Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Second-Line Treatment
3.1.1. Atezolizumab
3.1.2. Pembrolizumab
3.1.3. Nivolumab
3.1.4. Durvalumab
3.1.5. Avelumab
3.2. First-Line Treatment
3.2.1. Atezolizumab
3.2.2. Pembrolizumab
3.2.3. Durvalumab
3.3. Switch Maintenance Immunotherapy after First-Line Chemotherapy
3.3.1. Avelumab
3.3.2. Pembrolizumab
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA A Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GLOBOCAN. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/30-Bladder-fact-sheet.pdf (accessed on 13 October 2021).
- Cancer Stat Facts: Bladder Cancer. Available online: https://seer.cancer.gov/statfacts/html/urinb.html (accessed on 13 October 2021).
- Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The Global Burden of Urinary Bladder Cancer: An Update. World J. Urol. 2020, 38, 1895–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, N.D. Association between Smoking and Risk of Bladder Cancer among Men and Women. JAMA 2011, 306, 737. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; De Castro, G.; Steinberg, G. Urothelial Carcinoma of the Bladder: Definition, Treatment and Future Efforts. Nat. Rev. Urol. 2011, 8, 631–642. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Bladder cancer. V1.2021. Available online: https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf (accessed on 13 October 2021).
- European Society for Medical Oncology. eUpdate-Bladder Cancer Treatment Recommendations (16 July 2020). Available online: https://www.esmo.org/guidelines/genitourinary-cancers/bladder-cancer/eupdate-bladder-cancer-treatment-recommendations4 (accessed on 13 October 2021).
- Galsky, M.D.; Hahn, N.M.; Rosenberg, J.; Sonpavde, G.; Hutson, T.; Oh, W.K.; Dreicer, R.; Vogelzang, N.; Sternberg, C.N.; Bajorin, D.F.; et al. Treatment of Patients with Metastatic Urothelial Cancer “Unfit” for Cisplatin-Based Chemotherapy. J. Clin. Oncol. 2011, 29, 2432–2438. [Google Scholar] [CrossRef] [Green Version]
- Von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.; Lippert, C.M.; et al. Gemcitabine and Cisplatin Versus Methotrexate, Vinblastine, Doxorubicin, and Cisplatin in Advanced or Metastatic Bladder Cancer: Results of a Large, Randomized, Multinational, Multicenter, Phase III Study. J. Clin. Oncol. 2000, 18, 3068–3077. [Google Scholar] [CrossRef]
- De Santis, M.; Bellmunt, J.; Mead, G.; Kerst, J.M.; Leahy, M.; Maroto, P.; Gil, T.; Marreaud, S.; Daugaard, G.; Skoneczna, I.; et al. Randomized Phase II/III Trial Assessing Gemcitabine/Carboplatin and Methotrexate/Carboplatin/Vinblastine in Patients With Advanced Urothelial Cancer Who Are Unfit for Cisplatin-Based Chemotherapy: EORTC Study 30986. J. Clin. Oncol. 2012, 30, 191–199. [Google Scholar] [CrossRef]
- Kaufman, D.; Raghavan, D.; Carducci, M.; Levine, E.G.; Murphy, B.; Aisner, J.; Kuzel, T.; Nicol, S.; Oh, W.; Stadler, W. Phase II Trial of Gemcitabine Plus Cisplatin in Patients with Metastatic Urothelial Cancer. J. Clin. Oncol. 2000, 18, 1921–1927. [Google Scholar] [CrossRef]
- Sternberg, C.N.; de Mulder, P.H.M.; Schornagel, J.H.; Théodore, C.; Fossa, S.D.; van Oosterom, A.T.; Witjes, F.; Spina, M.; van Groeningen, C.J.; de Balincourt, C.; et al. Randomized Phase III Trial of High–Dose-Intensity Methotrexate, Vinblastine, Doxorubicin, and Cisplatin (MVAC) Chemotherapy and Recombinant Human Granulocyte Colony-Stimulating Factor Versus Classic MVAC in Advanced Urothelial Tract Tumors: European Organization for Research and Treatment of Cancer Protocol No. 30924. J. Clin. Oncol. 2001, 19, 2638–2646. [Google Scholar] [CrossRef]
- Simeone, J.C.; Nordstrom, B.L.; Patel, K.; Mann, H.; Klein, A.B.; Horne, L. Treatment Patterns and Overall Survival in Metastatic Urothelial Carcinoma in a Real-World, US Setting. Cancer Epidemiol. 2019, 60, 121–127. [Google Scholar] [CrossRef]
- Taarnhøj, G.A.; Johansen, C.; Pappot, H. Quality of Life in Bladder Cancer Patients Receiving Medical Oncological Treatment; a Systematic Review of the Literature. Health Qual. Life Outcomes 2019, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Théodore, C.; Demkov, T.; Komyakov, B.; Sengelov, L.; Daugaard, G.; Caty, A.; Carles, J.; Jagiello-Gruszfeld, A.; Karyakin, O.; et al. Phase III Trial of Vinflunine Plus Best Supportive Care Compared With Best Supportive Care Alone After a Platinum-Containing Regimen in Patients With Advanced Transitional Cell Carcinoma of the Urothelial Tract. J. Clin. Oncol. 2009, 27, 4454–4461. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Fougeray, R.; Rosenberg, J.E.; von der Maase, H.; Schutz, F.A.; Salhi, Y.; Culine, S.; Choueiri, T.K. Long-Term Survival Results of a Randomized Phase III Trial of Vinflunine plus Best Supportive Care versus Best Supportive Care Alone in Advanced Urothelial Carcinoma Patients after Failure of Platinum-Based Chemotherapy. Ann. Oncol. 2013, 24, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Menon, S.; Shin, S.; Dy, G. Advances in Cancer Immunotherapy in Solid Tumors. Cancers 2016, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Suzman, D.L.; Agrawal, S.; Ning, Y.; Maher, V.E.; Fernandes, L.L.; Karuri, S.; Tang, S.; Sridhara, R.; Schroeder, J.; Goldberg, K.B.; et al. FDA Approval Summary: Atezolizumab or Pembrolizumab for the Treatment of Patients with Advanced Urothelial Carcinoma Ineligible for Cisplatin-Containing Chemotherapy. Oncologist 2019, 24, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Eidinger, D.; Bruce, A.W. Intracavitary Bacillus Calmette-Guerin in the Treatment of Superficial Bladder Tumors. J. Urol. 1976, 116, 180–182. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in Patients with Locally Advanced and Metastatic Urothelial Carcinoma Who Have Progressed Following Treatment with Platinum-Based Chemotherapy: A Single-Arm, Multicentre, Phase 2 Trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Durán, I.; van der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus Chemotherapy in Patients with Platinum-Treated Locally Advanced or Metastatic Urothelial Carcinoma (IMvigor211): A Multicentre, Open-Label, Phase 3 Randomised Controlled Trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- Plimack, E.R.; Bellmunt, J.; Gupta, S.; Berger, R.; Chow, L.Q.M.; Juco, J.; Lunceford, J.; Saraf, S.; Perini, R.F.; O’Donnell, P.H. Safety and Activity of Pembrolizumab in Patients with Locally Advanced or Metastatic Urothelial Cancer (KEYNOTE-012): A Non-Randomised, Open-Label, Phase 1b Study. Lancet Oncol. 2017, 18, 212–220. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in Metastatic Urothelial Carcinoma after Platinum Therapy (CheckMate 275): A Multicentre, Single-Arm, Phase 2 Trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Sharma, P.; Callahan, M.K.; Bono, P.; Kim, J.; Spiliopoulou, P.; Calvo, E.; Pillai, R.N.; Ott, P.A.; de Braud, F.; Morse, M.; et al. Nivolumab Monotherapy in Recurrent Metastatic Urothelial Carcinoma (CheckMate 032): A Multicentre, Open-Label, Two-Stage, Multi-Arm, Phase 1/2 Trial. Lancet Oncol. 2016, 17, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Siefker-Radtke, A.; de Braud, F.; Basso, U.; Calvo, E.; Bono, P.; Morse, M.A.; Ascierto, P.A.; Lopez-Martin, J.; Brossart, P.; et al. Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 Mg/Kg Plus Ipilimumab 3 Mg/Kg Expansion Cohort Results. J. Clin. Oncol. 2019, 37, 1608–1616. [Google Scholar] [CrossRef] [Green Version]
- Massard, C.; Gordon, M.S.; Sharma, S.; Rafii, S.; Wainberg, Z.A.; Luke, J.; Curiel, T.J.; Colon-Otero, G.; Hamid, O.; Sanborn, R.E.; et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti–Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients with Advanced Urothelial Bladder Cancer. J. Clin. Oncol. 2016, 34, 3119–3125. [Google Scholar] [CrossRef]
- Powles, T.; O’Donnell, P.H.; Massard, C.; Arkenau, H.-T.; Friedlander, T.W.; Hoimes, C.J.; Lee, J.L.; Ong, M.; Sridhar, S.S.; Vogelzang, N.J.; et al. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results from a Phase 1/2 Open-Label Study. JAMA Oncol. 2017, 3, e172411. [Google Scholar] [CrossRef]
- Patel, M.R.; Ellerton, J.; Infante, J.R.; Agrawal, M.; Gordon, M.; Aljumaily, R.; Britten, C.D.; Dirix, L.; Lee, K.-W.; Taylor, M.; et al. Avelumab in Metastatic Urothelial Carcinoma after Platinum Failure (JAVELIN Solid Tumor): Pooled Results from Two Expansion Cohorts of an Open-Label, Phase 1 Trial. Lancet Oncol. 2018, 19, 51–64. [Google Scholar] [CrossRef]
- Apolo, A.B.; Infante, J.R.; Balmanoukian, A.; Patel, M.R.; Wang, D.; Kelly, K.; Mega, A.E.; Britten, C.D.; Ravaud, A.; Mita, A.C.; et al. Avelumab, an Anti–Programmed Death-Ligand 1 Antibody, In Patients with Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. J. Clin. Oncol. 2017, 35, 2117–2124. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as First-Line Treatment in Cisplatin-Ineligible Patients with Locally Advanced and Metastatic Urothelial Carcinoma: A Single-Arm, Multicentre, Phase 2 Trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Galsky, M.D.; Arija, J.Á.A.; Bamias, A.; Davis, I.D.; De Santis, M.; Kikuchi, E.; Garcia-del-Muro, X.; De Giorgi, U.; Mencinger, M.; Izumi, K.; et al. Atezolizumab with or without Chemotherapy in Metastatic Urothelial Cancer (IMvigor130): A Multicentre, Randomised, Placebo-Controlled Phase 3 Trial. Lancet 2020, 395, 1547–1557. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-Line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced and Unresectable or Metastatic Urothelial Cancer (KEYNOTE-052): A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Powles, T.; Csőszi, T.; Özgüroğlu, M.; Matsubara, N.; Géczi, L.; Cheng, S.Y.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Morales Barrera, R.; et al. Pembrolizumab. alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 931–945. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Flaig, T.W.; Friedlander, T.W.; Milowsky, M.I.; Srinivas, S.; Petrylak, D.P.; Merchan, J.R.; Bilen, M.A.; Carret, A.-S.; Yuan, N.; et al. Study EV-103: Preliminary Durability Results of Enfortumab Vedotin plus Pembrolizumab for Locally Advanced or Metastatic Urothelial Carcinoma. J. Clin. Oncol. 2020, 38, 441. [Google Scholar] [CrossRef]
- Friedlander, T.W.; Milowsky, M.I.; Bilen, M.A.; Srinivas, S.; McKay, R.R.; Flaig, T.W.; Hoimes, C.J.; Balar, A.V.; Henry, E.; Petrylak, D.P.; et al. Study EV-103: Update on Durability Results and Long Term Outcome of Enfortumab Vedotin + Pembrolizumab in First Line Locally Advanced or Metastatic Urothelial Carcinoma (La/MUC). J. Clin. Oncol. 2021, 39, 4528. [Google Scholar] [CrossRef]
- Powles, T.; van der Heijden, M.S.; Castellano, D.; Galsky, M.D.; Loriot, Y.; Petrylak, D.P.; Ogawa, O.; Park, S.H.; Lee, J.-L.; De Giorgi, U.; et al. Durvalumab Alone and Durvalumab plus Tremelimumab versus Chemotherapy in Previously Untreated Patients with Unresectable, Locally Advanced or Metastatic Urothelial Carcinoma (DANUBE): A Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet Oncol. 2020, 21, 1574–1588. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
- Galsky, M.D.; Mortazavi, A.; Milowsky, M.I.; George, S.; Gupta, S.; Fleming, M.T.; Dang, L.H.; Geynisman, D.M.; Walling, R.; Alter, R.S.; et al. Randomized Double-Blind Phase II Study of Maintenance Pembrolizumab Versus Placebo After First-Line Chemotherapy in Patients with Metastatic Urothelial Cancer. J. Clin. Oncol. 2020, 38, 1797–1806. [Google Scholar] [CrossRef]
- Balar, A.V.; Dreicer, R.; Loriot, Y.; Perez-Gracia, J.L.; Hoffman-Censits, J.H.; Petrylak, D.P.; Van Der Heijden, M.S.; Ding, B.; Shen, X.; Rosenberg, J.E. Atezolizumab (Atezo) in First-Line Cisplatin-Ineligible or Platinum-Treated Locally Advanced or Metastatic Urothelial Cancer (MUC): Long-Term Efficacy from Phase 2 Study IMvigor210. J. Clin. Oncol. 2018, 36, 4523. [Google Scholar] [CrossRef]
- Necchi, A.; Joseph, R.W.; Loriot, Y.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Petrylak, D.P.; Derleth, C.L.; Tayama, D.; Zhu, Q.; Ding, B.; et al. Atezolizumab in Platinum-Treated Locally Advanced or Metastatic Urothelial Carcinoma: Post-Progression Outcomes from the Phase II IMvigor210 Study. Ann. Oncol. 2017, 28, 3044–3050. [Google Scholar] [CrossRef]
- Fradet, Y.; Bellmunt, J.; Vaughn, D.J.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; Necchi, A.; et al. Randomized Phase III KEYNOTE-045 Trial of Pembrolizumab versus Paclitaxel, Docetaxel, or Vinflunine in Recurrent Advanced Urothelial Cancer: Results of >2 Years of Follow-Up. Ann. Oncol. 2019, 30, 970–976. [Google Scholar] [CrossRef]
- Bellmunt, J.; Necchi, A.; De Wit, R.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent Durán, M.A.; Petrylak, D.P.; Choueiri, T.K.; Gerritsen, W.R.; et al. Pembrolizumab (Pembro) versus Investigator’s Choice of Paclitaxel, Docetaxel, or Vinflunine in Recurrent, Advanced Urothelial Cancer (UC): 5-Year Follow-up from the Phase 3 KEYNOTE-045 Trial. J. Clin. Oncol. 2021, 39, 4532. [Google Scholar] [CrossRef]
- Galsky, M.D.; Saci, A.; Szabo, P.M.; Han, G.C.; Grossfeld, G.; Collette, S.; Siefker-Radtke, A.; Necchi, A.; Sharma, P. Nivolumab in Patients with Advanced Platinum-Resistant Urothelial Carcinoma: Efficacy, Safety, and Biomarker Analyses with Extended Follow-up from CheckMate 275. Clin. Cancer Res. 2020, 26, 5120–5128. [Google Scholar] [CrossRef]
- Sharma, P.; Callahan, M.K.; Bono, P.; Kim, J.W.; Spiliopoulou, P.; Calvo, E.; Pillai, R.N.; Ott, P.A.; De Braud, F.G.; Morse, M.; et al. Nivolumab Monotherapy in Metastatic Urothelial Carcinoma: Longer-Term Efficacy and Safety Results from the CheckMate 032 Study. J. Clin. Oncol. 2018, 36, 414. [Google Scholar] [CrossRef]
- Collins, J.M.; Gulley, J.L. Product Review: Avelumab, an Anti-PD-L1 Antibody. Hum. Vaccines Immunother. 2019, 15, 891–908. [Google Scholar] [CrossRef]
- Boyerinas, B.; Jochems, C.; Fantini, M.; Heery, C.R.; Gulley, J.L.; Tsang, K.Y.; Schlom, J. Antibody-Dependent Cellular Cytotoxicity Activity of a Novel Anti–PD-L1 Antibody Avelumab (MSB0010718C) on Human Tumor Cells. Cancer Immunol. Res. 2015, 3, 1148–1157. [Google Scholar] [CrossRef] [Green Version]
- Apolo, A.B.; Ellerton, J.A.; Infante, J.R.; Agrawal, M.; Gordon, M.S.; Aljumaily, R.; Gourdin, T.; Dirix, L.; Lee, K.-W.; Taylor, M.H.; et al. Avelumab as Second-Line Therapy for Metastatic, Platinum-Treated Urothelial Carcinoma in the Phase Ib JAVELIN Solid Tumor Study: 2-Year Updated Efficacy and Safety Analysis. J. Immunother. Cancer 2020, 8, e001246. [Google Scholar] [CrossRef]
- Galsky, M.D.; Banchereau, R.; Hamidi, H.R.; Leng, N.; Harris, W.; O’Donnell, P.H.; Kadel, E.E.; Yuen, K.C.Y.; Jin, D.; Koeppen, H.; et al. Tumor, Immune, and Stromal Characteristics Associated with Clinical Outcomes with Atezolizumab (Atezo) + Platinum-Based Chemotherapy (PBC) or Atezo Monotherapy (Mono) versus PBC in Metastatic Urothelial Cancer (MUC) from the Phase III IMvigor130 Study. J. Clin. Oncol. 2020, 38, 5011. [Google Scholar] [CrossRef]
- Vuky, J.; Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Bellmunt, J.; Powles, T.; Bajorin, D.; Hahn, N.M.; Savage, M.J.; et al. Long-Term Outcomes in KEYNOTE-052: Phase II Study Investigating First-Line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced or Metastatic Urothelial Cancer. J. Clin. Oncol. 2020, 38, 2658–2666. [Google Scholar] [CrossRef]
- Flannery, K.; Boyd, M.; Black-Shinn, J.; Robert, N.; Kamat, A.M. Outcomes in Patients with Metastatic Bladder Cancer in the USA: A Retrospective Electronic Medical Record Study. Future Oncol. 2019, 15, 1323–1334. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulovic, S.; Demey, W.; Ullén, A.; et al. Maintenance Avelumab + Best Supportive Care (BSC) versus BSC Alone after Platinum-Based First-Line (1L) Chemotherapy in Advanced Urothelial Carcinoma (UC): JAVELIN Bladder 100 Phase III Interim Analysis. J. Clin. Oncol. 2020, 38, LBA1. [Google Scholar] [CrossRef]
- Grimaldi, A.; Cammarata, I.; Martire, C.; Focaccetti, C.; Piconese, S.; Buccilli, M.; Mancone, C.; Buzzacchino, F.; Berrios, J.R.G.; D’Alessandris, N.; et al. Combination of Chemotherapy and PD-1 Blockade Induces T Cell Responses to Tumor Non-Mutated Neoantigens. Commun. Biol. 2020, 3, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Biasi, A.R.; Villena-Vargas, J.; Adusumilli, P.S. Cisplatin-Induced Antitumor Immunomodulation: A Review of Preclinical and Clinical Evidence. Clin. Cancer Res. 2014, 20, 5384–5391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.-F.; Lin, J.-F.; Lin, Y.-C.; Chou, K.-Y.; Chen, H.-E.; Ho, C.-Y.; Chen, P.-C.; Hwang, T.I.-S. Cisplatin Contributes to Programmed Death-Ligand 1 Expression in Bladder Cancer through ERK1/2-AP-1 Signaling Pathway. Biosci. Rep. 2019, 39, BSR20190362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Kinn, J.; Zirakzadeh, A.A.; Sherif, A.; Norstedt, G.; Wikström, A.-C.; Winqvist, O. The Effects of Chemotherapeutic Drugs on Human Monocyte-Derived Dendritic Cell Differentiation and Antigen Presentation: The Effect of Chemotherapy Drugs on Immunotherapy. Clin. Exp. Immunol. 2013, 172, 490–499. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, T.H.; Knoff, J.; Huang, Z.; Soong, R.-S.; Alvarez, R.D.; Hung, C.-F.; Wu, T.-C. Intratumoral Injection of Therapeutic HPV Vaccinia Vaccine Following Cisplatin Enhances HPV-Specific Antitumor Effects. Cancer Immunol. Immunother. 2013, 62, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015, 28, 690–714. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, D.; Li, Z.; Jiao, D.; Jin, L.; Cong, J.; Zheng, X.; Xu, L. Low-Dose Gemcitabine Treatment Enhances Immunogenicity and Natural Killer Cell-Driven Tumor Immunity in Lung Cancer. Front. Immunol. 2020, 11, 331. [Google Scholar] [CrossRef]
- Sridhar, S.S.; Powles, T.; Loriot, Y.; Climent Durán, M.A.; Gupta, S.; Tsuchiya, N.; Bamias, A.; Ardizzoni, A.; Ullén, A.; Huang, B.; et al. Avelumab First-Line (1L) Maintenance for Advanced Urothelial Carcinoma (UC) in the JAVELIN Bladder 100 Trial: Subgroup Analysis by Duration of Treatment-Free Interval (TFI) from End of Chemotherapy to Start of Maintenance. J. Clin. Oncol. 2021, 39, 4527. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing Cancer Immunotherapy Using Antiangiogenics: Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef]
- Apolo, A.B.; Girardi, D.d.M.; Niglio, S.A.; Nadal, R.M.; Cordes, L.M.; Steinberg, S.M.; Costello, R.; Trepel, J.B.; Lee, S.; Lee, M.-J.; et al. Final Results from a Phase I Trial and Expansion Cohorts of Cabozantinib and Nivolumab (CaboNivo) Alone or with Ipilimumab (CaboNivoIpi) for Metastatic Genitourinary Tumors. J. Clin. Oncol. 2021, 39, 3. [Google Scholar] [CrossRef]
- Apolo, A.B.; Nadal, R.; Girardi, D.M.; Niglio, S.A.; Ley, L.; Cordes, L.M.; Steinberg, S.M.; Sierra Ortiz, O.; Cadena, J.; Diaz, C.; et al. Phase I Study of Cabozantinib and Nivolumab Alone or With Ipilimumab for Advanced or Metastatic Urothelial Carcinoma and Other Genitourinary Tumors. J. Clin. Oncol. 2020, 38, 3672–3684. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Arkenau, H.-T.; Santana-Davila, R.; Calvo, E.; Paz-Ares, L.; Cassier, P.A.; Bendell, J.; Penel, N.; Krebs, M.G.; Martin-Liberal, J.; et al. Ramucirumab plus Pembrolizumab in Patients with Previously Treated Advanced Non-Small-Cell Lung Cancer, Gastro-Oesophageal Cancer, or Urothelial Carcinomas (JVDF): A Multicohort, Non-Randomised, Open-Label, Phase 1a/b Trial. Lancet Oncol. 2019, 20, 1109–1123. [Google Scholar] [CrossRef]
- Peng, M.; Xiao, D.; Bu, Y.; Long, J.; Yang, X.; Lv, S.; Yang, X. Novel Combination Therapies for the Treatment of Bladder Cancer. Front. Oncol. 2021, 10, 3163. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, B.A.; Schinzari, G.; Ciardiello, D.; Rodriquenz, M.G.; Cisternino, A.; Tortora, G.; Maiello, E. Cancer Vaccines for Genitourinary Tumors: Recent Progresses and Future Possibilities. Vaccines 2021, 9, 623. [Google Scholar] [CrossRef]
- Siefker-Radtke, A.O.; Loriot, Y.; Siena, S.; Beato, C.; Duran, M.A.C.; Varlamov, S.; Duran, I.; Tagawa, S.T.; Geoffrois, L.; Mellado, B.; et al. 752P Updated Data from the NORSE Trial of Erdafitinib (ERDA) plus Cetrelimab (CET) in Patients (Pts) with Metastatic or Locally Advanced Urothelial Carcinoma (MUC) and Specific Fibroblast Growth Factor Receptor (FGFR) Alterations. Ann. Oncol. 2020, 31, S584–S585. [Google Scholar] [CrossRef]
- Siefker-Radtke, A.O.; Currie, G.; Abella, E.; Vaena, D.A.; Rezazadeh Kalebasty, A.; Curigliano, G.; Tupikowski, K.; Andric, Z.G.; Lugowska, I.; Kelly, W.K. FIERCE-22: Clinical Activity of Vofatamab (V) a FGFR3 Selective Inhibitor in Combination with Pembrolizumab (P) in WT Metastatic Urothelial Carcinoma, Preliminary Analysis. J. Clin. Oncol. 2019, 37, 4511. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Gajate, P.; Morales-Barrera, R.; Lee, J.-L.; Necchi, A.; Penel, N.; Zagonel, V.; Sierecki, M.R.; Bao, W.; Zhou, Y.; et al. Safety and Efficacy of Rogaratinib in Combination with Atezolizumab in Cisplatin-Ineligible Patients (Pts) with Locally Advanced or Metastatic Urothelial Cancer (UC) and FGFR MRNA Overexpression in the Phase Ib/II FORT-2 Study. J. Clin. Oncol. 2021, 39, 4521. [Google Scholar] [CrossRef]
- Casadei, C.; Dizman, N.; Schepisi, G.; Cursano, M.C.; Basso, U.; Santini, D.; Pal, S.K.; De Giorgi, U. Targeted Therapies for Advanced Bladder Cancer: New Strategies with FGFR Inhibitors. Ther. Adv. Med. Oncol. 2019, 11, 1758835919890285. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, J.; Wada, Y.; Matsumoto, K.; Azuma, M.; Kikuchi, K.; Ueda, S. Overexpression of B7-H1 (PD-L1) Significantly Associates with Tumor Grade and Postoperative Prognosis in Human Urothelial Cancers. Cancer Immunol. Immunother. 2007, 56, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Faraj, S.F.; Munari, E.; Guner, G.; Taube, J.; Anders, R.; Hicks, J.; Meeker, A.; Schoenberg, M.; Bivalacqua, T.; Drake, C.; et al. Assessment of Tumoral PD-L1 Expression and Intratumoral CD8+ T Cells in Urothelial Carcinoma. Urology 2015, 85, 703.e1–703.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, T.; Sridhar, S.S.; Loriot, Y.; Bellmunt, J.; Mu, X.J.; Ching, K.A.; Pu, J.; Sternberg, C.N.; Petrylak, D.P.; Tambaro, R.; et al. Avelumab Maintenance in Advanced Urothelial Carcinoma: Biomarker Analysis of the Phase 3 JAVELIN Bladder 100 Trial. Nat. Med. 2021, 27, 2200–2211. [Google Scholar] [CrossRef]
- Zheng, Y.; Narwal, R.; Jin, C.; Baverel, P.G.; Jin, X.; Gupta, A.; Ben, Y.; Wang, B.; Mukhopadhyay, P.; Higgs, B.W.; et al. Population Modeling of Tumor Kinetics and Overall Survival to Identify Prognostic and Predictive Biomarkers of Efficacy for Durvalumab in Patients with Urothelial Carcinoma. Clin. Pharmacol. Ther. 2018, 103, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.N.; Lee, H.H.; Hsu, J.L.; Yu, D.; Hung, M.C. The Impact of PD-L1 N-linked Glycosylation on Cancer Therapy and Clinical Diagnosis. J. Biomed. Sci. 2020, 27, 77. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, W.I.; Lee, C.H.; Jung, S.J.; Lee, D.S.; Park, H.Y.; Jeong, D.H.; Kim, W.; Chung, J.I.; Choi, I. Expression of VISTA on tumor-infiltrating immune cells correlated with short intravesical recurrence in non-muscle-invasive bladder cancer. Cancer Immunol. Immunother. 2021, 70, 3113–3122. [Google Scholar] [CrossRef] [PubMed]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, W.; Yang, X.; Wu, C.; Cheng, F. Traditional Classification and Novel Subtyping Systems for Bladder Cancer. Front. Oncol. 2020, 10, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Ma, J.; Liu, X.; Liu, Z. Identification of Four Immune Subtypes in Bladder Cancer Based on Immune Gene Sets. Front. Oncol. 2020, 10, 544610. [Google Scholar] [CrossRef] [PubMed]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel III, E.E.; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Härtlova, A.; Erttmann, S.F.; Raffi, F.A.M.; Schmalz, A.M.; Resch, U.; Anugula, S.; Lienenklaus, S.; Nilsson, L.M.; Kröger, A.; Nilsson, J.A.; et al. DNA Damage Primes the Type I Interferon System via the Cytosolic DNA Sensor STING to Promote Anti-Microbial Innate Immunity. Immunity 2015, 42, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Teo, M.Y.; Seier, K.; Ostrovnaya, I.; Regazzi, A.M.; Kania, B.E.; Moran, M.M.; Cipolla, C.K.; Bluth, M.J.; Chaim, J.; Al-Ahmadie, H.; et al. Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelia Cancers. J. Clin. Oncol. 2018, 36, 1685–1694. [Google Scholar] [CrossRef]
- Vidotto, T.; Nersesian, S.; Graham, C.; Siemens, D.R.; Koti, M. DNA Damage Repair Gene Mutations and Their Association with Tumor Immune Regulatory Gene Expression in Muscle Invasive Bladder Cancer Subtypes. J. Immunother. Cancer 2019, 7, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conroy, M.; Naidoo, J. Immune-related adverse events and the balancing act of immunotherapy. Nat. Commun. 2022, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
Line | Trial | Phase | Nr. Patients | ICI Therapy | Control Group | Primary Endpoint | PD-L1 Cut-Off, Cell Types (Detection Platform) | Efficacy Outcomes |
---|---|---|---|---|---|---|---|---|
2 | IMvigor 210 (Cohort 2) [22] | II | 310 | Atezolizumab 1200 mg q3w | - | ORR | 5%, IC (Ventana SP142) | ORR 14.8% mOS 7.9 mos mPFS 2.1 mos |
IMvigor 211 [23] | III | 931 | Atezolizumab 1200 mg q3w | CT | OS | 5%, IC (Ventana SP142) | mOS 11.1 vs. 10.6 mos (PD-L1+ patients) | |
KEYNOTE-012 (mUC cohort) [24] | Ib | 33 | Pembrolizumab 10 mg/kg q2w | - | ORR, safety | 1%, TC (Dako 22C3) * | ORR 26% | |
KEYNOTE-045 [25] | III | 542 | Pembrolizumab 200 mg q3w | CT | OS, PFS in overall population and PD-L1+ | CPS ≥ 10, TC and IC (Dako 22C3) | mOS 10.3 vs. 7.4 mos ORR 21.1% vs. 11.4% mDOR NR vs. 14.1 mos mPFS 2.1 vs. 3.3 mos | |
CheckMate 275 [26] | II | 265 | Nivolumab 3 mg/kg q2w | - | ORR (overall, PD-L1+) | 5%, amended to 1%, TC (Dako 28.8) | ORR 19.6% mPFS 1.9 mos mOS 8.6 mos | |
CheckMate 032 [27,28] | I/II | 78 | Nivolumab 3 mg/kg q2w (NIVO3) | - | ORR | 1%, TC (Dako 28.8) | ORR 25.6% mOS: 9.7 mos mPFS 2.8 mos | |
104 | Nivolumab 3 mg/kg + Ipilimumab 1 mg/kg (NIVO3+IPI1) | ORR 26.9% mPFS 2.6 mos mOS: 7.4 mos (PD-L1−), 10.8 mos (PD-L1+) | ||||||
92 | Nivolumab 1 mg/kg + Ipilimumab 3 mg/kg (NIVO1 + IPI3) | ORR 38% mPFS 4.9 mos mOS: 14.9 mos (PD-L1−), 24.1 mos (PD-L1+) | ||||||
NCT01693562 (UBC cohort) [29] | I/II | 61 | Durvalumab 10 mg/kg q2w | - | Safety | 25%, TC/IC (Ventana SP263) | ORR 31.0% | |
STUDY 1108 [30] | I/II | 191 | Durvalumab 10 mg/kg q2w | - | Safety, ORR | 25%, TC/IC (Ventana SP263) | ORR 17.8% mPFS 1.5 mos mOS 18.2 mos | |
JAVELIN Solid Tumor [31] | Ib | 249 | Avelumab 10 mg/kg q2w | - | Safety | 5%, TC (Dako 73–10) | ORR 17% | |
JAVELIN (mUC expansion cohort) [32] | Ib | 44 | Avelumab 10 mg/kg q2w | - | Safety | 5%, TC (Dako 73–10) | ORR 18.2% mPFS 11.6 wks mOS 13.7 mos | |
1 | IMvigor 210 (cohort 1) [33] | II | 119 (cis-unfit) | Atezolizumab 1200 mg q3w | - | ORR | 5%, IC (Ventana SP142) | ORR 23% mPFS 2.7 mos mOS 16.3 mos |
IMvigor 130 [34] | III | 1312 | Group A: Atezolizumab + platinum-based CTGroup B: Atezolizumab (1200 mg q3w) | Group C: CT + PBO | PFS, OS (A vs. C), OS (B vs. C if A vs. C was positive) | 1% (IC1), 5% (IC2/3) (Ventana SP142) | mPFS 8.2 (A) vs. 6.3 (C) mos mOS 16.0 (A) vs. 13.4 (C) mos | |
KEYNOTE-052 [35] | II | 317 (cis-unfit) | Pembrolizumab 200 mg q3w | - | ORR | CPS ≥10%, TC and IC (Dako 22C3) | ORR 28.6% mOS 11.3 mos | |
KEYNOTE-361 [36] | III | 1010 | Pembrolizumab (P), Pembrolizumab + CT (P + C) | CT (C) | OS, PFS (starting from P + C vs. C) | CPS ≥10%, TC and IC (Dako 22C3) | mPFS 8.3 (P + C), 3.9 (P), 7.1 (C) mos mOS 17 (P + C), 15.6 (P), 14.3 (C) mos ORR 54.7% (P + C), 30.3% (P), 44.9% (C) | |
EV-103 [37,38] | Ib/II | 45 (cis-unfit) | Pembrolizumab + Enfortumab vedotin 1.25 mg/kq d1,8 q3w | - | Safety | NA | ORR 73.3% mPFS 12.3 mos mDOR 25.6 mos mOS NR after 2 y | |
DANUBE [39] | III | 1032 | Durvalumab 1500 mg q4w (D), or durvalumab + tremelimumab (75 mg q4w) (D + T) | CT | OS PD-L1+ (D vs. CT), OS overall (D + T vs. CT) | 25% TC or 25% IC + 1% TC (Ventana SP263) | mOS 14.4 (D) vs. 12.1 mos (CT) (PD-L1+ patients) mOS 15.1 (D + T) vs. 12.1 (CT) mos (overall population) | |
1M | JAVELIN Bladder 100 [40] | III | 700 | Avelumab 10 mg/kg q2w | BSC | OS (overall, PD-L1+) | 25%, TC/IC (Ventana SP263) | mOS 21.4 vs. 14.3 mos |
GU14-182 [41] | II | 107 | Pembrolizumab 200 mg q3w | PBO | PFS | CPS ≥ 10%, TC and IC (Dako 22C3) | mPFS 5.4 vs. 3.0 mos mOS 22.0 vs. 18.7 mos |
Trial | Phase | Line of Therapy | ICIs and Combinations (Mechanisms of Action) | Primary Endpoints |
---|---|---|---|---|
NCT03036098 (CheckMate 901) | III | 1 | Nivolumab + Ipilimumab vs. Nivolumab + SOC (CT) vs. SOC | PFS, OS |
NCT03682068 (NILE) | III | 1 | Durvalumab + CT vs. Durvalumab + Tremelimumab + CT vs. CT | OS (PD-L1 >25%) |
NCT04223856 (EV-302) | III | 1 | Pembrolizumab + Enfortumab vedotin (anti Nectin-4) vs. CT vs. Pembrolizumab + Enfortumab vedotin + CT | PFS, OS |
NCT04863885 | I/II | 1 (cis-unfit) | Nivolumab + Ipilimumab + Sacituzumab govitecan (anti Trop-2) | MTD, ORR |
NCT03898180 | III | 1 | Pembrolizumab + Lenvatinib (TKI) | PFS, OS |
NCT03534804 | II | 1 (cis-unfit) | Pembrolizumab + Cabozantinib (TKI) | ORR |
NCT03601455 | II | 1 | Durvalumab + Tremelimumab + RT | PFS, safety |
NCT03513952 | II | 1 | Atezolizumab + CYT107 (glycosylated recombinant human IL-7) | ORR |
NCT03459846 (BAYOU) | II | 1 | Durvalumab + Olaparib (PARP-inhibitor)/PBO | PFS |
NCT03854474 | I/II | 1 | Pembrolizumab + Tazemetostat (EZH2 inhibitor) | ORR |
NCT02500121 | II | 1M | Pembrolizumab (vs PBO) | 6 mos PFS rate |
NCT04678362 | II | 1M | Avelumab + Talazoparib (PARP-inhibitor) | PFS |
NCT03473756 (FORT-2) | I/II | 1 (FGFR-mutant) | Atezolizumab + rogaratinib (anti-FGFR)/PBO | Safety, PFS |
NCT03473743 (NORSE) | I/II | 1 (FGFR-mtant) | Cetrelimab (anti-PD1) + erdafitinib (anti-FGFR) vs. erdafitinib | Safety, ORR |
NCT04045613 | I/II | 1 (FGFR-mtant) | Atezolizumab + derazantinib (anti-FGFR) | Safety, ORR |
NCT04601857 | II | 1 (FGFR-mutant) | Pembrolizumab + Futibatinib (anti-FGFR) | ORR |
NCT03715985 | I/II | any | Avelumab OR atezolizumab OR durvalumab OR nivolumab OR pembrolizumab + Personalized neoantigen vaccine | Safety |
NCT02643303 | I/II | any | Durvalumab + polyICLC (TLR3 agonist) + in-situ vaccination with tremelimumab | 24 wks PFS |
NCT02897765 | I | 2 | Nivolumab + NEO-PV-01 (vaccine) + polyICLC | Safety |
NCT03915405 | I | 2 | Avelumab + KHK2455 (anti-IDO) | Safety |
NCT03606174 | II | 2 * | Nivolumab or pembrolizumab/enfortumab vedotin + sitravanib (TKI) | ORR |
NCT04902040 | Ib/II | 2 * | Avelumab OR atezolizumab OR durvalumab OR nivolumab OR pembrolizumab + plinabulin (anti-angiogenic) and RT | ORR, safety |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiorano, B.A.; De Giorgi, U.; Ciardiello, D.; Schinzari, G.; Cisternino, A.; Tortora, G.; Maiello, E. Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day. Biomedicines 2022, 10, 411. https://doi.org/10.3390/biomedicines10020411
Maiorano BA, De Giorgi U, Ciardiello D, Schinzari G, Cisternino A, Tortora G, Maiello E. Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day. Biomedicines. 2022; 10(2):411. https://doi.org/10.3390/biomedicines10020411
Chicago/Turabian StyleMaiorano, Brigida Anna, Ugo De Giorgi, Davide Ciardiello, Giovanni Schinzari, Antonio Cisternino, Giampaolo Tortora, and Evaristo Maiello. 2022. "Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day" Biomedicines 10, no. 2: 411. https://doi.org/10.3390/biomedicines10020411
APA StyleMaiorano, B. A., De Giorgi, U., Ciardiello, D., Schinzari, G., Cisternino, A., Tortora, G., & Maiello, E. (2022). Immune-Checkpoint Inhibitors in Advanced Bladder Cancer: Seize the Day. Biomedicines, 10(2), 411. https://doi.org/10.3390/biomedicines10020411