs. 2.5 ± 0.8 (p = 0.6) mean FT (min): 14 ± 5 vs. 15 ± 6 (p = 0.4) |
Author | Ablation Modality | N | Index | Previous Source | AF Type | Female (%) | Age | HF (%) | FU | Recurrence (%) | SVCI Procedural Data | Safety | Feasibility |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVCI only | |||||||||||||
Chang et al., 2012 Taiwan [32] | RF SVCI vs. SVCI + CPVI | 68 (37/31) | Yes | N/A | PAF | 53 | 56 ± 12 | N/R | 88 ± 50 mo | higher in SVCI plus CPVI (p = 0.012) | N/R | 0 PNI 0 SVCS 0 vs. 1 tamponade 1 vs. 0 SNI | N/R |
SVCI as-needed vs. empiric | |||||||||||||
Ejima et al., 2015 Japan [30] | RF CPVI + SCVI as-needed vs. empiric | 186 (93/93) | Yes | N/A | PAF | 29 vs. 25 | 58 ± 12 vs. 60 ± 10 | N/R | 27 ± 12 mo | 44 vs. 23 (p = 0. 035) empiric SVCI (HR = 0.57, 95% Cl 0.318–0.999, p = 0.049) | mean PT (min): 208.7 ± 54 vs. 181 ± 58.3 (p = 0.0001) mean FT (min): 30.2 ± 15.1 vs. 16.7± 7.3 (p < 0.0001) | 0 PNI 0 SNI 1 vs. 1 gastric hypomotility 0 vs. 1 tamponade | 87% (81/93) 0 vs. 12 no SVC potentials |
Zhang et al., 2020 China [33] | RF CPVI + SVCI as-needed vs. empiric | 144 (72/72) | Redo | RF CPVI ± CTI | PAF | 58 vs. 53 | 64 ± 10 vs. 64 ± 10 | Excluded | 19 ± 10 mo | 41.7 vs. 22.2 (p = 0.037) empiric SVCI independent protector (OR = 0.47; 95% CI: 0.25–0.87; p = 0.016) | mean PT (min): 116.7 ± 32.9 vs. 123.5 ± 41.3 (p = 0.273) mean FT (min): 5.4 ± 2.1 vs. 5.8 ±1.8 (p = 0.179) mean AT (min): 13.0 ± 5.5 vs. 18.2 ± 5.2 (p < 0.001) | 3 vs. 2 FAPA 1 vs. 0 TIA 0 vs. 1 PNI (t) | 1 vs. 4 obviating PNI 0 vs. 2 no SVC potentials |
CPVI versus CPVI plus SVCI as-needed | |||||||||||||
Higuchi et al., 2010 Japan [26] | RF CPVI + SVCI vs. CPVI | 60(12/48) | Yes (5/12 SVCI redo) | N/A | PAF, PeAF | 23 (33 vs. 21) | 59 ± 10 (60 ± 10 vs. 59 ± 10) | Excluded | 12 mo | 16.6 vs. 31.25 (2/12 vs. 15/48) | mean no of RF applications: 8 ± 2 | 1 PNI (t) | 91.6 % (11/12) |
Nakamura et al., 2016 Japan [19] | RF CPVI + SVCI vs. CPVI | 36 (7/29) | Redo | RF (CPVI + CTI) | PAF, PeAF | 14 (14 vs. 14) | 59 ± 9 (58 ± 10 vs. 59 ± 10) | Excluded | 1538 ± 426 d | 0 vs. 27.6 | N/R | Zero | 71.42 % (2 obviating PNI) |
Takigawa et al., 2017 Japan [11] | RF CPVI ± CTI vs. CPVI + SCVI ± CTI vs. CPVI + non PV foci: Linear ablations (LA roof ± bottom ± MAI ± CTI) | 865 (740/57/68) | Yes | N/A | PAF | 23 (20/40/31) | 61 ± 10 (61 ± 10/60 ± 10/61 ± 11) | 5.8 (5.1/3.5/14.7) | 54 ± 39 mo | 40.3 vs. 38.6 vs. 54.4 (p = 0.03) | N/R | 5.9% 5.3% 4.2% (p = NS) | N/R |
Yoshida et al., 2017 Japan [34] | RF CPVI + SVCI vs. CPVI | 121 (22/99) | Yes | N/A | PAF | 18 (36 vs. 14) | 63 ± 9 (64 ± 9 vs. 63 ± 9) | N/R | 22 mo | N/R Redo ablation 1.68 ± 0.78 vs. 1.28 ± 0.45 procedures (p = 0.002) | N/R | N/R | 100% |
CPVI versus CPVI plus SVCI empiric | |||||||||||||
Yoshiga et al., 2018 Japan [35] | RF CPVI vs. SVCI + CPVI | 70 (55/15) | redo | N/A | PeAF | 23 | 61 ± 12 | 17.1 | 32 (12–57) | 34.3 vs. 25.7 | N/R | 1 stroke 1 abdominal bleeding | N/R |
Jin et al., 2019 Republic of Korea [36] | RF CPVI + CTI vs. CPVI + CTI + SCVI | 614 (307/307) | Yes | N/A | PAF, PeAF | 27 | 58 ± 11 | 5.2 | 41 ± 24 mo | 46.3 vs. 26.1 (p < 0.001), independent protector (HR = 0.59; 95% CI, 0.44–0.78; p < 0.001) | mean PT(min): 165 ± 44 vs. 184 ± 34 (p < 0.001) mean AT (s): 3996 ± 1220 vs. 4809 ± 1046 (p < 0.001) | 0 PNI 0 vs. 1AVB 5 vs. 6 Tamponade | N/R |
Knecht et al., 2022 Switzerland [37] | RF CPVI + SVCI vs. CPVI | 344 (75/269) | redo | PVI (CB 76% RF 24%) | PAF, PeAF | 27 | 60 ± 10 | N/R | 320 d median | 27 vs. 20 (p = 0.151) (SVCI HR = 1.3 95% CI:0.836–2.022; p = 0.244 | mean PT (min): 99 ± 34 vs. 110 ± 42 (p = 0.063) mean FT (min): 3 ± 6 vs. 5 ± 7 (p = 0.048) mean total RF (s): 779 ± 416 vs. 859 ± 491 (p = 0.244) mean SVCIT (s): 265 ± 196 | 0 PNI | 96% (72/76) (3 obviating PNI) |
Overeinder et al., 2021 Belgium [38] | CB PVI + SVCI vs. PVI | 100 (50/50) | Yes | N/A | PAF | 34 vs. 30 | 55 ± 12 56 ± 12 | 10 vs. 22 | 12 mo | 10 vs. 28 (HR = 0.78; 95% CI: 0.64–0.89; p = 0.04) | mean SVCIT (s): 36.7 ± 29 mean SVC FT (min): 1.6 ± 0.8 mean PT (min): 88.7 ± 13.6 vs. 70.1 ± 15.2; p < 0.001 mean FT (min): 25.1 ± 8.4 vs. 22.9 ± 12; p = 0.29 | 2 PNI (t) 0 SNI 0 vascular | 94% (3 obviating PNI) |
Other | |||||||||||||
Simu et al., 2022 Germany [39] | RF HPSD + SVCI ± LA substrate vs. HPSD ± LA substrate | 276(128/148) | redo | N/R | PAF, PeAF | 45 | 67 ± 10 | N/R | 12 mo | ER: 19 vs. 15 (p = 0.304) LR: 27 vs. 26 (p = 0.853) SVCI (HR = 0.951; 95% CI: 0.558–1.621; p = 0.853) | mean PT (min): 84.2 ± 26.6 vs. 86.4 ± 27.6 (p = 0.503) mean FT (min): 7.4 ± 4.8 vs. 7.9 ± 5.8 (p = 0.505) mean AT (min): 13.8 ± 7.2 vs. 14.1 ± 9.4 (p = 0.784) | 0 PNI 0 SNI 0 SVCS 0 tamponade | N/R |
Kataoka et al., 2020 Japan [40] | RF CPVI + SVCI ± CTI; CIED vs. non-CIED | 34/34 (age-sex-AF matched) | yes | N/A | PAF, PeAF | 35 vs. 29 | 58 ± 13 vs. 59 ± 12 | N/R | 22 mo | 35.3 vs. 29.4 (p = 0.6) | mean PT (min): 175.3 ± 12.4 vs. 152.6 ± 12.6 (p = 0.204) mean FT (min): 15.8 ± 1.9 vs. 10.5 ± 1.8 (p = 0.046) mean SVCIT (min): 6.3 ± 4.2 vs. 6.3 ± 5.1 (p = 0.99) | 0 PNI 3 lead failures (8.8%) | 91.2% vs. 100% (p = 0.07) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrachatis, D.A.; Papathanasiou, K.A.; Kossyvakis, C.; Giotaki, S.G.; Deftereos, G.; Kousta, M.S.; Iliodromitis, K.E.; Bogossian, H.; Avramides, D.; Giannopoulos, G.; et al. Efficacy, Safety and Feasibility of Superior Vena Cava Isolation in Patients Undergoing Atrial Fibrillation Catheter Ablation: An Up-to-Date Review. Biomedicines 2023, 11, 1022. https://doi.org/10.3390/biomedicines11041022
Vrachatis DA, Papathanasiou KA, Kossyvakis C, Giotaki SG, Deftereos G, Kousta MS, Iliodromitis KE, Bogossian H, Avramides D, Giannopoulos G, et al. Efficacy, Safety and Feasibility of Superior Vena Cava Isolation in Patients Undergoing Atrial Fibrillation Catheter Ablation: An Up-to-Date Review. Biomedicines. 2023; 11(4):1022. https://doi.org/10.3390/biomedicines11041022
Chicago/Turabian StyleVrachatis, Dimitrios A., Konstantinos A. Papathanasiou, Charalampos Kossyvakis, Sotiria G. Giotaki, Gerasimos Deftereos, Maria S. Kousta, Konstantinos E. Iliodromitis, Harilaos Bogossian, Dimitrios Avramides, George Giannopoulos, and et al. 2023. "Efficacy, Safety and Feasibility of Superior Vena Cava Isolation in Patients Undergoing Atrial Fibrillation Catheter Ablation: An Up-to-Date Review" Biomedicines 11, no. 4: 1022. https://doi.org/10.3390/biomedicines11041022