Cell Technologies in the Stress Urinary Incontinence Correction
Abstract
:1. Introduction
2. In Vitro Data Testifying the Promise of Using MSCs for the Urinary Incontinence Correction
3. Cellular Technologies in the Treatment of Patients with Urinary Incontinence
4. MSC Incontinence Correction in Experimental Models
5. MSC Using Ineffectiveness and Its Possible Causes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Arjmand, B.; Safavi, M.; Heidari, R.; Aghayan, H.; T Bazargani, S.; Dehghani, S.; Goodarzi, P.; Mohammadi-Jahani, F.; Heidari, F.; Payab, M.; et al. Concomitant transurethral and transvaginal-periurethral injection of autologous adipose derived stem cells for treatment of female stress urinary incontinence: A phase one clinical trial. Acta Med. Iran. 2017, 55, 368–374. [Google Scholar] [PubMed]
- Aragón, I.M.; Imbroda, B.H.; Lara, M.F. Cell therapy clinical trials for stress urinary incontinence: Current status and perspectives. Int. J. Med. Sci. 2018, 15, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafaat, S.; Mangir, N.; Regureos, S.R.; Chapple, C.R.; MacNeil, S. Demonstration of improved tissue integration and angiogenesis with an elastic, estradiol releasing polyurethane material designed for use in pelvic floor repair. Neurourol. Urodyn. 2018, 37, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Kang, N.; Banie, L.; Zhou, T.; Liu, T.; Wang, B.; Ruan, Y.; Peng, D.; Wang, H.S.; Wang, T.; et al. Microenergy acoustic pulses induced myogenesis of urethral striated muscle stem/progenitor cells. Transl. Androl. Urol. 2019, 8, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Zambon, J.P.; Williams, K.J.; Bennington, J.; Badlani, G.H. Applicability of regenerative medicine and tissue engineering for the treatment of stress urinary incontinence in female patients. Neurourol. Urodyn. 2019, 38 (Suppl 4), S76–S83. [Google Scholar] [CrossRef] [PubMed]
- Aufderklamm, S.; Aicher, W.K.; Amend, B.; Stenzl, A. Stress urinary incontinence and regenerative medicine: Is injecting functional cells into the urethra feasible based on current knowledge and future prospects? Curr. Opin. Urol. 2019, 29, 394–399. [Google Scholar] [CrossRef]
- Janssen, K.; Lin, D.L.; Hanzlicek, B.; Deng, K.; Balog, B.M.; van der Vaart, C.H.; Damaser, M.S. Multiple doses of stem cells maintain urethral function in a model of neuromuscular injury resulting in stress urinary incontinence. Am. J. Physiol.-Renal Physiol. 2019, 317, F1047–F1057. [Google Scholar] [CrossRef]
- Maiborodin, I.V.; Yarin, G.Y.; Vilgelmi, I.A.; Maiborodina, V.I. Age-related changes of the female urethra. Adv. Gerontol. 2020, 33, 945–955. [Google Scholar] [CrossRef]
- Aboushwareb, T.; McKenzie, P.; Wezel, F.; Southgate, J.; Badlani, G. Is tissue engineering and biomaterials the future for lower urinary tract dysfunction (LUTD)/pelvic organ prolapse (POP)? Neurourol. Urodyn. 2011, 30, 775–782. [Google Scholar] [CrossRef]
- Burdzinska, A.; Dybowski, B.; Zarychta-Wiśniewska, W.; Kulesza, A.; Butrym, M.; Zagozdzon, R.; Graczyk-Jarzynka, A.; Radziszewski, P.; Gajewski, Z.; Paczek, L. Intraurethral co-transplantation of bone marrow mesenchymal stem cells and muscle-derived cells improves the urethral closure. Stem Cell Res. Ther. 2018, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Gupta, D.K. Tissue engineering and stem cell therapy in pediatric urology. J. Indian Assoc. Pediatr. Surg. 2019, 24, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, Z.; Faramarzi, S.; Ahadi, A.; Omrani, M.D.; Ghaderian, S.M. Efficiency of mesenchymal stem cells in treatment of urinary incontinence: A systematic review on animal models. Regen. Med. 2019, 14, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Ryu, C.M.; Yu, H.Y.; Shin, D.M.; Choo, M.S. Current and future directions of stem cell therapy for bladder dysfunction. Stem Cell Rev. Rep. 2020, 16, 82–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, L.; De Ridder, D.; Van der Aa, F. Slings for urinary incontinence and the application of cell-based therapy. Adv. Drug Deliv. Rev. 2015, 82–83, 22–30. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Wang, X.; Wang, Y.; Wang, J.; Fu, Q.; Shi, G. Tissue-engineered sling with adipose-derived stem cells under static mechanical strain. Exp. Ther. Med. 2017, 14, 1337–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, S.; Wu, S.; Hao, Q.; Li, Y.; Guo, Z.; Wang, W. Exosomes secreted by adipose-derived mesenchymal stem cells regulate type I collagen metabolism in fibroblasts from women with stress urinary incontinence. Stem Cell Res. Ther. 2018, 9, 159. [Google Scholar] [CrossRef]
- Maiborodin, I.V.; Yarin, G.Y.; Vilgelmi, I.A.; Marchukov, S.V.; Maiborodina, V.I.; Onoprienko, N.V. The cell technologies in modification of mesh materials used in urology. Urologiia 2021, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Hillary, C.J.; Roman, S.; MacNeil, S.; Aicher, W.K.; Stenzl, A.; Chapple, C.R. Regenerative medicine and injection therapies in stress urinary incontinence. Nat. Rev. Urol. 2020, 17, 151–161. [Google Scholar] [CrossRef]
- Kaufman, M.R. Contemporary application of autologous muscle-derived cells for urinary sphincter regeneration. World J. Urol. 2020, 38, 2095–2099. [Google Scholar] [CrossRef]
- Zordani, A.; Pisciotta, A.; Bertoni, L.; Bertani, G.; Vallarola, A.; Giuliani, D.; Puliatti, S.; Mecugni, D.; Bianchi, G.; de Pol, A.; et al. Regenerative potential of human dental pulp stem cells in the treatment of stress urinary incontinence: In vitro and in vivo study. Cell Prolif. 2019, 52, e12675. [Google Scholar] [CrossRef] [Green Version]
- Bilhar, A.P.M.; Bortolini, M.A.T.; Sé, A.B.; Feitosa, S.M.; Salerno, G.R.F.; Zanoteli, E.; Simões, M.J.; Castro, R.A. Molecular and immunohistochemical analysis of the urethra of female rats after induced trauma and intravenous therapy with muscle derived stem cells. Neurourol. Urodyn. 2018, 37, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Meng, Q.; Wen, J.; Gao, Z.; Yan, Z.; Tian, Y.; Xu, P.; He, X.; Yu, H.; Lian, P. A functional comparison of treatment of intrinsic sphincter deficiency with muscle-derived and adipose tissue-derived stem cells. IUBMB Life 2018, 70, 976–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, J.; Li, H.; Zhou, Y.; Gu, B.; Xu, Y.; Fu, Q.; Peng, X.; Cao, N.; Fu, Q.; Jin, M.; et al. Therapeutic potential of human adipose-derived stem cell exosomes in stress urinary incontinence—An in vitro and in vivo study. Cell Physiol. Biochem. 2018, 48, 1710–1722. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Huang, C.; Wu, Q.; Jia, X.; Liu, M.; Xue, Z.; Qiu, Y.; Niu, X.; Wang, Y. Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Res. Ther. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Koudy Williams, J.; Dean, A.; Lankford, S.; Andersson, K.E. Efficacy and initial safety profile of CXCL12 treatment in a rodent model of urinary sphincter deficiency. Stem Cells Transl. Med. 2017, 6, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Burdzinska, A.; Dybowski, B.; Zarychta-Wiśniewska, W.; Kulesza, A.; Hawryluk, J.; Graczyk-Jarzynka, A.; Kaupa, P.; Gajewski, Z.; Paczek, L. Limited accuracy of transurethral and periurethral intrasphincteric injections of cellular suspension. Neurourol. Urodyn. 2018, 37, 1612–1622. [Google Scholar] [CrossRef]
- Kovanecz, I.; Gelfand, R.; Lin, G.; Sharifzad, S.; Ohanian, A.; Ricks, R.; Lue, T.; Gonzalez-Cadavid, N.F. Stem cells from a female rat model of type 2 diabetes/obesity and stress urinary incontinence are damaged by in vitro exposure to its dyslipidemic serum, predicting inadequate repair capacity in vivo. Int. J. Mol. Sci. 2019, 20, 4044. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiborodin, I.; Yarin, G.; Marchukov, S.; Pichigina, A.; Lapii, G.; Krasil’nikov, S.; Senchukova, S.; Ryaguzov, M.; Vilgelmi, I.; Bakarev, M.; et al. Cell Technologies in the Stress Urinary Incontinence Correction. Biomedicines 2022, 10, 309. https://doi.org/10.3390/biomedicines10020309
Maiborodin I, Yarin G, Marchukov S, Pichigina A, Lapii G, Krasil’nikov S, Senchukova S, Ryaguzov M, Vilgelmi I, Bakarev M, et al. Cell Technologies in the Stress Urinary Incontinence Correction. Biomedicines. 2022; 10(2):309. https://doi.org/10.3390/biomedicines10020309
Chicago/Turabian StyleMaiborodin, Igor, Gennadiy Yarin, Sergey Marchukov, Aleksandra Pichigina, Galina Lapii, Sergey Krasil’nikov, Svetlana Senchukova, Maxim Ryaguzov, Inna Vilgelmi, Maksim Bakarev, and et al. 2022. "Cell Technologies in the Stress Urinary Incontinence Correction" Biomedicines 10, no. 2: 309. https://doi.org/10.3390/biomedicines10020309
APA StyleMaiborodin, I., Yarin, G., Marchukov, S., Pichigina, A., Lapii, G., Krasil’nikov, S., Senchukova, S., Ryaguzov, M., Vilgelmi, I., Bakarev, M., & Maiborodina, V. (2022). Cell Technologies in the Stress Urinary Incontinence Correction. Biomedicines, 10(2), 309. https://doi.org/10.3390/biomedicines10020309