Hemoadsorption as Adjuvant Therapy in Acute Respiratory Distress Syndrome (ARDS): A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Primary and Secondary Outcomes
2.3. Search Methods
2.4. Selection of Studies Included and Data Extraction
2.5. Risk of Bias and Certainty of Evidence Assessment of the Included Studies
2.6. Data Synthesis and Statistical Analysis
3. Results
3.1. Devices Used
3.2. Primary Outcomes
3.3. Secondary Outcomes
3.3.1. Inflammatory Biomarkers
3.3.2. Effects on NE and Lactate
3.3.3. Other Laboratory Findings and Safety Outcomes
3.3.4. Length of Stay and Mortality
3.3.5. Subgroup Analysis COVID-19 and Survival
3.4. Outcomes with Insufficient Reporting
3.5. Risk of Bias Assessment and Quality Assessment of the Studies Included
4. Discussion
4.1. Hemoadsorption as Adjuvant Therapy in ARDS
4.2. Modulating the Inflammatory Response
4.3. Improvement in Oxygenation
4.4. COVID-19
4.5. Safety and Mortality
4.6. Strengths and Limitations
4.7. Implications of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788. [Google Scholar] [CrossRef]
- Villar, J.; Pérez-Méndez, L.; Blanco, J.; Añón, J.M.; Blanch, L.; Belda, J.; Santos-Bouza, A.; Fernández, R.L.; Kacmarek, R.M. Spanish Initiative for Epidemiology, Stratification, and Therapies for ARDS (SIESTA) Network. A universal definition of ARDS: The PaO2/FiO2 ratio under a standard ventilatory setting—A prospective, multicenter validation study. Intensive Care Med. 2013, 39, 583–592. [Google Scholar] [CrossRef] [PubMed]
- The ARDS Definition Task Force. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Ashbaugh, D.; Bigelow, D.B.; Petty, T.; Levine, B. Acute Respiratory Distress in Adults. Lancet 1967, 290, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Bernard, G.R.; Artigas, A.; Brigham, K.L.; Carlet, J.; Falke, K.; Hudson, L.; Lamy, M.; Legal, J.R.; Morris, A.; Spragg, R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. 1994, 149, 818–824. [Google Scholar] [CrossRef]
- Vincent, J.L.; Slutsky, A.S. We’ve never seen a patient with ARDS! Intensive Care Med. 2020, 46, 2133–2135. [Google Scholar] [CrossRef]
- Combes, A.; Peek, G.J.; Hajage, D.; Hardy, P.; Abrams, D.; Schmidt, M.; Dechartres, A.; Elbourne, D. ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med. 2020, 46, 2048–2057. [Google Scholar] [CrossRef]
- Griffiths, M.J.D.; McAuley, D.F.; Perkins, G.D.; Barrett, N.; Blackwood, B.; Boyle, A.; Chee, N.; Connolly, B.; Dark, P.; Finney, S.; et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir. Res. 2019, 6, e000420. [Google Scholar] [CrossRef]
- Yang, C.K.; Teng, A.; Lee, D.Y.; Rose, K. Pulmonary complications after major abdominal surgery: National Surgical Quality Improvement Program analysis. J. Surg. Res. 2015, 198, 441–449. [Google Scholar] [CrossRef]
- Hawchar, F.; Tomescu, D.; Träger, K.; Joskowiak, D.; Kogelmann, K.; Soukup, J.; Friesecke, S.; Jacob, D.; Gummert, J.; Faltlhauser, A.; et al. Hemoadsorption in the critically ill-Final results of the International CytoSorb Registry. PLoS ONE 2022, 17, e0274315. [Google Scholar] [CrossRef]
- Thomas, M.; Moriyama, K.; Ledebo, I. AN69: Evolution of the World’s First High Permeability Membrane. Contrib. Nephrol. 2011, 173, 119–129. [Google Scholar] [PubMed]
- Song, M.; Winchester, J.; Albright, R.L.; Capponi, V.J.; Choquette, M.D.; Kellum, J.A. Cytokine Removal with a Novel Adsorbent Polymer. Blood Purif. 2004, 22, 428–434. [Google Scholar] [CrossRef]
- Chen, J.; Han, W.; Chen, J.; Zong, W.; Wang, W.; Wang, Y.; Yu, Y. High performance of a unique mesoporous polystyrene-based adsorbent for blood purification. Regen Biomater. 2017, 4, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Geraci, T.C.; Kon, Z.N.; Moazami, N.; Chang, S.H.; Carillo, J.; Chen, S.; Fargnoli, A.; Alimi, M.; Pass, H.; Galloway, A. Hemoadsorption for management of patients on veno-venous ECMO support for severe COVID-19 acute respiratory distress syndrome. J. Card. Surg. 2021, 36, 4256–4264. [Google Scholar] [CrossRef] [PubMed]
- Berlot, G.; Pintacuda, S.; Moro, E.; Paluzzano, G.; Scamperle, A.; Chillemi, A.; Longo, I.; Dattola, R.; Roman-Pognuz, E.; Tomasini, A. Effects of tocilizumab versus hemoadsorption combined with tocilizumab in patients with SARS-CoV-2 pneumonia: Preliminary results. Int. J. Artif. Organs 2021, 45, 391398821989334. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Chapter 7: Systematic reviews of etiology and risk. In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; JBI: Adelaide, Australia, 2020; Available online: https://synthesismanual.jbi.global (accessed on 10 March 2023).
- GRADEpro GDT: GRADEpro Guideline Development Tool. 2022. Available online: https://www.gradepro.org/ (accessed on 10 March 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 October 2022).
- Harrer, M. Doing Meta-Analysis with R: A Hands-on Guide, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; p. 1. [Google Scholar]
- IntHout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2016, 27, 1785–1805. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Wiegele, M.; Krenn, C.G. CytosorbTM in a patient with Legionella pneumonia-associated rhabdomyolysis: A case report. ASAIO J. Am. Soc. Artif. Intern. Organs 2015, 61, e14–e16. [Google Scholar] [CrossRef]
- Rieder, M.; Zahn, T.; Benk, C.; Lother, A.; Bode, C.; Staudacher, D.; Duerschmied, D.; Supady, A. Cytokine adsorption in a patient with severe coronavirus disease 2019 related acute respiratory distress syndrome requiring extracorporeal membrane oxygenation therapy: A case report. Artif. Organs 2020, 45, 191–194. [Google Scholar] [CrossRef]
- Ramírez-Guerrero, G.; Torres Cifuentes, V.; Baghetti Hernández, R.; Villagrán Cortés, F.; Rojas Doll, S.; Oliva Alarcón, R.; Lucero Córdova, C.; Flores Fernandez, P.; Garay Coloma, O. Early Cytokine Removal in Critical COVID-19 Patients with Extracorporeal Therapies (HA-380 plus High Volume Hemofiltration) May Prevent Progression of Acute Respiratory Distress Syndrome: Case Report. Blood Purif. 2020, 50, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, P.; Tomic, B.; Kovacevic, T.; Dragic, S. Use of CytoSorb® as a therapeutic option in a critically ill patient with acute respiratory distress syndrome caused by influenza A (H1N1) pneumonia: A case report. Int. J. Crit. Illn. Inj. Sci. 2020, 10, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.M.; Chien, Y.C.; Wang, C.H.; Chang, S.Y.; Wang, J.T.; Hsieh, S.C.; Yeh, Y.C.; Ku, S.C.; Yu, C.J.; Chiang, B.L.; et al. Successful Treatment of a Critically Ill COVID-19 Patient Using Continuous Renal Replacement Therapy With Enhanced Cytokine Removal and Tocilizumab: A Case Report. Front. Med. 2021, 8, 649583. [Google Scholar] [CrossRef]
- La Camera, G. Use of CytoSorb in a Cardiopathic Patient Suffering from Septic Shock, Multiple Organ Failure and Acute Respiratory Distress Syndrome. A case of a center in Catania (Italy). Acta. Medica. Mediterr. 2019, 29, 2533–2535. [Google Scholar]
- David, S.; Thamm, K.; Schmidt, B.M.; Falk, C.S.; Kielstein, J.T. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J. Intensive Care 2017, 5, 12. [Google Scholar] [CrossRef]
- Träger, K.; Schütz, C.; Fischer, G.; Schröder, J.; Skrabal, C.; Liebold, A.; Reinelt, H. Cytokine Reduction in the Setting of an ARDS-Associated Inflammatory Response with Multiple Organ Failure. Case Rep. Crit. Care 2016, 2016, 9852073. [Google Scholar] [CrossRef]
- Rizvi, S.; Danic, M.; Silver, M.; LaBond, V. Cytosorb filter: An adjunct for survival in the COVID-19 patient in cytokine storm? a case report. Heart Lung J. Crit. Care 2020, 50, 44–50. [Google Scholar] [CrossRef]
- Lees, N.J.; Rosenberg, A.J.P.; Hurtado-Doce, A.I.; Jones, J.; Marczin, N.; Zeriouh, M.; Weymann, A.; Sabashnikov, A.; Simon, A.R.; Popov, A.F. Combination of ECMO and cytokine adsorption therapy for severe sepsis with cardiogenic shock and ARDS due to Panton–Valentine leukocidin—Positive Staphylococcus aureus pneumonia and H1N1. J. Artif. Organs 2016, 19, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Berlot, G.; Tomasini, A.; Roman Pognuz, E.; Randino, A.; Chiella, F.; La Fata, C.; Piva, P.; Amato, P.; di Maso, V.; Bianco, F.; et al. The Combined Use of Tocilizumab and Hemoadsorption in a Patient with SARS-CoV-2-19-Associated Pneumonia: A Case Report. Nephron 2020, 144, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, A.C.; Zoller, M.; Scharf, C.; Liebchen, U.; Irlbeck, M.; Schroeder, I. CytoSorb® Hemoadsorption as a Promising Tool to Handle COVID-19-Induced Cytokine Storm. Case Rep. Crit. Care 2021, 2021, 9937499. [Google Scholar] [CrossRef]
- Alharthy, A.; Faqihi, F.; Memish, Z.A.; Balhamar, A.; Nasim, N.; Shahzad, A.; Tamim, H.; Alqahtani, S.A.; Brindley, P.G.; Karakitsos, D. Continuous renal replacement therapy with the addition of CytoSorb® cartridge in critically ill patients with COVID-19 plus acute kidney injury: A case-series. Artif. Organs 2020, 45, E101–E112. [Google Scholar] [CrossRef] [PubMed]
- Kogelmann, K.; Scheller, M.; Drüner, M.; Jarczak, D. Use of hemoadsorption in sepsis-associated ECMO-dependent severe ARDS: A case series. J. Intensive Care Soc. 2019, 21, 183–190. [Google Scholar] [CrossRef]
- Lother, A.; Benk, C.; Staudacher, D.L.; Supady, A.; Bode, C.; Wengenmayer, T.; Duerschmied, D. Cytokine Adsorption in Critically Ill Patients Requiring ECMO Support. Front. Cardiovasc. Med. 2019, 6, 71. [Google Scholar] [CrossRef]
- Nassiri, A.A.; Hakemi, M.S.; Miri, M.M.; Shahrami, R.; Koomleh, A.A.; Sabaghian, T. Blood purification with CytoSorb in critically ill COVID-19 patients: A case series of 26 patients. Artif. Organs 2021, 45, 1338–1347. [Google Scholar] [CrossRef]
- Wunderlich-Sperl, F.; Kautzky, S.; Pickem, C.; Hörmann, C. Adjuvant hemoadsorption therapy in patients with severe COVID-19 and related organ failure requiring CRRT or ECMO therapy: A case series. Int. J. Artif. Organs 2021, 44, 694–702. [Google Scholar] [CrossRef]
- Rampino, T.; Gregorini, M.; Perotti, L.; Ferrari, F.; Pattonieri, E.F.; Grignano, M.A.; Valente, M.; Garrone, A.; Islam, T.; Libetta, C.; et al. Hemoperfusion with CytoSorb as Adjuvant Therapy in Critically Ill Patients with SARS-CoV2 Pneumonia. Blood Purif. 2021, 50, 566–571. [Google Scholar] [CrossRef]
- Rodeia, S.C.; Martins, F.L.; Fortuna, P.; Bento, L. Cytokine Adsorption Therapy during Extracorporeal Membrane Oxygenation in Adult Patients with COVID-19. Blood Purif. 2021, 51, 791–798. [Google Scholar] [CrossRef]
- Akil, A.; Ziegeler, S.; Rehers, S.; Ernst, E.C.; Fischer, S. Blood purification therapy in patients with severe COVID-19 requiring veno-venous ECMO therapy: A retrospective study. Int. J. Artif. Organs 2022, 45, 615–622. [Google Scholar] [CrossRef]
- Akil, A.; Ziegeler, S.; Reichelt, J.; Rehers, S.; Abdalla, O.; Semik, M.; Fischer, S. Combined Use of CytoSorb and ECMO in Patients with Severe Pneumogenic Sepsis. Thorac. Cardiovasc. Surg. 2020, 69, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Pieri, M.; Fominskiy, E.; Nardelli, P.; Bonizzoni, M.A.; Scandroglio, A.M. CytoSorb purification in critically ill SARS-CoV-2 patients. Int. J. Artif. Organs 2021, 45, 3913988211052572. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, S.R.; Yang, Z.L.; Liu, J.Y. Effect on Extrapulmonary Sepsis-Induced Acute Lung Injury by Hemoperfusion With Neutral Microporous Resin Column: Effect of Hemoperfusion on Sepsis. Ther. Apher. Dial. 2013, 17, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Supady, A.; Weber, E.; Rieder, M.; Lother, A.; Niklaus, T.; Zahn, T.; Frech, F.; Müller, S.; Kuhl, M.; Benk, C.; et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): A single centre, open-label, randomised, controlled trial. Lancet Respir. Med. 2021, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Schädler, D.; Pausch, C.; Heise, D.; Meier-Hellmann, A.; Brederlau, J.; Weiler, N.; Marx, G.; Putensen, C.; Spies, C.; Jörres, A.; et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS ONE 2017, 12, e0187015. [Google Scholar] [CrossRef]
- Rieder, M.; Duerschmied, D.; Zahn, T.; Lang, C.; Benk, C.; Lother, A.; Biever, P.; Bode, C.; Wengenmayer, T.; Staudacher, D.; et al. Cytokine Adsorption in Severe Acute Respiratory Failure Requiring Veno-Venous Extracorporeal Membrane Oxygenation. ASAIO J. Am. Soc. Artif. Intern. Organs 2020, 67, 332–338. [Google Scholar] [CrossRef]
- Calabrò, M.G.; Febres, D.; Recca, G.; Lembo, R.; Fominskiy, E.; Scandroglio, A.M.; Zangrillo, A.; Pappalardo, F. Blood Purification With CytoSorb in Critically Ill Patients: Single-Center Preliminary Experience. Artif. Organs. 2019, 43, 189–194. [Google Scholar] [CrossRef]
- Bruenger, F.; Kizner, L.; Weile, J.; Morshuis, M.; Gummert, J.F. First successful combination of ECMO with cytokine removal therapy in cardiogenic septic shock: A case report. Int. J. Artif. Organs. 2015, 38, 113–116. [Google Scholar] [CrossRef]
- Rosalia, R.A.; Ugurov, P.; Neziri, D.; Despotovska, S.; Kostoska, E.; Veljanovska-Kiridjievska, L.; Kuzmanov, D.; Trifunovski, A.; Popevski, D.; Villa, G.; et al. Extracorporeal Blood Purification in Moderate and Severe COVID-19 Patients: A Prospective Cohort Study. Blood Purif. 2021, 51, 233–242. [Google Scholar] [CrossRef]
- Zhang, H.; He, F.; Li, P.; Hardwidge, P.R.; Li, N.; Peng, Y. The Role of Innate Immunity in Pulmonary Infections. BioMed Res. Int. 2021, 2021, 6646071. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Shiga, H.; Hirasawa, H.; Nishida, O.; Oda, S.; Nakamura, M.; Mashiko, K.; Kitamura, N.; Kikuchi, Y.; Fuke, N. Continuous Hemodiafiltration with a Cytokine-Adsorbing Hemofilter in Patients with Septic Shock: A Preliminary Report. Blood Purif. 2014, 38, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, S.R.; Su, W.; Liu, J.Y. Removal of Humoral Mediators and the Effect on the Survival of Septic Patients by Hemoperfusion With Neutral Microporous Resin Column: Effect of Hemoperfusion on Sepsis. Ther. Apher. Dial. 2010, 14, 596–602. [Google Scholar] [CrossRef]
- Winchester, J.F.; Kellum, J.A.; Ronco, C.; Brady, J.A.; Quartararo, P.J.; Salsberg, J.A.; Levin, N.W. Sorbents in Acute Renal Failure and the Systemic Inflammatory Response Syndrome. Blood Purif. 2003, 21, 79–84. [Google Scholar] [CrossRef]
- Kellum, J.A.; Song, M.; Venkataraman, R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-κB DNA binding, and improves short-term survival in lethal endotoxemia. Crit. Care Med. 2004, 32, 801–805. [Google Scholar] [CrossRef]
- Ronco, C.; Tetta, C.; Mariano, F.; Wratten, M.L.; Bonello, M.; Bordoni, V.; Cardona, X.; Inguaggiato, P.; Pilotto, L.; D’Intini, V.; et al. Interpreting the Mechanisms of Continuous Renal Replacement Therapy in Sepsis: The Peak Concentration Hypothesis. Artif Organs. 2003, 27, 792–801. [Google Scholar] [CrossRef]
- Honore, P.M.; Hoste, E.; Molnár, Z.; Jacobs, R.; Joannes-Boyau, O.; Malbrain, M.L.; Forni, L.G. Cytokine removal in human septic shock: Where are we and where are we going? Ann. Intensive Care 2019, 9, 56. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, Y.; Zhai, K.; Li, J.; Li, M.; Yang, J.; Zhang, R.; Li, Y.; Li, Z. CytoSorb in patients with coronavirus disease 2019: A rapid evidence review and meta-analysis. Front. Immunol. 2023, 14, 1067214. [Google Scholar] [CrossRef]
- Hawchar, F.; Rao, C.; Akil, A.; Mehta, Y.; Rugg, C.; Scheier, J.; Adamson, H.; Deliargyris, E.; Molnar, Z. The Potential Role of Extracorporeal Cytokine Removal in Hemodynamic Stabilization in Hyperinflammatory Shock. Biomedicines 2021, 9, 768. [Google Scholar] [CrossRef]
- Rugg, C.; Klose, R.; Hornung, R.; Innerhofer, N.; Bachler, M.; Schmid, S.; Fries, D.; Ströhle, M. Hemoadsorption with CytoSorb in Septic Shock Reduces Catecholamine Requirements and In-Hospital Mortality: A Single-Center Retrospective “Genetic” Matched Analysis. Biomedicines 2020, 8, 539. [Google Scholar] [CrossRef]
- Piskovatska, V.; Navarrete Santos, A.; Kalies, K.; Korca, E.; Stiller, M.; Szabó, G.; Simm, A.; Wächter, K. Proteins Adsorbed during Intraoperative Hemoadsorption and Their In Vitro Effects on Endothelium. Healthcare 2023, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Akil, A.; Napp, L.C.; Rao, C.; Klaus, T.; Scheier, J.; Pappalardo, F. Use of CytoSorb© Hemoadsorption in Patients on Veno-Venous ECMO Support for Severe Acute Respiratory Distress Syndrome: A Systematic Review. J. Clin. Med. 2022, 11, 5990. [Google Scholar] [CrossRef]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, J.C.; Molnar, Z.; Deliargyris, E.N.; Ferrer, R. The Use of CytoSorb Therapy in Critically Ill COVID-19 Patients: Review of the Rationale and Current Clinical Experiences. Crit. Care Res. Pract. 2021, 2021, 7769516. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
- Gagnier, J.J.; Kienle, G.; Altman, D.G.; Moher, D.; Sox, H.; Riley, D.; CARE Group. The CARE Guidelines: Consensus-Based Clinical Case Reporting Guideline Development. Headache J. Head Face Pain 2013, 53, 1541–1547. [Google Scholar] [CrossRef]
Study, Year | Indication | Patients on HA 1 Therapy (n) | Control Group (n) | Study Design | Cartridge | Average No. of Adsorbents | Timeframe for Use | Results |
---|---|---|---|---|---|---|---|---|
Acevedo et al., 2021 [38] | ARDS, COVID-19 | 1 | - | Case report | CytoSorb | 1 | 9.2 h | Improved P/F 2 ratio, reduction in NA need |
Akil et al., 2020 [47] | ARDS, pneumogenic septic shock | 13 | 7 | Prospective obs. + post hoc comparison to retrospective historical controls | CytoSorb | min. of 2 | each for 24 h | Mortality 0% SG vs. 57% CG, sign, reduction in NA requirement, serum Lactate in SG |
Akil et al., 2022 [46] | COVID-19 | 16 | 10 | Retrospective observational | CytoSorb | Mean of 6 treatments (range 2–21) | 24 h each | HA therapy led to hemodynamic stabilization, reduction in inflammation |
Alharthy et al., 2020, [39] | ARDS, COVID-19 | 50 | - | Case series | CytoSorb | 2 ± 1 vs. 6 ± 2 (survivors vs. non-survivors) | each for 24 h | Improved P/F ratio among survivors, PLT counts were reduced |
Berlot et al., 2020 [37] | ARDS, COVID-19 | 1 | - | Case report | CytoSorb | 3 | each for 24 h | Improved P/F ratio, reduced CRP and IL-6 |
Berlot et al., 2021 [15] | ARDS, COVID-19 | 2 | - | Retrospective observational | CytoSorb | 3 | each for 24 h | PaO2/FiO2 ratio improved or remained stable, CRP, IL-6 decreased after HA |
David et al., 2017 [33] | ARDS, influenza pneumonia | 1 | - | Case report | CytoSorb | 1 | 24 h | Reduction in CRP, PCT, Hgb, and NA requirements and improved P/F ratio 24 h after HA |
Geraci et al. 2021 [14] | ARDS, COVID-19 | 10 | - | Case series | CytoSorb | - | 2 in the first 24 h, then 1 every 24 h | HA is a feasible and safe treatment, HA reduced inflammatory markers |
Huang et al., 2012 [49] | acute lung injury induced by extrapulmonary sepsis | 25 | 21 | RCT | HA-330 | Once a day for three consecutive days. | each for 2 h | Improving respiratory function, reduction in IL-1 and TNF-a |
Huang et al., 2021 [31] | ARDS, COVID-19 | 1 | - | Case report | oXiris | 7 | each for 24 h | Reduced vasopressor requirements after HA, reduction in inflammatory markers (IL-6) |
Kogelmann et al., 2020 [40] | ARDS | 7 | - | Case series | CytoSorb | 4 | 12–24 h | Improved P/F ratio, decrease in catecholamine need |
Kovacevic et al., 2020 [30] | ARDS, H1N1 influenza | 1 | - | Case report | CytoSorb | 2 | Decreased vasopressor requirements after HA | |
La Camera et al., 2019 [32] | ARDS, postoperative patient, pneumonia | 1 | - | Case report | CytoSorb | 2 | - | Reduced NA requirement |
Lees et al., 2016 [36] | ARDS, PLV+ S. aureus pneumonia | 1 | - | Case report | CytoSorb | 1 | 24 h | Improved oxygenation, decrease vasopressin and NA requirement |
Lother et al., 2019 [41] | ARDS, septic shock | 3 | - | Case series | CytoSorb | mean 1.3 median 1 (1–3) | 38.4, 12 and 13.5 h | Reduction in PLT count, no evidence of altered plasmatic coagulation, 67% mortality |
Nassiri et al., 2021 [42] | ARDS, COVID-19 | 26 | - | Case series | CytoSorb | mean 2, median of 2 (1–3) | median 35 IQR (18–48) | Significant reduction in inflammatory markers, reduction in NA requirement, improved P/F ratio and SOFA score |
Pieri et al., 2022 [48] | ARDS, COVID-19 | 15 | - | Retrospective observational | CytoSorb | 3 | 17 h (mean) | Improved P/F ratio, reduced CRP |
Ramírez-Guerro et al., 2020 [29] | ARDS, COVID-19 | 1 | - | Case report | Jafron HA-380 | 1 | 10 h | Improved P/F ratio and CT picture |
Rampino et al., 2020 [44] | COVID-19 | 5 | 4 | Case series | CytoSorb | 2 | 4 h sessions in 2 consecutive days | Better clinical course (mortality, pao2/fio2); lymphocyte no. improved; CRP decreased to a greater extent; IL-6, IL-8, and TNF-α decreased; IL-10 remained unchanged |
Rieder et al., 2020 [28] | ARDS, COVID-19 | 1 | - | Case report | CytoSorb | 1 | 72 h | Reduction in PLT count, in CRP and IL-6 |
Rizvi et al., 2020 [35] | ARDS, COVID-19 | 1 | - | Case report | CytoSorb | 8 | First 4 for 12h, then 4 for 24 h | Reduction in PLT, Hgb, and WBC |
Rodeia et al., 2021 [45] | COVID-19 | 5 | - | Case series | CytoSorb | 2 | Each 24 h | Safe intervention, positive rational behind the therapy, but with low quality evidence |
Supady et al., 2021 [50] | COVID-19 pneumonia requiring ECMO | 17 | 17 | Rct | CytoSorb | 3, 24 h each | 72 h | No significant differences for IL-6 were detected between the two groups after 72 h, increased mortality in the Cytosorb group |
Träger et al., 2016 [34] | ARDS, postoperative patient | 1 | - | Case report | CytoSorb | 3 | 85 h in total | Reduction in interleukin 6 and 8, reduction in NA requirements |
Wiegele and Krenn et al., 2015 [27] | ARDS, Legionella Pneumonia associated rhabdomyolysis | 1 | - | Case report | CytoSorb | 2 | 1st: 6 h 2nd: 5 h | Myoglobin levels decreased, reduction in required NA dose, improvement in urinary output |
Wunderlich-Sperl et al., 2021 [43] | ARDS, COVID-19 | 13 | - | Case series | CytoSorb | Median of 4 HA treatment (range 1–15 days) | Max of 24 h | Decreased inflammatory parameters after HA, reduction in NA doses, improvement in PF ratio, reduction in PLT count |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szigetváry, C.E.; Turan, C.; Kovács, E.H.; Kói, T.; Engh, M.A.; Hegyi, P.; Csukly, G.; Ruszkai, Z.; Molnár, Z. Hemoadsorption as Adjuvant Therapy in Acute Respiratory Distress Syndrome (ARDS): A Systematic Review and Meta-Analysis. Biomedicines 2023, 11, 3068. https://doi.org/10.3390/biomedicines11113068
Szigetváry CE, Turan C, Kovács EH, Kói T, Engh MA, Hegyi P, Csukly G, Ruszkai Z, Molnár Z. Hemoadsorption as Adjuvant Therapy in Acute Respiratory Distress Syndrome (ARDS): A Systematic Review and Meta-Analysis. Biomedicines. 2023; 11(11):3068. https://doi.org/10.3390/biomedicines11113068
Chicago/Turabian StyleSzigetváry, Csenge Erzsébet, Caner Turan, Emőke Henrietta Kovács, Tamás Kói, Marie Anne Engh, Péter Hegyi, Gábor Csukly, Zoltán Ruszkai, and Zsolt Molnár. 2023. "Hemoadsorption as Adjuvant Therapy in Acute Respiratory Distress Syndrome (ARDS): A Systematic Review and Meta-Analysis" Biomedicines 11, no. 11: 3068. https://doi.org/10.3390/biomedicines11113068
APA StyleSzigetváry, C. E., Turan, C., Kovács, E. H., Kói, T., Engh, M. A., Hegyi, P., Csukly, G., Ruszkai, Z., & Molnár, Z. (2023). Hemoadsorption as Adjuvant Therapy in Acute Respiratory Distress Syndrome (ARDS): A Systematic Review and Meta-Analysis. Biomedicines, 11(11), 3068. https://doi.org/10.3390/biomedicines11113068