The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical and Demographic Characteristics of the Studied Patients
2.2. Genomic DNA Isolation
2.3. DNA Genotyping
2.4. Statistical Processing of the Obtained Data
3. Results
3.1. Allele Frequency and Population Analysis
3.2. Statistical Analysis
4. Discussion
- Recognition of surface viral antigens (image-recognizing receptors, ACE-2).
- Interaction of viral particles with specific structures on the surface of the cell and penetration of viral particles into the cell.
- Intracellular recognition of viral RNA.
- Launching intracellular signaling pathways and activating the immune system, including with the formation of a “cytokine storm” and complement activation.
- Participation in the mechanisms of pathogenesis of complications of COVID-19: damage to blood vessels and pulmonary epithelium, the likelihood of developing sepsis, septic shock, and multiple organ failure.
4.1. TNF
4.2. TMPRSS2
4.3. STAT3
4.4. STAT6
4.5. TLR
4.6. C3AR1
4.7. CCR2
4.8. IFIH1
4.9. IFITM3
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kolbin, A.S.; Belousov, D.Y.; Gaumont, Y.M.; Balykina, Y.E.; Ivanov, I.G. Socio-economic burden of COVID-19 in the Russian Federation. Qual. Clin. Pract. 2020, 1, 35–44. [Google Scholar] [CrossRef]
- Feldman, E.L.; Savelieff, M.G.; Hayek, S.S.; Pennathur, S.; Kretzler, M.; Pop-Busui, R. COVID-19 and diabetes: A collision and collusion of two diseases. Diabetes 2020, 69, 2549. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020, 109, 531. [Google Scholar] [CrossRef]
- Bae, S.; Kim, S.R.; Kim, M.; Shim, W.J.; Park, S. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: A systematic review and meta-analysis. Heart 2021, 107, 373. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Jenner, B.L.; Wilkinson, I. COVID-19 and hypertension. J. Renin Angiotensin Aldosterone Syst. 2020, 21, 1470320320927851. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.P.; Gibbons, H.H. Obesity and hypertension during COVID-19. JAMA 2020, 324, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabah, S.; Al-Haddad, M.; Al-Juha, S.; Jamal, M.; Almazeedi, S. COVID-19: The effect of obesity and diabetes on disease severity. Clin. Obes. 2020, 10, e12414. [Google Scholar] [CrossRef]
- Zepeda-Cervantes, J.; Martínez-Flores, D.; Ramírez-Jarquín, J.O.; Tecalco-Cruz, Á.C.; Alavez-Pérez, N.S.; Vaca, L.; Sarmiento-Silva, R.E. Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses 2022, 14, 94. [Google Scholar] [CrossRef]
- Suh, S.; Lee, S.; Gym, H.; Yoon, S.; Park, S.; Cha, J.; Kwon, D.H.; Yang, Y.; Jee, S.H. A systematic review on papers that study on Single Nucleotide Polymorphism that affects coronavirus 2019 severity. BMC Infect. Dis. 2022, 22, 47. [Google Scholar] [CrossRef]
- Malkova, A.; Kudlay, D.; Kudryavtsev, I.; Starshinova, A.; Yablonskiy, P.; Shoenfeld, Y. Immunogenetic Predictors of Severe COVID-19. Vaccines 2021, 9, 211. [Google Scholar] [CrossRef]
- Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.C.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020, 75, 1564. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Kalfi, K.S.; Hirayama, A.V.; Mastroianni, F.; Turtle, C.J.; Kharkhay, M.O.; et al. Elevation of cytokines in the severe and critical stage of COVID-19: A rapid systematic review, meta-analysis and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Rousseau, R.; Andolfo, I.; Lasorsa, V.A.; Jolaskon, A.; Capasso, M. Genetic analysis of the novel host receptor SARS-CoV-2 TMPRSS2 in different populations. Front. Genet. 2020, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.; Banerjee, P.; Bhagavatula, S.; Kushwaha, P.P.; Kumar, C. Human contribution of ACE2 and TMPRSS2 to the determination of host-pathogen interactions with COVID-19. J. Genet. 2021, 100, 12. [Google Scholar] [CrossRef] [PubMed]
- Glowacka, I.; Bertram, S.; Mueller, M.A.; Allen, P.; Soyo, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Hnirss, K.; et al. Evidence that TMPRSS2 activates severe acute coronavirus respiratory syndrome protein spike to fuse membranes and reduces viral control by a humoral immune response. J. Virol. 2011, 85, 4122–4134. [Google Scholar] [CrossRef] [Green Version]
- Temporary Guidelines “Prevention, Diagnosis and Treatment of Novel Coronavirus Infection (COVID-19). Version 10 (8 February 2021)”; Ministry of Health of Russia: Moscow, Russia, 2021.
- Makwandi-Nejad, S.; Laurenson-Schafer, H.; Wang, L.; Wellington, D.; Zhao, Y.; Jean, B.; Qin, L.; Kite, K.; Moghadam, X.K.; Song, K.; et al. Lack of truncated IFITM3 transcripts in homozygous cells for the rs12252-C variant, which is associated with severe influenza infection. J. Infect. Dis. 2018, 217, 257–262. [Google Scholar] [CrossRef]
- Xinyi, T.; Chong, V.P.; Zhai, Y.; Zhang, H.; Zhang, F.; Van, S.; Liu, V.; Wei, M.; Sioux, N.H.O.; Jan, H.; et al. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome of coronavirus infection. J. Infect. 2015, 71, 101–109. [Google Scholar]
- Asghari, S.; Schlapbach, L.; Anchisi, S.; Hammer, C.; Barta, I.; Junier, T.; Mottet-Osman, G.; Posfay-Barbe, C.; Longchamp, D.; Stoker, M.; et al. Severe viral respiratory infections in children with ifiH1 loss of function mutations. Proc. Natl. Acad. Sci. USA 2017, 114, 8342–8347. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.; Sultan, A.; Elashry, M.A.; Farag, A.; Mortada, M.I.; Gunnam, M.A.; Syed, A.M.; Gonim, S. The TNF-α G-308 by promoter polymorphism with the course and outcome of COVID-19 patients. Immunol. Investig. 2020. [Google Scholar] [CrossRef]
- Dean, Y.; Feng, K.; Chen, J.; Song, J.S. The TLR4/NF-κB single-nucleotide polymorphism gene pathway alters gene expression levels and affects the occurrence and prognosis of ARDS. Medicine 2019, 98, e16029. [Google Scholar]
- Tarnów, K.; Engels, G.; Arendt, A.; Schwalm, F.; Sediri, H.; Preuss, A.; Nelson, P.S.; Garten, V.; Klenk, X.D.; Gabriel, G.; et al. TMPRSS2 is a host factor that is necessary for the pneumo tropism and pathogenicity of the H7N9 A influenza virus in the ears. J. Virol. 2014, 88, 4744–4751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, M.; Tahara, M.; Sakai, K.; Yamaguchi, H.; Kanou, K.; Shirato, K.; Kawase, M.; Noda, M.; Kimura, H.; Matsuyama, S.; et al. TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J. Virol. 2013, 87, 11930–11935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirato, K.; Kawase, M.; Matsuyama, S. Middle East respiratory syndrome of coronavirus infection mediated by transmembrane serine protease TMPRSS2. J. Virol. 2013, 87, 12552–12561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapati, S.; Kumar, S.; Singh, A.K.; Banerjee, P.; Bhagavatula, C. Assessment of the risk associated with coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in humans. J. Genet. 2020, 99, 53. [Google Scholar] [CrossRef]
- Ortiz-Fernandez, L.; Savalha, A.H. Genetic variation in the expression of entry factors into SARS-CoV-2 host cells in populations. Genes Immunol. 2020, 21, 269–272. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, I.; Haider, S.; Malik, M.Z.; Ponnusami, K.; Rai, E. ACE2 homodimerization of human genomic variants and host protein interactions explain the high population-specific differences in COVID19 outcomes. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, X.; Schroeder, S.; Kreuger, N.; Herrler, T.; Eriksen, S.; Shirgens, T.S.; Herrler, G.; Wu, N.H.; Nietzsche, A.; et al. SARS-CoV-2 cell input is dependent on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Barrett, D. IL-6 Blockade in Cytokine Storm Syndromes, in Cytokine Storm Syndrome, 1st ed.; Krohn, R., Behrens, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 561–568. [Google Scholar]
- Guzzo, C.; Che Mat, N.F.; Gee, K. Interleukin-27 induces a STAT1/3- and NF-kappaB-dependent proinflammatory cyto-kine profile in human monocytes. J. Biol. Chem. 2010, 285, 24404. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Pot, C.; Apetoh, L.; Thalhamer, T.; Zhu, B.; Murugaiyan, G.; Xiao, S.; Lee, Y.; Rangachari, M.; Yosef, N.; et al. Metallothioneins negatively regulate IL-27-induced type 1 regulatory T-cell differentiation. Proc. Natl. Acad. Sci. USA 2013, 110, 7802. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Tan, S.A.; Iqbal, A.; Lee, J.; Glover, S.C. Genotypic variant STAT3 rs744166 and increased phosphorylation of tyrosine STAT3 in IL-23 sensitive innate lymphoid cells during the pathogenesis of Crohn’s disease. J. Immunol. Res. 2019, 2019, 9406146. [Google Scholar]
- Park, J.S.H.; Kim, J.H.; Joe, K.E.; On, C.E.; Eisenhuth, M.; Kronbichler, A.; Lee, K.H.; Shin, J.I. Field synopsis and re-analysis of systematic meta-analyses of genetic association studies in multiple sclerosis: A Bayesian approach. Mol. Neurobiol. 2018, 55, 5672–5688. [Google Scholar] [CrossRef] [PubMed]
- Yakkula, E.; Leppää, V.; Sulonen, A.M.; Varilo, T.; Kallio, S.; Kemppinen, A.; Purcell, S.; Koivisto, K.; Tienari, P.; Sumelahti, M.L.; et al. A genome-wide associative study in a high-risk isolate of multiple sclerosis reveals associated variants in the STAT3 gene. Am. J. Hum. Genet. 2010, 86, 285–291. [Google Scholar]
- Glebauskienė, B.; Vilkevičiūtė, A.; Ljutkevičienė, R.; Jaxtiene, S.; Kriausiūnene, L.; Zemaitiene, R.; Zaliuniene, D. Association FGFR2 rs2981582, SIRT1 rs12778366, STAT3 rs744166 gene polymorphisms with pituitary adenoma. Oncol. Lett. 2017, 13, 3087–3099. [Google Scholar] [CrossRef]
- Rocha, G.A.; Rocha, A.M.; Gomez, A.D.; Faria, K.L., Jr.; Melo, F.F.; Batista, S.A.; Fernandes, V.C.; Almeida, N.B.; Teixeira, K.N.; Brito, K.S.; et al. STAT3 polymorphism and Helicobacter pylori CagA strains with a large number of EPIYA-C segments independently increase the risk of stomach cancer. BMC Cancer 2015, 15, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, B.M.; Wolf, R.K.; Valery, N.; Khan, M.; Robinson, D.; Paone, A.; Bowman, E.D.; Lundgreen, A.; Kaan, B.; Potter, J.; et al. Analysis of genetic factors associated with the risk of inflammatory bowel disease and colon cancer. Cancer Epidemicol. 2014, 38, 583–590. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, Z.Z.; Liu, F.; Yang, L.D.; Zhang, W.Y.; Yuan, X.H.; Wang, J.G.; Hu, X.H.; Huang, G. STAT3 gene polymorphisms and susceptibility to non-small cell lung cancer. Genet. Mol. Res. 2011, 10, 1856–1865. [Google Scholar] [CrossRef] [PubMed]
- Prager, M.; Büttner, J.; Haas, W.; Baumgart, D.C.; Sturm, A.; Zeitz, M.; Buening, K. Variant JAK2 rs10758669 in Crohn’s disease: Alteration of the intestinal barrier as one of the mechanisms of action. Int. J. Colorectal Dis. 2011, 27, 565–573. [Google Scholar] [CrossRef]
- Ito, N.; This, M.; Nakamura, E.; Takahashi, A.; Tsukamoto, T.; Toma, H.; Nakazawa, H.; Hirao, Y.; Uemura, H.; Kagawa, S.; et al. STAT3 polymorphism predicts interferon-alpha response in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2007, 25, 2785–2791. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Shi, J.; Zhou, M.; Wu, B.; Jang, Z.; et al. Risk factors for severity and mortality in adult COVID-19 patients in Wuhan. J. Allergy Clin. Immunol. 2020, 146, 110–118. [Google Scholar] [CrossRef]
- Patra, T.; Meyer, K.; Geerling, L.; Isbell, T.S.; Hoft, D.F.; Brian, J.; Pinto, A.K.; Ray, R.B.; Ray, R. SARS-CoV-2 spike protein promotes trans-signaling of IL-6 by activating angiotensin II receptor signaling in epithelial cells. PLoS Pathog. 2020, 16, e1009128. [Google Scholar] [CrossRef]
- Hebenstreit, D.; Wirnsberg, G.; Horace-Huck, J.; Dushl, A. Signaling mechanisms, interaction partners and genes are targets of STAT6. Cytokine Growth Factor Rev. 2006, 17, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, H.; Yu, F.; Sun, V.; Zhou, X.; Chen, L.; Jan, J.; Wang, Y.; Tan, H.; Guan, Y.; et al. Activation of STAT6 by STING is crucial for antiviral innate immunity. Cell 2011, 147, 436–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salghero-Aranda, K.; Sancho Menzat, D.; Canals-Laurent, B.; Sultan, S.; Reginald, A.; Chapman, L. STAT6 knockdown using multiple siRNA sequences inhibits proliferation and induces apoptosis of cell lines of human colorectal cancer and breast cancer. PLoS ONE 2019, 14, e0207558. [Google Scholar]
- Schedel, M.; Frey, R.; Bieli, K.; Cameron, L.; Adamski, J.; Lauener, R.; Kabesch, M. STAT6 Expression is influenced by functional IgE-associated polymorphism and exposure to the agricultural environment. Am. J. Respir. Crit. Care Med. 2010, 181, A4003. [Google Scholar]
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Lee, J.; Van, X.; Wang, F.; et al. Unicellular landscape of bronchoalveolar immune cells in COVID-19 patients. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Hanmohammadi, S.; Rezai, N. The role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021, 93, 2735–2739. [Google Scholar] [CrossRef]
- Brightbill, H.; Librati, D.; Krutik, S.R.; Jan, R.B.; Belisle, J.T.; Bleharsky, Y.R.; Maitland, M.; Norgard, M.Q.; Plevi, S.E.; Smale, S.T.; et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999, 285, 732–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chedid, P.; Salami, A.; El Shamiya, C. Association rs1898830 in toll-like receptor 2 with lipids and blood pressure. J. Cardiovasc. Dev. Dis. 2020, 7, 24. [Google Scholar] [CrossRef]
- Askar, E.; Ramadori, G.; Mihm, S. Toll-like receptor 7 rs179008/Gln11Leu gene variants in chronic hepatitis C viral infection. J. Med. Virol. 2010, 82, 1859–1868. [Google Scholar] [CrossRef] [Green Version]
- Saltiel, A.R. You are what you secrete. Nat. Med. 2001, 7, 887–888. [Google Scholar] [CrossRef]
- Schleinitz, D. Genetic determination of serum levels of diabetes-associated adipokines. Rev. Diabet. Stud. 2015, 12, 277–298. [Google Scholar] [CrossRef]
- White, R.T.; Damm, D.; Hancock, N.; Rosen, B.S.; Lowell, B.B.; Asher, P.; Flyer, J.S.; Spiegelman, B.M. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J. Biol. Chem. 1992, 267, 9210–9213. [Google Scholar] [CrossRef]
- Lo, J.C.; Ljubičić, C.; Leibiger, B.; Core, M.; Leibiger, I.B.; Moede, T.; Kelly, M.E.; Bhoumik, D.C.; Murano, I.; Cohen, P.; et al. Adipsin Is adipokine, Which one Improves Function beta-Cells at Diabetes. Cell 2014, 158, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Jan, K.; Xiong, H.; Van, L.; Kai, J.; Wang, F.; Lee, S.; Chen, J.; Wang, K.; Wang, D.; et al. Genomic association studies based on pathways to identify new genomic variant associations in the complement system associated with coronary artery disease. Circus Cardiovasc. Genet. 2014, 7, 887–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, B.; Freiwald, T.; Chauss, D.; Van, L.; West, E.; Mirabelli, K.; Zhang, C.J.; Nichols, E.M.; Malik, N.; Gregory, R.; et al. SARS-CoV-2 controls JAK1/2-dependentlocal complement hyperactivation. Sci. Immunol. 2021, 6, eabg0833. [Google Scholar] [CrossRef] [PubMed]
- Baggiolini, M.; Devald, B.; Moser, B. Interleukin-8 and related chemotactic cytokines: Chemokines CXC and CC. Adv. Immunol. 1994, 55, 97–179. [Google Scholar]
- Khalil, B.; Elemam, N.; Magazachi, A. Chemokines and chemokine receptors in COVID-19 infection. Comput. Struct. Biotechnol. J. 2021, 19, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Mumidi, S.; Ahuja, S.S.; Gonzalez, E.; Anderson, S.A.; Santiago, E.N.; Stefan, K.T.; Craig, F.E.; O’Connell, P.; Trion, V.; Clark, R.A.; et al. Genealogy of CCR5 locus and chemokine system gene variants associated with altered rates of progression of HIV-1 disease. Nat. Med. 1998, 4, 786–793. [Google Scholar] [CrossRef]
- Mascheretti, S.; Hinriksen, H.; Ross, S.; Buggish, P.; Hampe, J.; Völsch, U.R.; Schreiber, C. Genetic variants in a cluster of CCR genes and spontaneous viral elimination in patients infected with hepatitis C. Clin. Exp. Immunol. 2004, 136, 328–333. [Google Scholar] [CrossRef]
- Shieh, B.; Liau, Y.E.; Hsieh, P.S.; Yan, Y.P.; Wang, S.T.; Li, C. Effect of nucleotide polymorphisms in the CCR2 gene and the CCR5 promoter on CCR5 and CXCR4 cell surface expression. Int. Immunol. 2000, 12, 1311–1318. [Google Scholar] [CrossRef]
- Vavrusevich-Kurylonek, N.; Gostsik, Y.; Khoronji, M.; Sevko, K.; Posmyk, R.; Zaikovskaya, A.; Chitko, A.; Matsyulevsky, R.; Shelakhovskaya, M.; Myslovets, Y.; et al. Interferon-induced helicase C-domain-containing protein 1 gene variant (rs1990760) as an autoimmune susceptibility factor to pathology. Immunobiology 2020, 225, 151864. [Google Scholar] [CrossRef] [PubMed]
- Mighty, A.K. An African-American population with a low frequency of SNP rs1990760 (T-allele) alleles in IFIH1 predicts lower IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics 2020, 72, 387–391. [Google Scholar]
- Chistyakov, D.A. Interferon induced by helicase C-domain 1 (IFIH1) and virus-induced autoimmunity: A review. Viral Immunol. 2010, 23, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Gorman, J.A.; Hundhausen, K.; Errett, J.S.; Stone, A.E.; Allenspach, E.D.; Ge, Y.; Arkatkar, T.; Clough, K.; Dai, X.; Him, S.; et al. A variant of the A946T IFIH1 RNA sensor mediates an interferon program that limits viral infection but increases the risk of autoimmunity. Nat. Immunol. 2017, 18, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Bastard, P.; Rosen, L.B.; Zhang, K.; Mikhailidis, E.; Hoffmann, X.H.; Zhang, Y.; Dorgam, K.; Filippo, K.; Rosain, J.; Bezia, V.; et al. Autoantibodies against IFN type I in patients with life-threatening COVID-19. Science 2020, 370, eabd4585. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Maine, Y.; Wu, H.; Wu, Y.; Jan, B.; Wang, L. An autoimmune disease associated with the single nucleotide polymorphism IFIH1 associated with serum IL-18 levels in Chinese patients with systemic lupus erythematosus. Sci. Rep. 2018, 8, 9442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Zhao, Y.; Li, N.; Peng, Y.C.; Giannulatu, E.; Jean, R.H.; Jan, X.P.; Wu, H.; Liu, J.H.; Liu, N.; et al. Interferonisan induced transmembrane protein-3 genetic variant of rs12252-C associated with severe influenza in Chinese people. Nat. Commun. 2013, 4, 1418. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C.; Chung, M.D.; Jeong, B.H. Genetic link between rs12252 SNP interferon-induced transmembrane protein gene and influenza A viral infection in the Korean population. Mol. Cell. Toxicol. 2020, 4, 1–7. [Google Scholar]
- Gomez, X.; Albayceta, G.; Cuesta-Llavona, E.; Garcia-Clemente, M.; López-Larrea, K.; Amado-Rodriguez, L.; Lopez-Alonso, I.; Melon, S.; Álvarez-Argüelles, M.E.; Hil-Peña, X.; et al. Interferonisan induced transmembrane protein 3 gene (IFITM3) rs12252 C variant associated with COVID-19. Cytokine 2021, 137, 155354. [Google Scholar] [CrossRef]
- Sorensen, T.I.; Nielsen, G.G.; Andersen, P.K.; Tisdale, T.V. Genetic and Environmental Influences on Premature Death in Adult Adoptees. N. Engl. J. Med. 1988, 318, 727–732. [Google Scholar] [CrossRef]
Severity | Total | Men | Women |
---|---|---|---|
Control group | 78 | 41 (52.6%) | 37 (47.4%) |
Easy | 99 | 55 (55.5%) | 44 (44.5%) |
Tolerant | 65 | 32 (55.4%) | 24 (44.6%) |
Strong | 155 | 104 (67.1%) | 51 (32.9%) |
Age | 21–39 | 40–49 | 50–59 | 60–69 | 70–79 | ≥ 80 |
---|---|---|---|---|---|---|
Soft (99) | 10 (9.9%) | 15 (15.2%) | 24 (24.2%) | 23 (23.3%) | 19 (19.2%) | 8 (8.1%) |
Intermediate (65) | 8 (12.3%) | 7 (10.8%) | 10 (15.4%) | 14 (21.5%) | 12 (18.5%) | 14 (21.5%) |
Heavyweight (123) | 6 (4.9%) | 17 (13.8%) | 32 (26%) | 41 (33.3%) | 25 (20.3%) | 2(1.6%) |
Extremely heavy (32) | - | 3 (9.4%) | 8 (25%) | 10(31.3%) | 6 (18.8%) | 5 (15.6%) |
Gene | Gene Function | Polymorphism | Genotype 1 | Localization of Polymorphism | Frequency of Small Alleles (Data from 1000 Genomes) | Frequency of Occurrence of the Minor Allele in the Entire Sample | ||
---|---|---|---|---|---|---|---|---|
EUR 2 | EAC 2 | SAS 2 | ||||||
CCR2 | chemokine receptor, participates in chemotaxis of monocytes | rs1799864 | G/D | protein coding region, exon 1 (Val→Ile) | 0.087 | 0.213 | 0.098 | 0.13 |
IFIH1 | signaling molecule and intracellular viral RNA sensor | rs1990760 | G/D | protein coding region, exon 15 (Ala→Thr) | 0.605 | 0.187 | 0.564 | 0.58 |
TNF | pro-inflammatory cytokine | rs1800629 | G/D | ~300 nucleotides upstream 5′ UTR | 0.134 | 0.059 | 0.053 | 0.13 |
AC2 | cell receptor for SARS-CoV-2 | rs2074192 | G/D | intron | 0.324 | 0.324 | 0.165 | 0.43 |
MBL2 | protein binding to microorganisms and complement activator | rs1800450 | G/D | protein coding region, exon 1 (Gly→Asp) | 0.141 | 0.148 | 0.153 | 0.16 |
CCL2 | chemokine, an activator of monocytes and basophils | rs1024611 | A/G | ~2500 nucleotides upstream 5′ UTR | 0.316 | 0.547 | 0.321 | 0.3 |
TRAF6 | signaling molecule, provides signal transmission from TNF receptors | rs4755453 | G/C | intron | 0.143 | 0.131 | 0.243 | 0.2 |
TIRAP | signaling molecule and activator of several kinase pathways | rs595209 | T/G | intron | 0.202 | 0.625 | 0.365 | 0.24 |
CCL17 | cytokine, a chemotaxis activator of T-lymphocytes | rs223828 | C/T | intron | 0.04 | 0.3 | 0.078 | 0.08 |
IFITM3 | signaling molecule, provides antiviral immunity | rs12252 | T/C | protein coding region, exon 1 (synonymous mutation) | 0.041 | 0.528 | 0.147 | 0.07 |
CXCL8 | chemokine and the main mediator of inflammation | rs4073 | A/T | ~260 nucleotides upstream 5′ UTR | 0.579 | 0.586 | 0.596 | 0.57 |
SFTPD | component of the pulmonary surfactant | rs721917 | T/C | protein coding region, exon 1 (Met→Thr) | 0.421 | 0.615 | 0.706 | 0.47 |
HSPA1A | heat shock protein | rs2227956 | C/T | protein coding region, exon 2 (Thr→Met) | 0.157 | 0.227 | 0.159 | 0.15 |
TIPRSS2 | transmembrane serine protease | rs75603675 | G/T | protein coding region, exon 1 (Gly→Asp) | 0.405 | 0.017 | 0.222 | 0.41 |
TLR2 | toll-like receptor, a pathogen recognition molecule | rs1898830 | A/G | intron | 0.325 | 0.433 | 0.585 | 0.41 |
rs7656411 | T/G | 3′-untranslated region | 0.272 | 0.481 | 0.253 | 0.22 | ||
NOD2 | signaling molecule, recognizes bacterial liposaccharides | rs3135500 | G/D | 3′-untranslated region | 0.418 | 0.176 | 0.179 | 0.41 |
STAT3 | cytokine-activated transcriptional regulator of immune response genes | rs744166 | T/C | intron | 0.414 | 0.398 | 0.511 | 0.33 |
STAT6 | cytokine-activated transcriptional regulator of immune response genes | rs324011 | G/D | intron | 0.347 | 0.253 | 0.337 | 0.39 |
TLR9 | toll-like receptor, a pathogen recognition molecule | rs187084 | T/C | ~1400 nucleotides upstream 5′ UTR | 0.427 | 0.405 | 0.37 | 0.4 |
rs352162 | C/T | ~2100 nucleotides downstream of 3′ UTR | 0.599 | 0.456 | 0.541 | 0.47 | ||
C3AR1 | C3 receptor component complement, a chemotaxis activator | rs7842 | A/G | 3′-untranslated region | 0.31 (HapMap) | 0.29 | ||
IFNL4 | Interferon | rs12979860 | G/D | intron | 0.309 | 0.08 | 0.233 | 0.33 |
TLR7 | toll-like receptor, a pathogen recognition molecule | rs179008 | A/T | protein coding region, exon 2 (Asp→Gly) | 0.176 | 0 | 0.039 | 0.22 |
TLR4 | toll-like receptor, a pathogen recognition molecule | rs4986790 | A/G | protein coding region, exon 3 (Gln→Leu) | 0.057 | 0 | 0.126 | 0.05 |
rs4986791 | C/T | protein coding region, exon 3 (Thr→Ile) | 0.058 | 0 | 0.117 | 0.06 | ||
TLR3 | toll-like receptor, a pathogen recognition molecule | rs3775291 | C/T | protein coding region, exon 4 (Leu→Phe) | 0.324 | 0.328 | 0.263 | 0.32 |
IL1RN | cytokine, a type 1 interleukin activity modulator | rs408392 | C/G | intron | 0.292 | 0.094 | 0.3 | 0.27 |
IL13 | cytokine, a regulator of inflammation and maturation of B-cells | rs1800925 | C/T | 5′-untranslated region | 0.178 | 0.178 | 0.2 | 0.27 |
IL6 | cytokine, a regulator of maturation and differentiation of B-cells | rs1800796 | G/C | 5′-untranslated region | 0.048 | 0.79 | 0.395 | 0.11 |
TNFAIP3 | NFk-B inhibitor | rs6920220 | G/D | 200 K nucleotides upstream of the 5′-end gene (regulatory element) | 0.169 | 0.004 | 0.098 | 0.19 |
MYD88 | Signaling moleculeand an immunity adapter protein | rs7744 | A/G | 3′-untranslated region | 0.144 | 0.33 | 0.099 | 0.17 |
Gene | Polymorphism | Allele Frequency | Genotype Distribution | HWE p-Value |
---|---|---|---|---|
TNF | rs1800629 | G 0.87/A 0.13 | 298/93/6 (0.75/0.23/0.02) | 0.83 |
TMPRSS2 | rs75603675 | C 0.59/A 0.41 | 138/195/64 (0.35/0.49/0.16) | 0.76 |
STAT3 | rs744166 | A 0.67/G 0.33 | 181/172/44 (0.46/0.43/0.11) | 0.73 |
STAT6 | rs324011 | C 0.61/T 0.39 | 145/196/56 (0.37/0.49/0.14) | 0.46 |
CCR2 | rs1799864 | G 0.87/A 0.13 | 301/87/9 (0.76/0.22/0.02) | 0.38 |
TLR7 | rs179008 | A 0.78/T 0.22 | 278/60/59 (0.7/0.15/0.15) | <0.0001 |
IFIH1 | rs1990760 | T 0.58/C 0.42 | 141/179/77 (0.36/0.45/0.19) | 0.15 |
C3AR1 | rs7842 | T 0.71/C 0.29 | 192/181/24 (0.48/0.46/0.06) | 0.037 |
TLR2 | rs1898830 | A 0.59/G 0.41 | 125/216/56 (0.31/0.54/0.14) | 0.017 |
IFITM3 | rs12252 | A 0.93/G 0.07 | 347/45/5 (0.87/0.11/0.01) | 0.031 |
Gene | Polymorphism | Risk Genotype | OR | 95% CI | p |
---|---|---|---|---|---|
TNF | rs1800629 | GA + AA | 1.98 | 1.23–3.18 | 0.0042 |
TIPRSS2 | rs75603675 | CA + AA | 1.83 | 1.21–2.78 | 0.0043 |
STAT3 | rs744166 | GG | 0.37 | 0.19–0.72 | 0.0025 |
STAT6 | rs324011 | TT | 1.84 | 1.01–3.36 | 0.0041 |
IFIG1 | rs1990760 | CT + QC | 1.57 | 1.04–2.37 | 0.033 |
CC | 1.75 | 1.04–2.95 | 0.032 | ||
TLR7 | rs179008 | GG | 1.85 | 1.03–3.32 | 0.036 |
Gene | Polymorphism | Risk Genotype | OR | 95% CI | p |
---|---|---|---|---|---|
TNF | rs1800629 | GA + AA | 1.88 | 1.18–2.97 | 0.0074 |
TIPRSS2 | rs75603675 | CA + AA | 1.86 | 1.2–2.89 | 0.005 |
STAT3 | rs744166 | GG | 0.36 | 0.17–0.78 | 0.0053 |
IFIG1 | rs1990760 | CC | 1.80 | 1.09–2.98 | 0.021 |
STAT6 | rs324011 | TT | 1.83 | 1.04–3.24 | 0.037 |
Gene | Polymorphism | Risk Genotype | OR | 95% CI | p |
---|---|---|---|---|---|
KCR2 | rs1799864 | GA + AA | 2.21 | 1.12–4.39 | 0.015 |
IFIG1 | rs1990760 | CC | 2.41 | 1.11–5.26 | 0.016 |
TIPRSS2 | rs75603675 | CA + AA | 1.71 | 1.03–2.83 | 0.039 |
S3AR1 | rs7842 | TC + CC | 2.08 | 1.25–3.46 | 0.0042 |
STAT3 | rs744166 | GG | 0.39 | 0.15–0.57 | 0.0005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minashkin, M.M.; Grigortsevich, N.Y.; Kamaeva, A.S.; Barzanova, V.V.; Traspov, A.A.; Godkov, M.A.; Ageev, F.A.; Petrikov, S.S.; Pozdnyakova, N.V. The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes. Biomedicines 2022, 10, 549. https://doi.org/10.3390/biomedicines10030549
Minashkin MM, Grigortsevich NY, Kamaeva AS, Barzanova VV, Traspov AA, Godkov MA, Ageev FA, Petrikov SS, Pozdnyakova NV. The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes. Biomedicines. 2022; 10(3):549. https://doi.org/10.3390/biomedicines10030549
Chicago/Turabian StyleMinashkin, Mikhail M., Nataliya Y. Grigortsevich, Anna S. Kamaeva, Valeriya V. Barzanova, Alexey A. Traspov, Mikhail A. Godkov, Farkhad A. Ageev, Sergey S. Petrikov, and Nataliya V. Pozdnyakova. 2022. "The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes" Biomedicines 10, no. 3: 549. https://doi.org/10.3390/biomedicines10030549
APA StyleMinashkin, M. M., Grigortsevich, N. Y., Kamaeva, A. S., Barzanova, V. V., Traspov, A. A., Godkov, M. A., Ageev, F. A., Petrikov, S. S., & Pozdnyakova, N. V. (2022). The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes. Biomedicines, 10(3), 549. https://doi.org/10.3390/biomedicines10030549