Serum Levels of Stromal Cell-Derived Factor-1α and Vascular Endothelial Growth Factor Predict Clinical Outcomes in Head and Neck Squamous Cell Carcinoma Patients Receiving TPF Induction Chemotherapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Induction Chemotherapy with TPF
2.3. Chemoradiotherapy Planning
2.4. Serum SDF-1α and VEGF Measurement
2.5. Ethics Statement
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. SDF-1α, VEGF and Clinical Outcomes
3.3. Combination of SDF-1α and VEGF and Prognosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Health and Welfare of Taiwan. Cancer Registry Annual Report 1972—2015; Health Promotion Administration, Ministry of Health and Welfare: Taipei City, Taiwan, 2015.
- Junior, D.; Vincent, T.; Samuel, H.; Steven, A.R. Cancer Principles & Practice of Oncology, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Keam, B.; Machiels, J.P.; Kim, H.R.; Licitra, L.; Golusinski, W.; Gregoire, V.; Lee, Y.G.; Belka, C.; Guo, Y.; Rajappa, S.J.; et al. Pan-Asian adaptation of the EHNS-ESMO-ESTRO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with squamous cell carcinoma of the head and neck. ESMO Open 2021, 6, 100309. [Google Scholar] [CrossRef] [PubMed]
- Marur, S.; Forastiere, A.A. Head and Neck Squamous Cell Carcinoma: Update on Epidemiology, Diagnosis, and Treatment. Mayo Clin. Proc. 2016, 91, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Lorch, J.H.; Goloubeva, O.; Haddad, R.I.; Cullen, K.; Sarlis, N.; Tishler, R.; Tan, M.; Fasciano, J.; Sammartino, D.E.; Posner, M.R.; et al. Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: Long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol. 2011, 12, 153–159. [Google Scholar] [CrossRef]
- Posner, M.R.; Hershock, D.M.; Blajman, C.R.; Mickiewicz, E.; Winquist, E.; Gorbounova, V.; Tjulandin, S.; Shin, D.M.; Cullen, K.; Ervin, T.J.; et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N. Engl. J. Med. 2007, 357, 1705–1715. [Google Scholar] [CrossRef]
- Vermorken, J.B.; Remenar, E.; van Herpen, C.; Gorlia, T.; Mesia, R.; Degardin, M.; Stewart, J.S.; Jelic, S.; Betka, J.; Preiss, J.H.; et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med. 2007, 357, 1695–1704. [Google Scholar] [CrossRef]
- Meads, M.B.; Hazlehurst, L.A.; Dalton, W.S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res. 2008, 14, 2519–2526. [Google Scholar] [CrossRef]
- Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 2010, 16, 2927–2931. [Google Scholar] [CrossRef]
- Albert, S.; Riveiro, M.E.; Halimi, C.; Hourseau, M.; Couvelard, A.; Serova, M.; Barry, B.; Raymond, E.; Faivre, S. Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma. Head Neck 2013, 35, 1819–1828. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Feng, Y.; Tian, X.; Wang, B.; Zhou, Y. Oncogenic roles and drug target of CXCR4/CXCL12 axis in lung cancer and cancer stem cell. Tumour Biol. 2016, 37, 8515–8528. [Google Scholar] [CrossRef]
- Amara, S.; Chaar, I.; Khiari, M.; Ounissi, D.; Weslati, M.; Boughriba, R.; Hmida, A.B.; Bouraoui, S. Stromal cell derived factor-1 and CXCR4 expression in colorectal cancer promote liver metastasis. Cancer Biomark. 2015, 15, 869–879. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, S.H.; Lu, H.I.; Lo, C.M. Prognostic Value of SDF-1alpha Expression in Patients with Esophageal Squamous Cell Carcinoma Receiving Esophagectomy. Cancers 2020, 12, 1067. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J.; Merler, E.; Abernathy, C.; Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 1971, 133, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Cazares, D.; Chavez-Dominguez, R.; Carlos-Reyes, A.; Lopez-Camarillo, C.; Hernadez de la Cruz, O.N.; Lopez-Gonzalez, J.S. Contribution of Angiogenesis to Inflammation and Cancer. Front. Oncol. 2019, 9, 1399. [Google Scholar] [CrossRef] [PubMed]
- De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 2017, 17, 457–474. [Google Scholar] [CrossRef]
- Hanrahan, E.O.; Ryan, A.J.; Mann, H.; Kennedy, S.J.; Langmuir, P.; Natale, R.B.; Herbst, R.S.; Johnson, B.E.; Heymach, J.V. Baseline vascular endothelial growth factor concentration as a potential predictive marker of benefit from vandetanib in non-small cell lung cancer. Clin. Cancer Res. 2009, 15, 3600–3609. [Google Scholar] [CrossRef]
- Jurgensmeier, J.M.; Schmoll, H.J.; Robertson, J.D.; Brooks, L.; Taboada, M.; Morgan, S.R.; Wilson, D.; Hoff, P.M. Prognostic and predictive value of VEGF, sVEGFR-2 and CEA in mCRC studies comparing cediranib, bevacizumab and chemotherapy. Br. J. Cancer 2013, 108, 1316–1323. [Google Scholar] [CrossRef]
- Pena, C.; Lathia, C.; Shan, M.; Escudier, B.; Bukowski, R.M. Biomarkers predicting outcome in patients with advanced renal cell carcinoma: Results from sorafenib phase III Treatment Approaches in Renal Cancer Global Evaluation Trial. Clin. Cancer Res. 2010, 16, 4853–4863. [Google Scholar] [CrossRef]
- Yao, J.H.; Shao, Y.; Wang, J.J.; Li, Y.L.; Yang, H.Q.; Liu, J.; Yang, Y. Evaluation of diagnostic and predictive values of the serum VEGF-A level and systemic immune-inflammation index in small cell lung cancer. J. Cancer 2021, 12, 1356–1364. [Google Scholar] [CrossRef]
- Chen, Y.H.; Lu, H.I.; Lo, C.M.; Wang, Y.M.; Chou, S.Y.; Hsiao, C.C.; Huang, C.C.; Shih, L.H.; Chen, S.W.; Li, S.H. The crucial role of blood VEGF kinetics in patients with locally advanced esophageal squamous cell carcinoma receiving curative concurrent chemoradiotherapy. BMC Cancer 2018, 18, 837. [Google Scholar] [CrossRef]
- Wang, R.X.; Chen, S.; Huang, L.; Zhou, Y.; Shao, Z.M. Monitoring Serum VEGF in Neoadjuvant Chemotherapy for Patients with Triple-Negative Breast Cancer: A New Strategy for Early Prediction of Treatment Response and Patient Survival. Oncologist 2019, 24, 753–761. [Google Scholar] [CrossRef]
- Frikha, M.; Auperin, A.; Tao, Y.; Elloumi, F.; Toumi, N.; Blanchard, P.; Lang, P.; Sun, S.; Racadot, S.; Thariat, J.; et al. A randomized trial of induction docetaxel-cisplatin-5FU followed by concomitant cisplatin-RT versus concomitant cisplatin-RT in nasopharyngeal carcinoma (GORTEC 2006-02). Ann. Oncol. 2018, 29, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, W.F.; Chen, N.Y.; Zhang, N.; Hu, G.Q.; Xie, F.Y.; Sun, Y.; Chen, X.Z.; Li, J.G.; Zhu, X.D.; et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase 3, multicentre, randomised controlled trial. Lancet Oncol. 2016, 17, 1509–1520. [Google Scholar] [CrossRef]
- Lukaszewicz-Zajac, M.; Mroczko, B.; Kozlowski, M.; Szmitkowski, M. The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer. Dis. Markers 2016, 2016, 7963895. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Riedel, F.; Gotte, K.; Schwalb, J.; Wirtz, H.; Bergler, W.; Hormann, K. Serum levels of vascular endothelial growth factor in patients with head and neck cancer. Eur. Arch. Otorhinolaryngol. 2000, 257, 332–336. [Google Scholar] [CrossRef]
- Rehman, A.O.; Wang, C.Y. CXCL12/SDF-1 alpha activates NF-kappaB and promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex. Int. J. Oral Sci. 2009, 1, 105–118. [Google Scholar] [CrossRef]
- Tan, C.T.; Chu, C.Y.; Lu, Y.C.; Chang, C.C.; Lin, B.R.; Wu, H.H.; Liu, H.L.; Cha, S.T.; Prakash, E.; Ko, J.Y.; et al. CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway. Carcinogenesis 2008, 29, 1519–1527. [Google Scholar] [CrossRef]
- Yu, T.; Wu, Y.; Huang, Y.; Yan, C.; Liu, Y.; Wang, Z.; Wang, X.; Wen, Y.; Wang, C.; Li, L. RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and apoptosis. Mol. Ther. 2012, 20, 398–407. [Google Scholar] [CrossRef]
- Kenmotsu, H.; Tanigawara, Y. Pharmacokinetics, dynamics and toxicity of docetaxel: Why the Japanese dose differs from the Western dose. Cancer Sci. 2015, 106, 497–504. [Google Scholar] [CrossRef]
- Yano, R.; Konno, A.; Watanabe, K.; Tsukamoto, H.; Kayano, Y.; Ohnaka, H.; Goto, N.; Nakamura, T.; Masada, M. Pharmacoethnicity of docetaxel-induced severe neutropenia: Integrated analysis of published phase II and III trials. Int. J. Clin. Oncol. 2013, 18, 96–104. [Google Scholar] [CrossRef]
- Ahn, J.S.; Cho, S.H.; Kim, O.K.; Lee, J.K.; Yang, D.H.; Kim, Y.K.; Lee, J.J.; Lim, S.C.; Kim, H.J.; Chung, W.K.; et al. The efficacy of an induction chemotherapy combination with docetaxel, cisplatin, and 5-FU followed by concurrent chemoradiotherapy in advanced head and neck cancer. Cancer Res. Treat. 2007, 39, 93–98. [Google Scholar] [CrossRef]
- Okano, S.; Enokida, T.; Onoe, T.; Ota, Y.; Motegi, A.; Zenda, S.; Akimoto, T.; Tahara, M. Induction TPF chemotherapy followed by CRT with fractionated administration of cisplatin in patients with unresectable locally advanced head and neck cancer. Int. J. Clin. Oncol. 2019, 24, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Ying, K.; Chong, Y.; Wei, W.; Bing, D.; Yanyan, S.; Xuefeng, Y.; Wei, W.; Ke, L. Effect of FOLFOX6 chemotherapy on serum VEGF expression in advanced colorectal cancer patients. Rev. Assoc. Med. Bras. 2019, 65, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Dirix, L.Y.; Vermeulen, P.B.; Pawinski, A.; Prove, A.; Benoy, I.; De Pooter, C.; Martin, M.; Van Oosterom, A.T. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br. J. Cancer 1997, 76, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, I.; Doi, T.; Endo, H.; Hosokawa, Y.; Nishikawa, Y.; Tanimizu, M.; Jinno, K.; Kotani, Y. Clinical significance of plasma vascular endothelial growth factor in gastrointestinal cancer. Eur. J. Cancer 1998, 34, 2041–2045. [Google Scholar] [CrossRef]
- Shimada, H.; Takeda, A.; Nabeya, Y.; Okazumi, S.I.; Matsubara, H.; Funami, Y.; Hayashi, H.; Gunji, Y.; Kobayashi, S.; Suzuki, T.; et al. Clinical significance of serum vascular endothelial growth factor in esophageal squamous cell carcinoma. Cancer 2001, 92, 663–669. [Google Scholar] [CrossRef]
- Wang, X.S.; Liu, M.Z.; Zhang, C.Q.; Cai, L.; Cui, N.J. Effect of concurrent chemoradiotherapy on serum vascular endothelial growth factor in esophageal squamous cell carcinoma patients—A report of 43 cases. Ai Zheng 2006, 25, 1428–1432. [Google Scholar]
- Drake, M.J.; Robson, W.; Mehta, P.; Schofield, I.; Neal, D.E.; Leung, H.Y. An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer. Br. J. Cancer 2003, 88, 822–827. [Google Scholar] [CrossRef]
- Stadler, W.M.; Cao, D.; Vogelzang, N.J.; Ryan, C.W.; Hoving, K.; Wright, R.; Karrison, T.; Vokes, E.E. A randomized Phase II trial of the antiangiogenic agent SU5416 in hormone-refractory prostate cancer. Clin. Cancer Res. 2004, 10, 3365–3370. [Google Scholar] [CrossRef]
- Zangari, M.; Anaissie, E.; Stopeck, A.; Morimoto, A.; Tan, N.; Lancet, J.; Cooper, M.; Hannah, A.; Garcia-Manero, G.; Faderl, S.; et al. Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin. Cancer Res. 2004, 10, 88–95. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Age | 53 years old (29–82) |
Gender | |
Male | 73 (94.8%) |
Female | 4 (5.2%) |
Location | |
Oral cavity | 22 (28.6%) |
Oropharynx | 28 (36.4%) |
Hypopharynx | 11 (14.3%) |
Larynx | 16 (20.7%) |
HPV Status | |
Positive | 6 (7.8%) |
Negative | 71 (92.2%) |
T Status | |
2 | 19 (24.7%) |
3 | 9 (11.7%) |
4 | 49 (63.6%) |
N Status | |
0 | 18 (23.4%) |
1 | 12 (15.6%) |
2 | 41 (53.2%) |
3 | 6 (7.8%) |
Stage | |
II | 5 (6.5%) |
III | 7 (9.1%) |
IVA | 34 (44.2%) |
IVB | 31 (40.2%) |
Grade | |
1 | 19 (24.7%) |
2 | 43 (55.8%) |
3 | 15 (19.5%) |
Characteristics | No. of Patients | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
PFS (Months) | p-Value | HR (95% CI) | p-Value | ||
Age | 0.23 | ||||
<60 years | 65 (84.4%) | 18.0 | |||
≥60 years | 12 (15.6%) | 18.8 | |||
Gender | 0.41 | ||||
Male | 73 (94.8%) | 18.0 | |||
Female | 4 (5.2%) | 22.6 | |||
Location | 0.06 | ||||
Oral cavity | 22 (28.6%) | 10.9 | |||
Oropharynx + Hypopharynx + Larynx | 55 (71.4%) | 24.1 | |||
HPV status | 0.014 * | ||||
Positive | 6 (7.8%) | 116.6 | |||
Negative | 71 (92.2%) | 16.1 | |||
T status | 0.003 * | ||||
2 | 19 (24.7%) | 71.3 | |||
3 + 4 | 58 (75.3%) | 13.9 | |||
N status | 0.61 | ||||
0 + 1 | 30 (39.0%) | 26.8 | |||
2 + 3 | 47 (61.0%) | 13.3 | |||
Tumor stage | 0.17 | ||||
II | 5 (6.5%) | 98.1 | |||
III + IV | 72 (93.5%) | 16.4 | |||
Grade | 0.25 | ||||
1 + 2 | 62 (80.5%) | 22.6 | |||
3 | 15 (19.5%) | 11.9 | |||
VEGF decrease after TPF treatment | 0.001 * | ||||
Yes | 42 (54.5%) | 38.7 | 0.46 (0.27–0.52) | 0.003 * | |
No | 35 (45.5%) | 9.9 | |||
Post-TPF VEGF ≥ 150 pg/mL | 0.002 * | ||||
Yes | 41 (53.2%) | 13.3 | |||
No | 36 (46.8%) | 41.0 | 0.50 (0.29–0.86) | 0.011 * | |
SDF-1α decrease after TPF treatment | <0.001 * | ||||
Yes | 21 (27.3%) | 116.6 | 0.38 (0.18–0.77) | 0.007 * | |
No | 56 (72.7%) | 11.2 | |||
Post-TPF SDF-1α ≥ 1500 pg/mL | <0.001 * | ||||
Yes | 59 (76.6%) | 14.0 | |||
No | 18 (23.4%) | 115.1 | 0.43 (0.19-0.95) | 0.036 * |
Characteristics | No. of Patients | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
OS (Months) | p-Value | HR (95% CI) | p-Value | ||
Age | 0.11 | ||||
<60 years | 65 (84.4%) | 35.3 | 0.47 (0.24–0.90) | 0.024 * | |
≥60 years | 12 (15.6%) | 18.8 | |||
Gender | 0.40 | ||||
Male | 73 (94.8%) | 30.1 | |||
Female | 4 (5.2%) | 43.8 | |||
Location | 0.032 * | ||||
Oral cavity | 22 (28.6%) | 16.3 | |||
Oropharynx + Hypopharynx + Larynx | 55 (71.4%) | 35.7 | |||
HPV status | 0.007 * | ||||
Positive | 6 (7.8%) | NR | |||
Negative | 71 (92.2%) | 28.6 | |||
T status | 0.003 * | ||||
2 | 19 (24.7%) | 71.3 | |||
3 + 4 | 58 (75.3%) | 25.6 | |||
N status | 0.26 | ||||
0 + 1 | 30 (39.0%) | 44.7 | |||
2 + 3 | 47 (61.0%) | 21.8 | |||
Tumor stage | 0.05 | ||||
II | 5 (6.5%) | NR | |||
III + IV | 72 (93.5%) | 28.6 | |||
Grade | 0.99 | ||||
1 + 2 | 62 (80.5%) | 30.1 | |||
3 | 15 (19.5%) | 32.9 | |||
VEGF decrease after TPF treatment | 0.002 * | ||||
Yes | 42 (54.5%) | 55.4 | 0.43 (0.25–0.74) | 0.002 * | |
No | 35 (45.5%) | 18.4 | |||
Post-TPF VEGF ≥ 150 pg/mL | <0.001 * | ||||
Yes | 41 (53.2%) | 20.3 | |||
No | 36 (46.8%) | 58.3 | 0.38 (0.22–0.65) | 0.001 * | |
SDF-1α decrease after TPF treatment | <0.001 * | ||||
Yes | 21 (27.3%) | 116.6 | 0.40 (0.20–0.83) | 0.013 * | |
No | 56 (72.7%) | 23.3 | |||
Post-TPF SDF-1α ≥ 1500 pg/mL | <0.001 * | ||||
Yes | 59 (76.6%) | 27.0 | |||
No | 18 (23.4%) | NR | 0.42 (0.18–0.95) | 0.037 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Chien, C.-Y.; Wang, Y.-M.; Li, S.-H. Serum Levels of Stromal Cell-Derived Factor-1α and Vascular Endothelial Growth Factor Predict Clinical Outcomes in Head and Neck Squamous Cell Carcinoma Patients Receiving TPF Induction Chemotherapy. Biomedicines 2022, 10, 803. https://doi.org/10.3390/biomedicines10040803
Chen Y-H, Chien C-Y, Wang Y-M, Li S-H. Serum Levels of Stromal Cell-Derived Factor-1α and Vascular Endothelial Growth Factor Predict Clinical Outcomes in Head and Neck Squamous Cell Carcinoma Patients Receiving TPF Induction Chemotherapy. Biomedicines. 2022; 10(4):803. https://doi.org/10.3390/biomedicines10040803
Chicago/Turabian StyleChen, Yen-Hao, Chih-Yen Chien, Yu-Ming Wang, and Shau-Hsuan Li. 2022. "Serum Levels of Stromal Cell-Derived Factor-1α and Vascular Endothelial Growth Factor Predict Clinical Outcomes in Head and Neck Squamous Cell Carcinoma Patients Receiving TPF Induction Chemotherapy" Biomedicines 10, no. 4: 803. https://doi.org/10.3390/biomedicines10040803
APA StyleChen, Y.-H., Chien, C.-Y., Wang, Y.-M., & Li, S.-H. (2022). Serum Levels of Stromal Cell-Derived Factor-1α and Vascular Endothelial Growth Factor Predict Clinical Outcomes in Head and Neck Squamous Cell Carcinoma Patients Receiving TPF Induction Chemotherapy. Biomedicines, 10(4), 803. https://doi.org/10.3390/biomedicines10040803