Neural Signatures of Error Processing in Depressed Adolescents with Comorbid Non-Suicidal Self-Injury (NSSI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Psychometric Measurements
2.3. fMRI Procedure
2.4. Functional Data Acquisition
2.5. Data Analysis
2.5.1. Behavioral Data and Psychometric Measurements
2.5.2. fMRI-Data
3. Results
3.1. Demographic Data and Psychometric Measurements
3.2. fMRI Data
3.2.1. Incorrect Minus Correct Incongruent No Go Trials
3.2.2. Incorrect Minus Correct Incongruent Go Trials
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. DSM-V. 2013. Available online: https://doi.org/10.1176/appi.books.9780890425596.744053 (accessed on 8 December 2013). [CrossRef]
- Klonsky, E.D.; Glenn, C.R. Assessing the functions of non-suicidal self-injury: Psychometric properties of the Inventory of Statements About Self-injury (ISAS). J. Psychopathol. Behav. Assess. 2009, 31, 215–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plener, P.L.; Schumacher, T.S.; Munz, L.M.; Groschwitz, R.C. The longitudinal course of non-suicidal self-injury and deliberate self-harm: A systematic review of the literature. Borderline Personal. Disord. Emot. Dysregul. 2015, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, D.; Christou, M.A.; Dixon, A.C.; Featherston, O.J.; Rapti, I.; Garcia-Anguita, A. Prevalence and Characteristics of Self-Harm in Adolescents: Meta-Analyses of Community-Based Studies 1990–2015. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Kaess, M.; Parzer, P.; Mattern, M.; Plener, P.L.; Bifulco, A.; Resch, F. Adverse childhood experiences and their impact on frequency, severity, and the individual function of nonsuicidal self-injury in youth. Psychiatry Res. 2013, 206, 265–272. [Google Scholar] [CrossRef]
- Glenn, C.R.; Klonsky, E.D. Nonsuicidal Self-Injury Disorder: An Empirical Investigation in Adolescent Psychiatric Patients. J. Clin. Child Adolesc. Psychol. 2013, 42, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Nitkowski, D.; Petermann, F. Non-suicidal self-injury and comorbid mental disorders: A review. Fortschr. Neurol. Psychiatr. 2011, 79, 9–20. [Google Scholar] [CrossRef]
- Brown, R.C.; Plener, P.L. Non-suicidal Self-Injury in Adolescence. Curr. Psychiatry Rep. 2017, 19, 20. [Google Scholar] [CrossRef] [Green Version]
- Klonsky, E.D.; Oltmanns, T.F.; Turkheimer, E. Deliberate self-harm in a nonclinical population: Prevalence and psychological correlates. Am. J. Psychiatry 2003, 160, 1501–1508. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, C.M.; Muehlenkamp, J.J.; Miller, A.L.; Turner, J.B. Psychiatric Impairment Among Adolescents Engaging in Different Types of Deliberate Self-Harm. J. Clin. Child Adolesc. Psychol. 2008, 37, 363–375. [Google Scholar] [CrossRef]
- Buelens, T.; Costantini, G.; Luyckx, K.; Claes, L. Comorbidity Between Non-suicidal Self-Injury Disorder and Borderline Personality Disorder in Adolescents: A Graphical Network Approach. Front. Psychiatry 2020, 11, 580922. [Google Scholar] [CrossRef]
- Taylor, P.J.; Jomar, K.; Dhingra, K.; Forrester, R.; Shahmalak, U.; Dickson, J.M. A meta-analysis of the prevalence of different functions of non-suicidal self-injury. J. Affect Disord. 2018, 227, 759–769. [Google Scholar] [CrossRef]
- Lockwood, J.; Daley, D.; Townsend, E.; Sayal, K. Impulsivity and self-harm in adolescence: A systematic review. Eur. Child Adolesc. Psychiatry 2017, 26, 387–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandler, A.; Myers, F.; Platt, S. The Construction of Self-Injury in the Clinical Literature: A Sociological Exploration. Suicide Life-Threat. Behav. 2011, 41, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Simeon, D.; Stanley, B.; Frances, A.; Mann, J.J.; Winchel, R.; Stanley, M. Self-mutilation in personality disorders: Psychological and biological correlates. Am. J. Psychiatry 1992, 149, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Herpertz, S.; Steinmeyer, S.M.; Marx, D.; Oidtmann, A.; Sass, H. The significance of aggression and impulsivity for self-mutilative behavior. Pharmacopsychiatry 1995, 28 (Suppl. 2), 64–72. [Google Scholar] [CrossRef] [PubMed]
- Fikke, L.T.; Melinder, A.; Landrø, N.I. Executive functions are impaired in adolescents engaging in non-suicidal self-injury. Psychol. Med. 2011, 41, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Dalley, J.W.; Everitt, B.J.; Robbins, T.W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 2011, 69, 680–694. [Google Scholar] [CrossRef] [Green Version]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef]
- Wager, T.D.; Sylvester, C.-Y.C.; Lacey, S.C.; Nee, D.E.; Franklin, M.; Jonides, J. Common and unique components of response inhibition revealed by fMRI. Neuroimage 2005, 27, 323–340. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Ruchsow, M.; Spitzer, M.; Grön, G.; Grothe, J.; Kiefer, M. Error processing and impulsiveness in normals: Evidence from event-related potentials. Cogn. Brain Res. 2005, 24, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Sosic-Vasic, Z.; Ulrich, M.; Ruchsow, M.; Vasic, N.; Grön, G. The modulating effect of personality traits on neural error monitoring: Evidence from event-related fMRI. PLoS ONE 2012, 7, e42930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malejko, K.; Hafner, S.; Plener, P.L.; Bonenberger, M.; Groen, G.; Abler, B. Neural signature of error processing in major depression. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Graf, H.; Abler, B.; Freudenmann, R.; Beschoner, P.; Schaeffeler, E.; Spitzer, M.; Schwab, M.; Grön, G. Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers. Biol. Psychiatry 2011, 69, 890–897. [Google Scholar] [CrossRef]
- Ruchsow, M.; Walter, H.; Buchheim, A.; Martius, P.; Spitzer, M.; Kächele, H. Electrophysiological correlates of error processing in borderline personality disorder. Biol. Psychol. 2006, 72, 133–140. [Google Scholar] [CrossRef]
- Garavan, H.; Ross, T.J.; Murphy, K.; Roche, R.A.P.; Stein, E.A. Dissociable Executive Functions in the Dynamic Control of Behavior: Inhibition, Error Detection, and Correction. Neuroimage 2002, 17, 1820–1829. [Google Scholar] [CrossRef] [Green Version]
- Garavan, H.; Ross, T.J.; Stein, E.A. Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proc. Natl. Acad. Sci. USA 1999, 96, 8301–8306. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.; Adleman, N.E.; White, C.D.; Glover, G.H.; Reiss, A.L. Error-related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 2001, 12, 131–143. [Google Scholar] [CrossRef]
- Castellanos, F.X.; Giedd, J.N.; Marsh, W.L.; Hamburger, S.D.; Vaituzis, A.C.; Dickstein, D.P. Quantitative Brain Magnetic Resonance Imaging in Attention-Deficit Hyperactivity Disorder. Arch. Gen. Psychiatry 1996, 53, 607–616. [Google Scholar] [CrossRef]
- Casey, B.J.; Castellanos, F.X.; Giedd, J.N.; Marsh, W.L.; Hamburger, S.D.; Schubert, A.B. Implication of Right Frontostriatal Circuitry in Response Inhibition and Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry 1997, 36, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, C.J.; Austin, G.; Kirkorian, G.; Ridlehuber, H.W.; Desmond, J.E.; Glover, G.H. Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proc. Natl. Acad. Sci. USA 1998, 95, 14494–14499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowell, E.R.; Thompson, P.M.; Welcome, S.E.; Henkenius, A.L.; Toga, A.W.; Peterson, B.S. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 2003, 362, 1699–1707. [Google Scholar] [CrossRef]
- Overtoom, C.C.; Kenemans, J.L.; Verbaten, M.N.; Kemner, C.; van der Molen, M.W.; van Engeland, H. Inhibition in children with attention-deficit/hyperactivity disorder: A psychophysiological study of the stop task. Biol. Psychiatry 2002, 51, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, G.S.; Murphy, C.F.; Gunning-Dixon, F.M.; Kalayam, B.; Katz, R.; Kanellopoulos, D. Event-related potentials in an emotional go/no-go task and remission of geriatric depression. Neuroreport 2007, 18, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.J.; Pizzagalli, D.A. Spatiotemporal Dynamics of Error Processing Dysfunctions in Major Depressive Disorder. Arch. Gen. Psychiatry 2008, 65, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, P.H.; Deldin, P.J. Neural evidence for enhanced error detection in major depressive disorder. Am. J. Psychiatry 2007, 164, 608–616. [Google Scholar] [CrossRef]
- Langenecker, S.A.; Kennedy, S.E.; Guidotti, L.M.; Briceno, E.M.; Own, L.S.; Hooven, T. Frontal and Limbic Activation During Inhibitory Control Predicts Treatment Response in Major Depressive Disorder. Biol. Psychiatry 2007, 62, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Delmo, C.; Weiffenbach, O.; Gabriel, M.; Poustka, F. Kiddie-SADS-Present and Lifetime Version (K-SADS-PL); Auflage Der Dtsch Forschungsversion Frankfurt Am Main Klin Für Psychiatr Und Psychother Des Kindes-Und Jugendalters Der Univ Frankfurt: Frankfurt, Germany, 2000. [Google Scholar]
- Fischer, G.; Ameis, N.; Parzer, P.; Plener, P.L.; Groschwitz, R.; Vonderlin, E. The German version of the self-injurious thoughts and behaviors interview (SITBI-G): A tool to assess non-suicidal self-injury and suicidal behavior disorder. BMC Psychiatry 2014, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nock, M.K.; Holmberg, E.B.; Photos, V.I.; Michel, B.D. Self-Injurious Thoughts and Behaviors Interview: Development, Reliability, and Validity in an Adolescent Sample. Psychol. Assess. 2007, 19, 309–317. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the beck depression inventory-II. San Antonio TX Psychol. Corp. 1996, 1, 82. [Google Scholar]
- Hautzinger, M.; Keller, F.; Kühner, C. Beck Depressions-Inventar (BDI-II); Harcourt Test Services Frankfurt: Frankfurt, Germany, 2006. [Google Scholar]
- Poznanski, E.O.; Mokros, H.B. Children’s Depression Rating Scale, Revised (CDRS-R); Western Psychological Services: Los Angeles, CA, USA, 1996. [Google Scholar]
- Keller, F.; Grieb, J.; Ernst, M.; Spröber, N.; Fegert, J.M.; Kölch, M. Children’s Depression Rating Scale-Revised (CDRS-R): Development of a German version and psychometric properties in a clinical sample. Z. Kinder. Jugendpsychiatr. Psychother. 2011, 39, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Horn, W.; Lukesch, H.; Mayrhofer, S.; Kormann, A. Prüfsystem Für Schul-Und Bildungsberatung Für 6. Bis 13; Klassen–Revidierte Fassung; Hogrefe: Göttingen, Germany, 2003. [Google Scholar]
- Petermann, F.; Petermann, U.J. Wechsler Intelligence Scale for Children®—Fourth Edition; Pearson: Frankfurt, Germany, 2011. [Google Scholar]
- Williams, K.D.; Cheung, C.K.; Choi, W. Cyberostracism: Effects of being ignored over the Internet. J. Pers. Soc. Psychol. 2000, 79, 748–762. [Google Scholar] [CrossRef] [PubMed]
- Groschwitz, R.C.; Plener, P.L.; Groen, G.; Bonenberger, M.; Abler, B. Differential neural processing of social exclusion in adolescents with non-suicidal self-injury: An fMRI study. Psychiatry Res. 2016, 255, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- JASP Team. JASP (Version 0.163), Computer software: Amsterdam, The Netherlands, 2022.
- McHugh, C.M.; Chun Lee, R.S.; Hermens, D.F.; Corderoy, A.; Large, M.; Hickie, I.B. Impulsivity in the self-harm and suicidal behavior of young people: A systematic review and meta-analysis. J. Psychiatr. Res. 2019, 116, 51–60. [Google Scholar] [CrossRef]
- Ladouceur, C.D.; Slifka, J.S.; Dahl, R.E.; Birmaher, B.; Axelson, D.A.; Ryan, N.D. Altered error-related brain activity in youth with major depression. Dev. Cogn. Neurosci. 2012, 2, 351. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Zhang, X.; Simmonite, M.; Li, H.; Zhang, T.; Guo, Q. Hyperactivity within an extensive cortical distribution associated with excessive sensitivity in error processing in unmedicated depression: A combined event-related potential and sLORETA study. Undefined 2013, 90, 282–289. [Google Scholar] [CrossRef]
- Kaess, M.; Hooley, J.M.; Klimes-Dougan, B.; Koenig, J.; Plener, P.L.; Reichl, C. Advancing a temporal framework for understanding the biology of nonsuicidal self- injury: An expert review. Neurosci. Biobehav. Rev. 2021, 130, 228–239. [Google Scholar] [CrossRef]
- Mathalon, D.H.; Whitfield, S.L.; Ford, J.M. Anatomy of an error: ERP and fMRI. Biol. Psychol. 2003, 64, 119–141. [Google Scholar] [CrossRef]
- Ullsperger, M.; Von Cramon, D.Y. Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 2001, 14, 1387–1401. [Google Scholar] [CrossRef]
- Botvinick, M.; Nystrom, L.E.; Fissell, K.; Carter, C.S.; Cohen, J.D. Conflict monitoring versus selection for-action in anterior cingulate cortex. Nature 1999, 402, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Case, J.A.C.; Mattoni, M.; Olino, T.M. Examining the Neurobiology of Non-Suicidal Self-Injury in Children and Adolescents: The Role of Reward Responsivity. J. Clin. Med. 2021, 10, 3561. [Google Scholar] [CrossRef] [PubMed]
- Westlund Schreiner, M.; Klimes-Dougan, B.; Mueller, B.A.; Eberly, L.E.; Reigstad, K.M.; Carstedt, P.A. Multi-modal neuroimaging of adolescents with non-suicidal self-injury: Amygdala functional connectivity. J. Affect. Disord. 2017, 221, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Fletcher, P.C.; Bullmore, E.T.; Sahakian, B.J.; Robbins, T.W. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci. 2003, 6, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Konishi, S.; Nakajima, K.; Uchida, I.; Kikyo, H.; Kameyama, M.; Miyashita, Y. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 1999, 122, 981–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunge, S.A.; Dudukovic, N.M.; Thomason, M.E.; Vaidya, C.J.; Gabrieli, J.D.E. Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron 2002, 33, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Dodds, C.M.; Morein-Zamir, S.; Robbins, T.W. Dissociating Inhibition, Attention, and Response Control in the Frontoparietal Network Using Functional Magnetic Resonance Imaging. Cereb. Cortex 2011, 21, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Sharp, D.J.; Bonnelle, V.; De Boissezon, X.; Beckmann, C.F.; James, S.G.; Patel, M.C. Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc. Natl. Acad. Sci. USA 2010, 107, 6106–6111. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.F.; Stern, E.R.; Gehring, W.J. Neural systems for error monitoring: Recent findings and theoretical perspectives. Neuroscientist 2007, 13, 160–172. [Google Scholar] [CrossRef]
- Braver, T.S.; Barch, D.M.; Gray, J.R.; Molfese, D.L.; Snyder, A. Anterior Cingulate Cortex and Response Conflict: Effects of Frequency, Inhibition and Errors. Cereb. Cortex 2001, 11, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Carter, C.S.; Braver, T.S.; Barch, D.M.; Botvinick, M.M.; Noll, D.; Cohen, J.D. Anterior Cingulate Cortex, Error Detection, and the Online Monitoring of Performance. Science 1998, 280, 747–749. [Google Scholar] [CrossRef]
- Carter, C.S.; Macdonald, A.M.; Botvinick, M.; Ross, L.L.; Stenger, V.A.; Noll, D. Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 2000, 97, 1944–1948. [Google Scholar] [CrossRef] [Green Version]
- Dosenbach, N.U.F.; Visscher, K.M.; Palmer, E.D.; Miezin, F.M.; Wenger, K.K.; Kang, H.C. A Core System for the Implementation of Task Sets. Neuron 2006, 50, 799–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holroyd, C.B.; Coles, M.G.H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 2002, 109, 679–709. [Google Scholar] [CrossRef] [PubMed]
- Elliott, R.; Sahakian, B.J.; Michael, A.; Paykel, E.S.; Dolan, R.J. Abnormal neural response to feedback on planning and guessing tasks in patients with unipolar depression. Psychol. Med. 1998, 28, 559–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffens, D.C.; Wagner, H.R.; Levy, R.M.; Horn, K.A.; Krishnan, K.R.R. Performance feedback deficit in geriatric depression. Biol. Psychiatry 2001, 50, 358–363. [Google Scholar] [CrossRef]
- Malejko, K.; Neff, D.; Brown, R.C.; Plener, P.L.; Bonenberger, M.; Abler, B. Neural Signatures of Social Inclusion in Borderline Personality Disorder Versus Non-suicidal Self-injury. Brain Topogr. 2019, 32, 753–761. [Google Scholar] [CrossRef]
- Brown, R.C.; Plener, P.L.; Groen, G.; Neff, D.; Bonenberger, M.; Abler, B. Differential neural processing of social exclusion and inclusion in adolescents with non-suicidal self-injury and young adults with borderline personality disorder. Front. Psychiatry 2017, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Plener, P.L.; Bubalo, N.; Fladung, A.K.; Ludolph, A.G.; Lulé, D. Prone to excitement: Adolescent females with non-suicidal self-injury (NSSI) show altered cortical pattern to emotional and NSS-related material. Psychiatry Res. Neuroimaging 2012, 203, 146–152. [Google Scholar] [CrossRef]
- Lai, M.; Jiang, P.; Xu, J.; Luo, D.; Hao, X.; Li, J. Abnormal brain activity in nonsuicidal self-injury: A coordinate-based activation likelihood meta-analysis of functional neuroimaging studies. Psychoradiology 2021, 1, 249–256. [Google Scholar] [CrossRef]
- Bakhshani, N.M. Impulsivity: A predisposition toward risky behaviors. Int. J. High Risk Behav. Addict. 2014, 3, e20428. [Google Scholar] [CrossRef]
ANOVAs with Corresponding Post-Hoc Comparisons | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HC | MD-Only | MD-NSSI | MD-NSSI vs. MD-Only | HC vs. MD-Only | HC vs. MD-NSSI | ||||||
Mean (SD) | Mean (SD) | Mean (SD) | F | p | Average Difference | pbonf | Average Difference | pbonf | Average Difference | pbonf | |
Demographics | |||||||||||
N | 14 | 13 | 14 | - | - | ||||||
Female | n = 11 | n = 10 | n = 11 | - | - | ||||||
Male | n = 3 | n = 3 | n = 3 | - | - | ||||||
age [years] | 14.4 (1.8) | 16.2 (1.4) | 15.4 (1.9) | 3.349 | 0.046 | −0.797 | 0.721 | −1.725 | 0.041 | −0.929 | 0.494 |
Psychometry | |||||||||||
IQ | 109.6 (10.6) | 101.8 (11.8) | 101.3 (13.2) | 2.093 | 0.137 | - | - | - | - | - | - |
CDRS-R score | 21.4 (2.6) | 56.4 (7.4) | 51.4 (13.6) | 59.29 | <0.001 | −4.956 | 0.498 | −34.956 | <0.001 | −30.000 | <0.001 |
BDI-II score * | 2.9 (3.6) | 27.2 (10.7) | 21.7 (12.2) | 23.988 | <0.001 | −5.452 | 0.462 | −24.31 | <0.001 | −18.857 | <0.001 |
Number of NSSI events last year | 0 | 0 | 93.3 (225.9) | - | - |
ANOVAs with Corresponding Post-Hoc Comparisons | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HC | MD-Only | MD-NSSI | MD-NSSI vs. MD-Only | HC vs. MD-Only | HC vs. MD-NSSI | ||||||
Mean (SD) | Mean (SD) | Mean (SD) | F | p | Average Difference | pbonf | Average Difference | pbonf | Average Difference | pbonf | |
Incongruent No Go | |||||||||||
Number of commission errors | 9.6 (6.5) | 11.6 (6.9) | 18.0 (11.6) | 3.517 | 0.040 | 6.385 | 0.193 | −1.973 | 1.000 | −8.357 | 0.046 |
Reaction time [ms] | 448.5 (57.9) | 390.4 (53.8) | 457.3 (67.8) | 4.562 | 0.017 | −66.877 | 0.024 | 58.138 | 0.058 | −8.739 | 1.000 |
Incongruent Go | |||||||||||
Number of errors | 2.8 (2.0) | 3.5 (3.7) | 4.3 (4.1) | 0.686 | 0.510 | - | - | - | - | - | - |
Reaction time incorrect [ms] | 470.4 (39.4) | 393.5 (43.3) | 412.8 (47.3) | 9.883 | <0.001 | 19.259 | 0.917 | 76.88 | <0.001 | 57.621 | 0.010 |
Number of correct responses | 21.1 (11.0) | 23.3 (11.0) | 20.4 (10.3) | 0.263 | 0.771 | - | - | - | - | - | - |
Reaction time correct [ms] | 468.0 (43.0) | 410.4 (36.0) | 427.0 (46.9) | 6.685 | 0.003 | 16.614 | 0.946 | 57.643 | 0.003 | 41.029 | 0.044 |
BA | Anatomic Label | L/R/M | Cluster Size | Z | MNI | |||
---|---|---|---|---|---|---|---|---|
k (Vx) | x | y | z | |||||
MD-NSSI < MD-only | 32 | dACC | M | 183 | 3.80 | 10 | 22 | 38 |
45 | IFG, pars triangularis | L | 427 | 3.62 | −48 | 40 | 10 | |
48 | IFG, pars opercularis | L | 348 | 4.34 | −38 | 4 | 28 | |
40 | supramarginal gyrus | L | 498 | 3.13 | −64 | −34 | 30 | |
2 | inferior parietal cortex | L | # | 3.53 | −42 | −32 | 40 | |
HC < MD-only | 48 | anterior insula | L | 1238 | 4.45 | −38 | −2 | 18 |
48 | postcentral gyrus | L | # | 3.88 | −48 | −6 | 18 | |
3 | postcentral gyrus | L | # | 3.82 | −56 | −16 | 40 | |
40 | inferior parietal cortex | L | # | 3.23 | −40 | −34 | 38 | |
precuneus | L | 438 | 4.02 | −14 | −50 | 50 | ||
37 | cerebellum | L | 189 | 6.63 | −20 | −42 | −26 | |
MD-NSSI < HC | 45 | middle frontal gyrus | R | 449 | 3.62 | 44 | 34 | 24 |
48 | IFG, pars triangularis | R | # | 3.27 | 38 | 26 | 28 | |
48 | IFG, pars opercularis | R | # | 3.24 | 44 | 16 | 30 | |
48 | supramarginal gyrus | R | 366 | 3.63 | 58 | −42 | 26 | |
40 | inferior parietal cortex | L | 191 | 4.00 | −42 | −44 | 52 | |
HC < MD-NSSI | precuneus | L | 944 | 4.05 | −12 | −46 | 52 |
BA | Anatomic Label | L/R/M | Cluster Size | Z | MNI | |||
---|---|---|---|---|---|---|---|---|
k (Vx) | x | Y | z | |||||
MD-NSSI < MD-only | 45 | IFG, pars triangularis | L | 232 | 4.12 | −48 | 26 | 10 |
45 | IFG, pars triangularis | R | 199 | 3.11 | 54 | 32 | 4 | |
48 | IFG, pars opercularis | R | # | 3.53 | 50 | 14 | 6 | |
MD-only < MD-NSSI | 6 | SMA | M | 297 | 4.02 | 2 | −4 | 56 |
HC < MD-only | 45 | IFG, pars triangularis | L | 499 | 4.60 | −48 | 30 | 12 |
48 | anterior insula | L | # | 3.15 | −40 | 14 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malejko, K.; Hafner, S.; Brown, R.C.; Plener, P.L.; Grön, G.; Graf, H.; Abler, B. Neural Signatures of Error Processing in Depressed Adolescents with Comorbid Non-Suicidal Self-Injury (NSSI). Biomedicines 2022, 10, 3188. https://doi.org/10.3390/biomedicines10123188
Malejko K, Hafner S, Brown RC, Plener PL, Grön G, Graf H, Abler B. Neural Signatures of Error Processing in Depressed Adolescents with Comorbid Non-Suicidal Self-Injury (NSSI). Biomedicines. 2022; 10(12):3188. https://doi.org/10.3390/biomedicines10123188
Chicago/Turabian StyleMalejko, Kathrin, Stefan Hafner, Rebecca C. Brown, Paul L. Plener, Georg Grön, Heiko Graf, and Birgit Abler. 2022. "Neural Signatures of Error Processing in Depressed Adolescents with Comorbid Non-Suicidal Self-Injury (NSSI)" Biomedicines 10, no. 12: 3188. https://doi.org/10.3390/biomedicines10123188
APA StyleMalejko, K., Hafner, S., Brown, R. C., Plener, P. L., Grön, G., Graf, H., & Abler, B. (2022). Neural Signatures of Error Processing in Depressed Adolescents with Comorbid Non-Suicidal Self-Injury (NSSI). Biomedicines, 10(12), 3188. https://doi.org/10.3390/biomedicines10123188