Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario
Abstract
1. Introduction
2. AD Genetics and Implementation of Genetic Findings
2.1. AD Genetics
2.2. Implementation in Clinical Setting
2.3. Implementation in Research Setting
2.4. Implementation in Direct-to-Consumer Setting
3. Protocols and Practice of AD Genetic Risk Disclosure
3.1. Clinical Setting
3.2. Research Setting
3.3. Direct-to-Consumer Setting
4. Context-Sensitive Perspectives
4.1. How Can Genetic Risk Testing for AD Be Evaluated?
4.2. Safety
4.3. Users’ Perspective
4.4. The Italian Context
5. Conclusions
5.1. Development of a Guidance
5.2. Genetic Risk Communication
5.3. Setting and Professionals
5.4. Continuing Education
5.5. Patient-Centred Health Value
5.6. Limitations and Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Dementia. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 9 September 2022).
- Tampi, R.R.; Forester, B.P.; Agronin, M. Aducanumab: Evidence from clinical trial data and controversies. Drugs Context. 2021, 10, 2021-7-3. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med. 2016, 18, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef] [PubMed]
- Ebenau, J.L.; van der Lee, S.J.; Hulsman, M.; Tesi, N.; Jansen, I.E.; Verberk, I.M.W.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Prins, N.D.; et al. Risk of dementia in APOE ε4 carriers is mitigated by a polygenic risk score. Alzheimers Dement. 2021, 13, e12229. [Google Scholar] [CrossRef]
- Ranson, J.M.; Rittman, T.; Hayat, S.; Brayne, C.; Jessen, F.; Blennow, K.; van Duijn, C.; Barkhof, F.; Tang, E.; Mummery, C.J.; et al. Modifiable risk factors for dementia and dementia risk profiling. A user manual for Brain Health Services-part 2 of 6. Alzheimers Res. Ther. 2021, 13, 169. [Google Scholar] [CrossRef]
- Grill, J.D.; Karlawish, J. Disclosing Alzheimer Disease Biomarker Results to Research Participants. JAMA Neurol. 2022, 79, 645–646. [Google Scholar] [CrossRef]
- van der Schaar, J.; Visser, L.N.C.; Bouwman, F.H.; Ket, J.C.F.; Scheltens, P.; Bredenoord, A.L.; van der Flier, W.M. Considerations regarding a diagnosis of Alzheimer’s disease before dementia: A systematic review. Alzheimers Res. Ther. 2022, 14, 31. [Google Scholar] [CrossRef]
- Frank, L.; Ashford, J.W.; Bayley, P.J.; Borson, S.; Buschke, H.; Cohen, D.; Cummings, J.L.; Davies, P.; Dean, M.; Finkel, S.I.; et al. Genetic Risk of Alzheimer’s Disease: Three Wishes Now That the Genie is Out of the Bottle. J. Alzheimers Dis. 2018, 66, 421–423. [Google Scholar] [CrossRef]
- Mega, A.; Galluzzi, S.; Bonvicini, C.; Fostinelli, S.; Gennarelli, M.; Geroldi, C.; Zanetti, O.; Benussi, L.; Di Maria, E.; Frisoni, G.B. Genetic counselling and testing for inherited dementia: Single-centre evaluation of the consensus Italian DIAfN protocol. Alzheimers Res. Ther. 2020, 12, 152. [Google Scholar] [CrossRef]
- Galluzzi, S.; Mega, A.; Di Fede, G.; Muscio, C.; Fascendini, S.; Benussi, L.; Tagliavini, F.; Frisoni, G.B.; Di Maria, E.; Italian-DIAfN Working Group. Psychological Impact of Predictive Genetic Testing for Inherited Alzheimer Disease and Frontotemporal Dementia: The IT-DIAfN Protocol. Alzheimers Dis. Assoc. Disord. 2022, 36, 118–124. [Google Scholar] [CrossRef]
- Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of Genes and Environments for Explaining Alzheimer Disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [PubMed]
- Saunders, A.M.; Schmader, K.; Breitner, J.C.; Benson, M.D.; Brown, W.T.; Goldfarb, L.; Goldgaber, D.; Manwaring, M.G.; Szymanski, M.H.; McCown, N.; et al. Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet 1993, 342, 710–711. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef]
- Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Singh Pahwa, J.; Moskvina, V.; Dowzell, K.; Williams, A.; et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009, 41, 1088–1093. [Google Scholar] [CrossRef]
- Dourlen, P.; Kilinc, D.; Malmanche, N.; Chapuis, J.; Lambert, J.-C. The new genetic landscape of Alzheimer’s disease: From amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol. 2019, 138, 221–236. [Google Scholar] [CrossRef]
- Goldman, J.S.; Hahn, S.E.; Catania, J.W.; LaRusse-Eckert, S.; Butson, M.B.; Rumbaugh, M.; Strecker, M.N.; Roberts, J.S.; Burke, W.; Mayeux, R.; et al. Genetic counselling and testing for Alzheimer disease: Joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 2011, 13, 597–605. [Google Scholar] [CrossRef]
- Decourt, B.; Sabbagh, M.N. The importance of genomics in advancing the diagnosis and treatment of dementia. Lancet Neurol. 2022, 21, 676–677. [Google Scholar]
- Ayers, K.L.; Mirshahi, U.L.; Wardeh, A.H.; Murray, M.F.; Hao, K.; Glicksberg, B.S.; Li, S.; Carey, D.J.; Chen, R. A loss of function variant in CASP7 protects against Alzheimer’s disease in homozygous APOE ε4 allele carriers. BMC Genom. 2016, 17, 445. [Google Scholar] [CrossRef]
- Daunt, P.; Ballard, C.G.; Creese, B.; Davidson, G.; Hardy, J.; Oshota, O.; Pither, R.J.; Gibson, A.M. Polygenic Risk Scoring is an Effective Approach to Predict Those Individuals Most Likely to Decline Cognitively Due to Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2021, 8, 78–83. [Google Scholar] [CrossRef]
- Baker, E.; Escott-Price, V. Polygenic Risk Scores in Alzheimer’s Disease: Current Applications and Future Directions. Front. Digit. Health 2020, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.; Molinuevo, J.L.; Ritchie, C.; Ribaldi, F.; Carrera, E.; Dubois, B.; Jessen, F.; McWhirter, L.; Scheltens, P.; van der Flier, W.M.; et al. Brain Health Services: Organization, structure, and challenges for implementation. A user manual for Brain Health Services-part 1 of 6. Alzheimers Res. Ther. 2021, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, R.S.; Ganzer, C.A.; Hristov, H.; Hackett, K.; Caesar, E.; Cohen, R.; Kachko, R.; Meléndez-Cabrero, J.; Rahman, A.; Scheyer, O.; et al. The clinical practice of risk reduction for Alzheimer’s disease: A precision medicine approach. Alzheimers Dement. 2018, 14, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Chalkias, S.; Barkhof, F.; Burkett, P.; Barakos, J.; Purcell, D.; Suhy, J.; Forrestal, F.; Tian, Y.; Umans, K.; et al. Amyloid-Related Imaging Abnormalities in 2 Phase 3 Studies Evaluating Aducanumab in Patients with Early Alzheimer Disease. JAMA Neurol. 2022, 79, 13–21. [Google Scholar] [CrossRef]
- Sperling, R.A.; Rentz, D.M.; Johnson, K.A.; Karlawish, J.; Donohue, M.; Salmon, D.P.; Aisen, P. The A4 study: Stopping AD before symptoms begin? Sci. Transl. Med. 2014, 6, 228fs13. [Google Scholar] [CrossRef]
- Lopez Lopez, C.; Tariot, P.N.; Caputo, A.; Langbaum, J.B.; Liu, F.; Riviere, M.-E.; Langlois, C.; Rouzade-Dominguez, M.-L.; Zalesak, M.; Hendrix, S.; et al. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 2019, 5, 216–227. [Google Scholar] [CrossRef]
- Cummings, J.; Aisen, P.S.; Dubois, B.; Frölich, L.; Jack, C.R., Jr.; Jones, R.W.; Morris, J.C.; Raskin, J.; Dowsett, S.A.; Scheltens, P. Drug development in Alzheimer’s disease: The path to 2025. Alzheimers Res. Ther. 2016, 8, 39. [Google Scholar] [CrossRef]
- Langbaum, J.B.; Karlawish, J.; Roberts, J.S.; Wood, E.M.; Bradbury, A.; High, N.; Walsh, T.L.; Gordon, D.; Aggarwal, R.; Davis, P.; et al. GeneMatch: A novel recruitment registry using at-home APOE genotyping to enhance referrals to Alzheimer’s prevention studies. Alzheimers Dement. 2019, 15, 515–524. [Google Scholar] [CrossRef]
- Ryan, M.M.; Cox, C.G.; Witbracht, M.; Hoang, D.; Gillen, D.L.; Grill, J.D. Using Direct-to-Consumer Genetic Testing Results to Accelerate Alzheimer Disease Clinical Trial Recruitment. Alzheimer Dis. Assoc. Disord. 2021, 35, 141–147. [Google Scholar] [CrossRef]
- Hoxhaj, I.; Stojanovic, J.; Boccia, S. European citizens’ perspectives on direct-to-consumer genetic testing: An updated systematic review. Eur. J. Public Health 2020, ckz246. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Allows Marketing of First Direct-to-Consumer Tests that Provide Genetic Risk Information for Certain Conditions. 2017. Available online: https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-direct-consumer-tests-provide-genetic-risk-information-certain-conditions (accessed on 9 September 2022).
- Kalokairinou, L.; Howard, H.C.; Slokenberga, S.; Fisher, E.; Flatscher-Thöni, M.; Hartlev, M.; van Hellemondt, R.; Juškevičius, J.; Kapelenska-Pregowska, J.; Kováč, P.; et al. Legislation of direct-to-consumer genetic testing in Europe: A fragmented regulatory landscape. J. Community Genet. 2018, 9, 117–132. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, R.; Tibben, A.; Frontali, M.; Evers-Kiebooms, G.; Jones, A.; Martinez-Descales, A.; Roos, R.A. Recommendations for the predictive genetic test in Huntington’s disease. Clin. Genet. 2013, 83, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Bocchetta, M.; Mega, A.; Bernardi, L.; Di Maria, E.; Benussi, L.; Binetti, G.; Borroni, B.; Colao, R.; Di Fede, G.; Fostinelli, S.; et al. Genetic Counselling and Testing for Alzheimer’s Disease and Frontotemporal Lobar Degeneration: An Italian Consensus Protocol. J. Alzheimers Dis. 2016, 51, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Green, R.C.; Roberts, J.S.; Cupples, L.A.; Relkin, N.R.; Whitehouse, P.J.; Brown, T.; LaRusse Eckert, S.; Butson, M.; Dessa Sadovnick, A.; Quaid, K.A.; et al. Disclosure of APOE genotype for risk of Alzheimer’s disease. N. Engl. J. Med. 2009, 361, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Green, R.C.; Christensen, K.D.; Cupples, L.A.; Relkin, N.R.; Whitehouse, P.J.; Royal, C.D.M.; Obisesan, T.O.; Cook-Deegan, R.; Linnenbringer, E.; Barber Butson, M.; et al. A randomized noninferiority trial of condensed protocols for genetic risk disclosure of Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1222–1230. [Google Scholar] [CrossRef]
- Christensen, K.D.; Uhlmann, W.R.; Roberts, J.S.; Linnenbringer, E.; Whitehouse, P.J.; Royal, C.D.; Obisesan, T.O.; Cupples, L.A.; Butson, M.B.; Fasaye, G.-A.; et al. A randomized controlled trial of disclosing genetic risk information for Alzheimer disease via telephone. Genet. Med. 2017, 20, 132–141. [Google Scholar] [CrossRef]
- Langlois, C.M.; Bradbury, A.; Wood, E.M.; Roberts, J.S.; Kim, S.Y.H.; Riviere, M.-E.; Liu, F.; Reiman, E.M.; Tariot, P.N.; Karlawish, J.; et al. Alzheimer’s Prevention Initiative Generation Program: Development of an APOE genetic counseling and disclosure process in the context of clinical trials. Alzheimers Dement. Transl. Res. Clin. Interv. 2019, 5, 705–716. [Google Scholar] [CrossRef]
- Alber, J.; Popescu, D.; Thompson, L.I.; Tonini, G.M.; Arthur, E.; Oh, H.; Correia, S.; Salloway, S.P.; Lee, A.K. Safety and Tolerability of APOE Genotyping and Disclosure in Cognitively Normal Volunteers from the Butler Alzheimer’s Prevention Registry. J. Geriatr. Psychiatry Neurol. 2022, 35, 293–301. [Google Scholar] [CrossRef]
- Oliveri, S.; Cincidda, C.; Ongaro, G.; Cutica, I.; Gorini, A.; Spinella, F.; Fiorentino, F.; Baldi, M.; Pravettoni, G. What people really change after genetic testing (GT) performed in private labs: Results from an Italian study. Eur. J. Hum. Genet. 2022, 30, 62–72. [Google Scholar] [CrossRef]
- ACMG Board of Directors. Direct-to-consumer genetic testing: A revised position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016, 18, 207–208. [Google Scholar] [CrossRef]
- European Society of Human Genetics. Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes. Eur. J. Hum. Genet. 2010, 18, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Pitini, E.; De Vito, C.; Marzuillo, C.; D’Andrea, E.; Rosso, A.; Federici, A.; Di Maria, E.; Villari, P. How is genetic testing evaluated? A systematic review of the literature. Eur. J. Hum. Genet. 2018, 26, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Parens, E.; Appelbaum, P.S. On What We Have Learned and Still Need to Learn about the Psychosocial Impacts of Genetic Testing. Häst. Cent. Rep. 2019, 49 (Suppl. 1), S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Milverton, J.; Carter, D. Neglected impacts of patient decision-making associated with genetic testing. Int. J. Technol. Assess. Health Care 2022, 38, e75. [Google Scholar] [CrossRef]
- Pitini, E.; D’Andrea, E.; De Vito, C.; Rosso, A.; Unim, B.; Marzuillo, C.; Federici, A.; Di Maria, E.; Villari, P. A proposal of a new evaluation framework towards implementation of genetic tests. PLoS ONE 2019, 14, e0219755. [Google Scholar] [CrossRef]
- The HTA Core Model—Guiding Principles on Use. European Network for Health Technology Assessment, 2015. Available online: https://www.eunethta.eu/hta-core-model_-guiding-principles-on-use (accessed on 31 October 2022).
- Porter, M.E. What Is Value in Health Care? N. Engl. J. Med. 2010, 363, 2477–2481. [Google Scholar] [CrossRef]
- Marshe, V.S.; Gorbovskaya, I.; Kanji, S.; Kish, M.; Müller, D.J. Clinical implications of APOE genotyping for late-onset Alzheimer’s disease (LOAD) risk estimation: A review of the literature. J. Neural. Transm. 2019, 126, 65–85. [Google Scholar] [CrossRef]
- Goldman, J.S. Predictive Genetic Counseling for Neurodegenerative Diseases: Past, Present, and Future. Cold Spring Harb. Perspect. Med. 2020, 10, a036525. [Google Scholar] [CrossRef]
- Cassidy, M.R.; Roberts, J.S.; Bird, T.D.; Steinbart, E.J.; Cupples, A.; Chen, C.A.; Linnenbringer, E.; Green, R.C. Comparing test-specific distress of susceptibility versus deterministic genetic testing for Alzheimer’s disease. Alzheimers Dement. 2008, 4, 406–413. [Google Scholar] [CrossRef]
- Lineweaver, T.T.; Bondi, M.W.; Galasko, D.; Salmon, D.P. Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults. Am. J. Psychiatry 2014, 171, 201–208. [Google Scholar] [CrossRef]
- Christensen, K.D.; Roberts, J.S.; Zikmund-Fisher, B.J.; Kardia, S.L.; McBride, C.M.; Linnenbringer, E.; Green, R.C.; REVEAL Study Group. Associations between self-referral and health behavior responses to genetic risk information. Genome Med. 2015, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Largent, E.A.; Bhardwaj, T.; Abera, M.; Stites, S.D.; Harkins, K.; Lerner, A.J.; Bradbury, A.R.; Karlawish, J. Disclosing Genetic Risk of Alzheimer’s Disease to Cognitively Unimpaired Older Adults: Findings from the Study of Knowledge and Reactions to APOE Testing (SOKRATES II). J. Alzheimers Dis. 2021, 84, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Janssens, A.C.J.; Gwinn, M.; Bradley, L.A.; Oostra, B.A.; van Duijn, C.M.; Khoury, M.J. A Critical Appraisal of the Scientific Basis of Commercial Genomic Profiles Used to Assess Health Risks and Personalize Health Interventions. Am. J. Hum. Genet. 2008, 82, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Bloss, C.S.; Schork, N.J.; Topol, E.J. Effect of direct-to-consumer genomewide profiling to assess disease risk. N. Engl. J. Med. 2011, 364, 524–534. [Google Scholar] [CrossRef]
- Egglestone, C.; Morris, A.; O’Brien, A. Effect of Direct-to-Consumer Genetic Tests on Health Behaviour and Anxiety: A Survey of Consumers and Potential Consumers. J. Genet. Couns. 2013, 22, 565–575. [Google Scholar] [CrossRef]
- Francke, U.; Dijamco, C.; Kiefer, A.K.; Eriksson, N.; Moiseff, B.; Tung, J.Y.; Mountain, J.L. Dealing with the unexpected: Consumer responses to direct-access BRCA mutation testing. PeerJ 2013, 1, e8. [Google Scholar] [CrossRef]
- Rosin, E.R.; Blasco, D.; Pilozzi, A.R.; Yang, L.H.; Huang, X. A Narrative Review of Alzheimer’s Disease Stigma. J. Alzheimers Dis. 2020, 78, 515–528. [Google Scholar] [CrossRef]
- Messner, D.A. Informed Choice in Direct-to-Consumer Genetic Testing for Alzheimer and Other Diseases: Lessons from Two Cases. New Genet. Soc. 2011, 30, 59–72. [Google Scholar] [CrossRef][Green Version]
- Broady, K.M.; Ormond, K.E.; Topol, E.J.; Schork, N.J.; Bloss, C.S. Predictors of adverse psychological experiences surrounding genome-wide profiling for disease risk. J. Community Genet. 2018, 9, 217–225. [Google Scholar] [CrossRef]
- Wikler, E.M.; Blendon, R.J.; Benson, J.M. Would you want to know? Public attitudes on early diagnostic testing for Alzheimer’s disease. Alzheimers Res. Ther. 2013, 5, 43. [Google Scholar] [CrossRef]
- Caselli, R.J.; Langbaum, J.; Marchant, G.E.; Lindor, R.A.; Hunt, K.S.; Henslin, B.R.; Dueck, A.C.; Robert, J. Public Perceptions of Presymptomatic Testing for Alzheimer Disease. Mayo Clin. Proc. 2014, 89, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Galvin, J.E.; Fu, Q.; Nguyen, J.T.; Glasheen, C.; Scharff, D.P. Psychosocial determinants of intention to screen for Alzheimer’s disease. Alzheimers Dement. 2008, 4, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.S.; Gornick, M.C.; Carere, D.A.; Uhlmann, W.R.; Ruffin, M.T.; Green, R.C. Direct-to-consumer genetic testing: User motivations, decision making, and perceived utility of results. Public Health Genom. 2017, 20, 36–45. [Google Scholar] [CrossRef]
- Hercher, L.S.; Caudle, M.; Griffin, J.; Herzog, M.; Matviychuk, D.; Tidwell, J. Student-athletes’ views on APOE genotyping for increased risk of poor recovery after a traumatic brain injury. J. Genet. Couns. 2016, 25, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Pavarini, G.; Hamdi, L.; Lorimer, J.; Singh, I. Young people’s moral attitudes and motivations towards direct-to-consumer genetic testing for inherited risk of Alzheimer disease. Eur. J. Med. Genet. 2021, 64, 104180. [Google Scholar] [CrossRef]
- Felzmann, H. ‘Just a bit of fun’: How recreational is direct-to-customer genetic testing? N. Bioeth. 2015, 21, 20–32. [Google Scholar] [CrossRef]
- Oliveri, S.; Marton, G.; Vergani, L.; Cutica, I.; Gorini, A.; Spinella, F.; Pravettoni, G. Genetic Testing Consumers in Italy: A Preliminary Investigation of the Socio-Demographic Profile, Health-Related Habits, and Decision Purposes. Front. Public Health 2020, 8, 511. [Google Scholar] [CrossRef] [PubMed]
- Ongaro, G.; Brivio, E.; Cincidda, C.; Oliveri, S.; Spinella, F.; Steinberger, D.; Cutica, I.; Gorini, A.; Pravettoni, G. Genetic testing users in Italy and Germany: Health orientation, health-related habits, and psychological profile. Mol. Genet. Genom. Med. 2022, 10, e1851. [Google Scholar] [CrossRef]
- Marzuillo, C.; De Vito, C.; D’Addario, M.; Santini, P.; D’Andrea, E.; Boccia, A.; Villari, P. Are public health professionals prepared for public health genomics? A cross-sectional survey in Italy. BMC Health Serv. Res. 2014, 14, 239. [Google Scholar] [CrossRef]
- Marzuillo, C.; De Vito, C.; Boccia, S.; D’Addario, M.; D’Andrea, E.; Santini, P.; Boccia, A.; Villari, P. Knowledge, attitudes and behavior of physicians regarding predictive genetic tests for breast and colorectal cancer. Prev. Med. 2013, 57, 477–482. [Google Scholar] [CrossRef]
- Panic, N.; Leoncini, E.; Di Giannantonio, P.; Simone, B.; Silenzi, A.; Ferriero, A.M.; Falvo, R.; Silvestrini, G.; Cadeddu, C.; Marzuillo, C.; et al. Survey on Knowledge, Attitudes, and Training Needs of Italian Residents on Genetic Tests for Hereditary Breast and Colorectal Cancer. BioMed Res. Int. 2014, 2014, 418416. [Google Scholar] [CrossRef] [PubMed]
- Alpinar-Sencan, Z.; Schicktanz, S. Addressing ethical challenges of disclosure in dementia prediction: Limitations of current guidelines and suggestions to proceed. BMC Med. Ethics 2020, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, G.E.; Sassano, M.; Tognetto, A.; Boccia, S. Citizens’ Attitudes, Knowledge, and Educational Needs in the Field of Omics Sciences: A Systematic Literature Review. Front. Genet. 2020, 11, 570649. [Google Scholar] [CrossRef] [PubMed]
- NICE. Developing NICE Guidelines: The Manual—Process and Methods. 2022. Available online: https://www.nice.org.uk/process/pmg20/chapter/introduction (accessed on 21 October 2022).
- Centro Nazionale per l’Eccellenza Clinica, la Qualità e la Sicurezza delle Cure. Manuale Metodologico per la Produzione di Linee Guida di Pratica Clinica. 2019. Available online: https://snlg.iss.it/wp-content/uploads/2019/04/MM_v1.3.2_apr_2019.pdf (accessed on 21 October 2022).
- Visser, L.N.C.; Minguillon, C.; Sánchez-Benavides, G.; Abramowicz, M.; Altomare, D.; Fauria, K.; Frisoni, G.B.; Georges, J.; Ribaldi, F.; Scheltens, P.; et al. Dementia risk communication. A user manual for Brain Health Services-part 3 of 6. Alzheimers Res. Ther. 2021, 13, 170. [Google Scholar] [CrossRef]
- Croyle, R.T.; Lerman, C. Risk Communication in Genetic Testing for Cancer Susceptibility. J. Natl. Cancer Inst. Monogr. 1999, 1999, 59. [Google Scholar] [CrossRef]
Protocol | Population | Genetic Variant | Delivery | Personnel | Pre-Test Evaluations | Structure |
---|---|---|---|---|---|---|
ACMG and NSGC guidelines [18] | Individuals with familial AD | PSEN1, PSEN2, APP | In-person, videoconference | Genetic counsellor | Neurologist, psychologist/psychiatrist | Two-part pre-test; one or more post-disclosure follow-up |
The REVEAL study [36] | Individuals with first-degree AD relative | APOE | In-person | Genetic counsellor | Scales on depression, anxiety, stress | Two-part pre-test; three post-disclosure follow-ups |
The REVEAL study [37] | Individuals with first-degree AD relative | APOE | In-person | Genetic counsellor or study physician | Scales on depression, anxiety | One-part pre-test; three post-disclosure follow-ups |
The REVEAL study [38] | Individuals with first-degree AD relative | APOE | Telephone (genetic disclosure) | Genetic counsellor | Scales on depression, anxiety, stress | One-part pre-test; three post-disclosure follow-ups |
API Generation Program [39] | Older individuals enrolled in the trial | APOE | In-person, telephone (follow-up) | Provider qualified per local regulations | Scales on depression, anxiety, suicidal ideation | One-part pre-test; one or more post-disclosure follow-up |
Butler Alzheimer’s Prevention Registry [40] | Older individuals volunteering in the register | APOE | In-person, online (follow-up) | Board-certified neuropsychologist | Scales on depression, anxiety, suicidal ideation | One-part pre-test; three post-disclosure follow-ups |
Topic | Key Word | Key Message |
---|---|---|
Genetic risk communication | Counselling | Risk communication should be included in an integrated genetic counselling and testing procedure. |
Practice | Currently, testing genetic risk factors is not recommended in clinical practice. | |
Research | In clinical research, risk disclosure should be embedded in the relevant research protocol. | |
Patient-centredness | User-centred procedures are warranted. | |
Personalised risk | The genetic risk should be interpreted and disclosed to the participant as part of a comprehensive individual risk for dementia. | |
Guidance | Guidelines | Evidence-based guidelines are warranted and should be developed by independent experts from across a range of health and social care professions, including lay members. |
Inclusiveness | All relevant stakeholders should be allowed to appraise the implications—or the risks and benefits—of disclosing genetic risk factors to healthy individuals. | |
Innovation | Novel technologies should be timely evaluated by using structured assessment procedures (HTA). | |
Protocol | Setting | Users would prefer face-to-face services rather than remote consultations, as genetic testing is perceived as an option to gain knowledge on one’s own health; users rely on the presence of expert healthcare professionals. |
Multidisciplinarity | A multidisciplinary team should be in charge of the whole process of genetic risk assessment and disclosure. | |
. | Quality | The procedure should comply with acknowledged quality standards; proper resources should be allocated, also in clinical research protocols. |
Education | Health education | Educational strategies for the public may improve genomic literacy and increase abilities to make appropriate health decisions. |
Medical education | Continuing education programmes for healthcare professionals about the clinical utility of genomic technologies are warranted. | |
Interdisciplinarity | Multidisciplinary and multi-professional teams may guarantee the ability to deal with the multifaceted issues implied by genetic risk disclosure. | |
Health value | Autonomy | Enrolled individuals should be able to autonomously decide whether to know or not to know her/his genetic risk; the uncertainty related to the limited predictive value of currently available genotyping should be considered. |
Technology assessment | Structured assessments should be deployed to evaluate all domains of the genetic risk assessment and disclosure procedure—safety, effectiveness, economic and organizational issues, ethical, legal and social issues. | |
Perspectives | Evidence | Further research is needed—investigations featured by rigorous design and controlled risk of bias will contribute to accumulate knowledge; novel research questions may be considered. |
Equity | Research protocols should be equally accessible, including minority and less affluent individuals, and should be conducted in diverse cultural and national contexts. | |
Engagement | The proactive attitude of the clinical and research communities will help closing the gap between expectations and practice; users and other relevant stakeholders may contribute to the development of appropriate pathways. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galluzzi, S.; Pievani, M.; Zanetti, O.; Benussi, L.; The Italian-DIAfN Working Group; Frisoni, G.B.; Di Maria, E. Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario. Biomedicines 2022, 10, 3177. https://doi.org/10.3390/biomedicines10123177
Galluzzi S, Pievani M, Zanetti O, Benussi L, The Italian-DIAfN Working Group, Frisoni GB, Di Maria E. Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario. Biomedicines. 2022; 10(12):3177. https://doi.org/10.3390/biomedicines10123177
Chicago/Turabian StyleGalluzzi, Samantha, Michela Pievani, Orazio Zanetti, Luisa Benussi, The Italian-DIAfN Working Group, Giovanni B. Frisoni, and Emilio Di Maria. 2022. "Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario" Biomedicines 10, no. 12: 3177. https://doi.org/10.3390/biomedicines10123177
APA StyleGalluzzi, S., Pievani, M., Zanetti, O., Benussi, L., The Italian-DIAfN Working Group, Frisoni, G. B., & Di Maria, E. (2022). Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario. Biomedicines, 10(12), 3177. https://doi.org/10.3390/biomedicines10123177