Tumor Necrosis Factor Receptor Superfamily Member 21 Induces Endothelial-Mesenchymal Transition in Coronary Artery Endothelium of Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Cell Cultures
2.2. RNA Sequencing and Bioinformatics Analysis
2.3. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)
2.4. Human Study Participants
2.5. Measurement of Cardiac Structure and Function
2.6. Quantification of Serum TNFRSF21 and TNFSF4 in Supernatant of HCAECs and Serum of Patients
2.7. Western Blot Analysis
2.8. Permeability Analysis of HCAECs
2.9. Statistical Analysis
3. Results
3.1. Identification of Differentially Expressed Genes Associated with CAEC Injury of Type 2 DM Patients and Normal Individuals
3.2. AGEs Increased TNFRSF21 Expression in CAECs of Type 2 DM
3.3. Elevated Serum TNFRSF21 Levels Correlated with Impaired Cardiac Structure and Function in Patients with Type 2 DM
3.4. TNFRSF21 Promoted EndoMT in CAECs of Type 2 DM
3.5. TNFRSF21 Increased Permeability of HCAECs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narayan, K.V.; Boyle, J.P.; Geiss, L.S.; Saaddine, J.B.; Thompson, T.J. Impact of Recent Increase in Incidence on Future Diabetes Burden: U.S., 2005–2050. Diabetes Care 2006, 29, 2114–2116. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Standards of Medical Care in Diabetes—2016: Summary of Revisions. Diabetes Care 2016, 39 (Suppl. S1), S4–S5. [Google Scholar] [CrossRef] [Green Version]
- Eckel, R.H.; Wassef, M.; Chait, A.; Sobel, B.; Barrett, E.; King, G.; Lopes-Virella, M.; Reusch, J.; Ruderman, N.; Steiner, G.; et al. Prevention Conference VI: Diabetes and Cardiovascular Disease: Writing Group II: Pathogenesis of atherosclerosis in diabetes. Circulation 2002, 105, e138-43. [Google Scholar] [CrossRef]
- Chawla, R.; Chawla, A.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [Green Version]
- The Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Khunti, K.; Kosiborod, M.; Kim, D.J.; Kohsaka, S.; Lam, C.S.P.; Goh, S.-Y.; Chiang, C.-E.; Shaw, J.E.; Cavender, M.A.; Tangri, N.; et al. Cardiovascular outcomes with sodium–glucose cotransporter-2 inhibitors vs other glucose-lowering drugs in 13 countries across three continents: Analysis of CVD-REAL data. Cardiovasc. Diabetol. 2021, 20, 159. [Google Scholar] [CrossRef]
- Caturano, A.; Galiero, R.; Pafundi, P.C. Metformin for Type 2 Diabetes. JAMA 2019, 322, 1312. [Google Scholar] [CrossRef]
- Sasso, F.C.; Pafundi, P.C.; Simeon, V.; De Nicola, L.; Chiodini, P.; Galiero, R.; Rinaldi, L.; Nevola, R.; Salvatore, T.; Sardu, C.; et al. Efficacy and durability of multifactorial intervention on mortality and MACEs: A randomized clinical trial in type-2 diabetic kidney disease. Cardiovasc. Diabetol. 2021, 20, 145. [Google Scholar] [CrossRef]
- Jourde-Chiche, N.; Fakhouri, F.; Dou, L.; Bellien, J.; Burtey, S.; Frimat, M.; Jarrot, P.-A.; Kaplanski, G.; Le Quintrec, M.; Pernin, V.; et al. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol. 2019, 15, 87–108. [Google Scholar] [CrossRef]
- Caturano, A.; Galiero, R.; Pafundi, P.C.; Cesaro, A.; Vetrano, E.; Palmiero, G.; Rinaldi, L.; Salvatore, T.; Marfella, R.; Sardu, C.; et al. Does a strict glycemic control during acute coronary syndrome play a cardioprotective effect? Pathophysiology and clinical evidence. Diabetes Res. Clin. Pr. 2021, 178, 108959. [Google Scholar] [CrossRef]
- Marfella, R.; Sasso, F.C.; Cacciapuoti, F.; Portoghese, M.; Rizzo, M.R.; Siniscalchi, M.; Carbonara, O.; Ferraraccio, F.; Torella, M.; Petrella, A.; et al. Tight Glycemic Control May Increase Regenerative Potential of Myocardium during Acute Infarction. J. Clin. Endocrinol. Metab. 2012, 97, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Lee, K.; Chuang, P.Y.; Liu, Z.; He, J.C. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Ren. Physiol. 2015, 308, F287–F297. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wang, F.; Fernandez, A.; Hu, W. Role of platelet-derived growth factor in type II diabetes mellitus and its complications. Diabetes Vasc. Dis. Res. 2020, 17, 1479164120942119. [Google Scholar] [CrossRef]
- Ren, X.; Ren, L.; Wei, Q.; Shao, H.; Chen, L.; Liu, N. Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc. Diabetol. 2017, 16, 52. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Panas, R. Diabetes and cardiorenal syndrome: Understanding the “Triple Threat”. Hell. J. Cardiol. 2017, 58, 342–347. [Google Scholar] [CrossRef]
- Piera-Velazquez, S.; Jimenez, S. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol. Rev. 2019, 99, 1281–1324. [Google Scholar] [CrossRef]
- Cho, J.G.; Lee, A.; Chang, W.; Lee, M.-S.; Kim, J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front. Immunol. 2018, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Zhang, J.; Gan, T.-Y.; Xu, G.-J.; Tang, B.-P. Advanced Glycation End Products Induce Endothelial-to-Mesenchymal Transition via Downregulating Sirt 1 and Upregulating TGF-β in Human Endothelial Cells. BioMed Res. Int. 2015, 2015, 684242. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-C.; Kuo, P.-L.; Kuo, M.-C.; Hung, W.-W.; Wu, L.-Y.; Chang, W.-A.; Wu, P.-H.; Lee, S.-C.; Chen, H.-C.; Hsu, Y.-L. The Interaction of miR-378i-Skp2 Regulates Cell Senescence in Diabetic Nephropathy. J. Clin. Med. 2018, 7, 468. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-C.; Lee, C.-S.; Chiu, Y.-W.; Kuo, H.-T.; Lee, S.-C.; Hwang, S.-J.; Kuo, M.-C.; Chen, H.-C. Angiopoietin-2, Angiopoietin-1 and subclinical cardiovascular disease in Chronic Kidney Disease. Sci. Rep. 2016, 6, 39400. [Google Scholar] [CrossRef] [Green Version]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef]
- Mancia, G.; De Backer, G.; Dominiczak, A.; Cífková, R.; Fagard, R.; Germano, G.; Grassi, G.; Heagerty, A.; Kjeldsen, S.E.; Laurent, S.; et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2007, 25, 1105–1187. [Google Scholar] [CrossRef]
- Liu, X.; Mujahid, H.; Rong, B.; Lu, Q.-H.; Zhang, W.; Li, P.; Li, N.; Liang, E.-S.; Wang, Q.; Tang, D.-Q.; et al. Irisin inhibits high glucose-induced endothelial-to-mesenchymal transition and exerts a dose-dependent bidirectional effect on diabetic cardiomyopathy. J. Cell. Mol. Med. 2017, 22, 808–822. [Google Scholar] [CrossRef]
- Kovacic, J.C.; Dimmeler, S.; Harvey, R.P.; Finkel, T.; Aikawa, E.; Krenning, G.; Baker, A.H. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 190–209. [Google Scholar] [CrossRef]
- Giordo, R.; Ahmed, Y.M.A.; Allam, H.; Abusnana, S.; Pappalardo, L.; Nasrallah, G.K.; Mangoni, A.A.; Pintus, G. EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress. Front. Cell Dev. Biol. 2021, 9, 683594. [Google Scholar] [CrossRef]
- Kim, J.-A.; Montagnani, M.; Koh, K.K.; Quon, M. Reciprocal Relationships Between Insulin Resistance and Endothelial Dysfunction. Circulation 2006, 113, 1888–1904. [Google Scholar] [CrossRef]
- Bakker, W.; Eringa, E.C.; Sipkema, P.; van Hinsbergh, V.W.M. Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 2008, 335, 165–189. [Google Scholar] [CrossRef] [Green Version]
- Meza, C.A.; La Favor, J.D.; Kim, D.-H.; Hickner, R.C. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int. J. Mol. Sci. 2019, 20, 3775. [Google Scholar] [CrossRef] [Green Version]
- Alvandi, Z.; Bischoff, J. Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arter. Thromb. Vasc. Biol. 2021, 41, 2357–2369. [Google Scholar] [CrossRef]
- Thuan, D.T.B.; Zayed, H.; Eid, A.H.; Abou-Saleh, H.; Nasrallah, G.; Mangoni, A.A.; Pintus, G. A Potential Link Between Oxidative Stress and Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Front. Immunol. 2018, 9, 1985. [Google Scholar] [CrossRef] [Green Version]
- Gargioli, C.; Turturici, G.; Barreca, M.M.; Spinello, W.; Fuoco, C.; Testa, S.; Feo, S.; Cannata, S.M.; Cossu, G.; Sconzo, G.; et al. Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo. Cell Death Dis. 2018, 9, 1. [Google Scholar] [CrossRef]
- Ferreira, F.U.; Souza, L.E.B.; Thomé, C.H.; Pinto, M.T.; Origassa, C.; Salustiano, S.; Faça, V.M.; Câmara, N.O.; Kashima, S.; Covas, D.T. Endothelial Cells Tissue-Specific Origins Affects Their Responsiveness to TGF-β2 during Endothelial-to-Mesenchymal Transition. Int. J. Mol. Sci. 2019, 20, 458. [Google Scholar] [CrossRef] [Green Version]
- Benschop, R.; Wei, T.; Na, S. Tumor Necrosis Factor Receptor Superfamily Member 21: TNFR-Related Death Receptor-6, DR6. Adv. Exp. Med. Biol. 2009, 647, 186–194. [Google Scholar] [CrossRef]
- Pan, G.; Bauer, J.; Haridas, V.; Wang, S.; Liu, D.; Yu, G.; Vincenz, C.; Aggarwal, B.B.; Ni, J.; Dixit, V.M. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett. 1998, 431, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Li, T.; Xu, D.; Liu, J.; Mao, G.; Cui, M.-Z.; Fu, X.; Xu, X. Death Receptor 6 Induces Apoptosis Not through Type I or Type II Pathways, but via a Unique Mitochondria-dependent Pathway by Interacting with Bax Protein. J. Biol. Chem. 2012, 287, 29125–29133. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Shi, B.; Li, L.; Xu, Z.; Ge, Y.; Shi, J.; Liu, Y.; Zheng, D. Death receptor 6 (DR6) is required for mouse B16 tumor angiogenesis via the NF-κB, P38 MAPK and STAT3 pathways. Oncogenesis 2016, 5, e206. [Google Scholar] [CrossRef] [Green Version]
mRNA | Normal Individual FPKM | Type 2 DM FPKM | Log2 (Fold CHANGE) | p-Value |
---|---|---|---|---|
TNFRSF21 | 72.34 | 187.28 | 1.37 | <0.001 |
TNFSF4 | 37.44 | 128.09 | 1.77 | <0.001 |
All Type 2 DM Patients n = 130 | No LVH n = 107 | LVH n = 23 | p-Value | |
---|---|---|---|---|
Age, years | 63.0 ± 9.2 | 62.5 ± 9.0 | 65.3 ± 9.7 | 0.17 |
Sex (male), % | 76 (59) | 61 (57) | 15 (62) | 0.47 |
Smoking, % | 32 (25) | 28 (26) | 4 (17) | 0.37 |
Alcohol, % | 22 (17) | 18 (17) | 4 (17) | 0.94 |
Body mass index, kg/m2 | 25.8 ± 4.6 | 25.5 ± 4.7 | 27.4 ± 3.9 | 0.07 |
Glycated hemoglobin, % | 7.0 (6.5, 8.0) | 7.0 (6.6, 7.9) | 7.1 (6.3, 8.2) | 0.78 |
Serum creatinine, mg/dL | 0.9 ± 0.3 | 0.9 ± 0.3 | 1.1 ± 0.5 | 0.08 |
Cholesterol, mg/dL | 168 ± 37 | 169 ± 34 | 163 ± 51 | 0.63 |
Triglyceride, mg/dL | 120 (85, 170) | 116 (81, 168) | 134 (96, 250) | 0.08 |
High-density lipoprotein, mg/dL | 44 ± 11 | 45 ± 11 | 40 ± 10 | 0.05 |
Low-density lipoprotein, mg/dL | 95 ± 28 | 97 ± 28 | 82 ± 26 | 0.02 |
Systolic blood pressure, mmHg | 138 ± 17 | 137 ± 16 | 142 ± 20 | 0.25 |
Diastolic blood pressure, mmHg | 80 ± 9 | 80 ± 9 | 81 ± 11 | 0.88 |
Left atrium diameter, cm | 3.6 ± 0.7 | 3.5 ± 0.7 | 3.9 ± 0.6 | 0.02 |
Left atrium diameter/Aortic root diameter | 1.1 ± 0.2 | 1.1 ± 0.3 | 1.1 ± 0.2 | 0.92 |
left ventricular mass index, g/m2 | 90.0 ± 33.2 | 78.2 ± 20.4 | 144.8 ± 24.8 | <0.001 |
left ventricular ejection fraction, % | 70.6 ± 9.2 | 70.8 ± 8.7 | 69.5 ± 11.6 | 0.54 |
Left ventricular fraction shortening, % | 40.8 ± 7.6 | 40.9 ± 7.3 | 40.3 ± 9.0 | 0.79 |
E/A ratio | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.8 ± 0.2 | 0.67 |
E/A ratio < 1, n (%) | 96 (76) | 80 (76) | 16 (76) | 1.00 |
Term | Count | % | p-Value | Genes |
---|---|---|---|---|
cell adhesion | 15 | 13.5 | 7.05E-07 | POSTN, NRP2, PCDH10, ITGB4, NEDD9, ATP1B1, PCDH17, KITLG, CXCL12, CDH11, ANOS1, CD9, COL8A1, MFGE8, CD44 |
signal transduction | 15 | 13.5 | 0.010387 | FST, PDE2A, NEDD9, FGF2, APLN, EPS8, KITLG, CXCL12, GPRC5A, TNFSF4, NOSTRIN, CYTL1, PLA2R1, TNFRSF21, CAP2 |
extracellular matrix organization | 11 | 9.9 | 3.13E-07 | FBN2, POSTN, COL1A2, COL13A1, ITGB4, ABI3BP, BGN, COL8A1, HPSE, FGF2, CD44 |
angiogenesis | 6 | 5.4 | 0.011621 | NRP2, EMCN, GJA5, COL8A1, ANGPTL4, MFGE8 |
skeletal system development | 5 | 4.5 | 0.009732 | JAG2, POSTN, COL1A2, GJA5, CDH11 |
axon guidance | 5 | 4.5 | 0.016067 | SPTBN5, NRP2, CXCL12, ANOS1, SLIT2 |
response to hypoxia | 5 | 4.5 | 0.020796 | POSTN, CXCL12, PLAT, ANGPTL4, ATP1B1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, P.-C.; Huang, J.-C.; Tsai, W.-C.; Hung, W.-W.; Chang, W.-A.; Wu, L.-Y.; Chang, C.-Y.; Tsai, Y.-C.; Hsu, Y.-L. Tumor Necrosis Factor Receptor Superfamily Member 21 Induces Endothelial-Mesenchymal Transition in Coronary Artery Endothelium of Type 2 Diabetes Mellitus. Biomedicines 2022, 10, 1282. https://doi.org/10.3390/biomedicines10061282
Hsu P-C, Huang J-C, Tsai W-C, Hung W-W, Chang W-A, Wu L-Y, Chang C-Y, Tsai Y-C, Hsu Y-L. Tumor Necrosis Factor Receptor Superfamily Member 21 Induces Endothelial-Mesenchymal Transition in Coronary Artery Endothelium of Type 2 Diabetes Mellitus. Biomedicines. 2022; 10(6):1282. https://doi.org/10.3390/biomedicines10061282
Chicago/Turabian StyleHsu, Po-Chao, Jiun-Chi Huang, Wei-Chung Tsai, Wei-Wen Hung, Wei-An Chang, Ling-Yu Wu, Chao-Yuan Chang, Yi-Chun Tsai, and Ya-Ling Hsu. 2022. "Tumor Necrosis Factor Receptor Superfamily Member 21 Induces Endothelial-Mesenchymal Transition in Coronary Artery Endothelium of Type 2 Diabetes Mellitus" Biomedicines 10, no. 6: 1282. https://doi.org/10.3390/biomedicines10061282
APA StyleHsu, P.-C., Huang, J.-C., Tsai, W.-C., Hung, W.-W., Chang, W.-A., Wu, L.-Y., Chang, C.-Y., Tsai, Y.-C., & Hsu, Y.-L. (2022). Tumor Necrosis Factor Receptor Superfamily Member 21 Induces Endothelial-Mesenchymal Transition in Coronary Artery Endothelium of Type 2 Diabetes Mellitus. Biomedicines, 10(6), 1282. https://doi.org/10.3390/biomedicines10061282