Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. DPP-4i
4.2. SGLT-2i
4.3. GLP-1 Ras
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katopodis, P.; Randeva, H.S.; Spandidos, D.A.; Saravi, S.; Kyrou, I.; Karteris, E. Host cell entry mediators implicated in the cellular tropism of SARS-CoV- 2, the pathophysiology of COVID 19 and the identification of microRNAs that can modulate the expression of these mediators. Int. J. Mol. Med. 2022, 49, 20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation Europe. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-COVID-19/novel-coronavirus-2019-ncov (accessed on 2 August 2022).
- Franco, B.N.; Asano, S. COVID-19-Related Trends and Characteristics of Type 2 Diabetes Mellitus and Metabolic Syndrome. Cureus 2022, 14, e21483. [Google Scholar] [CrossRef] [PubMed]
- Serban, D.; Socea, B.; Badiu, C.D.; Tudor, C.; Balasescu, S.A.; Dumitrescu, D.; Trotea, A.M.; Spataru, R.I.; Vancea, G.; Dascalu, A.M.; et al. Acute surgical abdomen during the COVID-19 pandemic: Clinical and therapeutic challenges. Exp. Ther. Med. 2021, 21, 519. [Google Scholar] [CrossRef]
- Rodrigues, R.; Costa de Oliveira, S. The Impact of Angiotensin-Converting Enzyme 2 (ACE2) Expression Levels in Patients with Comorbidities on COVID-19 Severity: A Comprehensive Review. Microorganisms 2021, 9, 1692. [Google Scholar] [CrossRef]
- Louis, T.J.; Qasem, A.; Abdelli, L.S.; Naser, S.A. Extra-Pulmonary Complications in SARS-CoV-2 Infection: A Comprehensive Multi Organ-System Review. Microorganisms 2022, 10, 153. [Google Scholar] [CrossRef]
- Serban, D.; Tribus, L.C.; Vancea, G.; Stoian, A.P.; Dascalu, A.M.; Suceveanu, A.I.; Tanasescu, C.; Costea, A.C.; Tudosie, M.S.; Tudor, C.; et al. Acute Mesenteric Ischemia in COVID-19 Patients. J. Clin. Med. 2021, 11, 200. [Google Scholar] [CrossRef]
- Mazilu, L.; Katsiki, N.; Nikolouzakis, T.K.; Aslanidis, M.I.; Lazopoulos, G.; Kouretas, D.; Tsatsakis, A.; Suceveanu, A.I.; Stoian, A.P.; Parepa, I.R.; et al. Thrombosis and Haemostasis challenges in COVID-19—Therapeutic perspectives of heparin and tissue-type plasminogen activator and potential toxicological reactions-a mini review. Food Chem. Toxicol. 2021, 148, 111974. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2022, 1–18. [Google Scholar] [CrossRef]
- Galiero, R.; Pafundi, P.C.; Simeon, V.; Rinaldi, L.; Perrella, A.; Vetrano, E.; Caturano, A.; Alfano, M.; Beccia, D.; Nevola, R.; et al. Impact of chronic liver disease upon admission on COVID-19 in-hospital mortality: Findings from COVOCA study. PLoS ONE 2020, 15, e0243700. [Google Scholar] [CrossRef]
- Mirabelli, M.; Chiefari, E.; Puccio, L.; Foti, D.P.; Brunetti, A. Potential Benefits and Harms of Novel Antidiabetic Drugs during COVID-19 Crisis. Int. J. Environ. Res. Public Health 2020, 17, 3664. [Google Scholar] [CrossRef]
- Kan, C.; Zhang, Y.; Han, F.; Xu, Q.; Ye, T.; Hou, N.; Sun, X. Mortality Risk of Antidiabetic Agents for Type 2 Diabetes with COVID-19: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 708494. [Google Scholar] [CrossRef] [PubMed]
- Popovic, D.S.; Papanas, N.; PanteaStoian, A.; Rizvi, A.; Janez, A.; Rizzo, M. Use of Novel Antidiabetic Agents in Patients with Type 2 Diabetes and COVID-19: A Critical Review. Diabetes Ther. 2021, 12, 3037–3054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tong, X.; Zhang, S.; Wang, D.; Wang, L.; Wang, Q.; Fan, H. The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Front. Pharmacol. 2021, 12, 731453. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cai, Z.; Zhang, J. DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: A meta-analysis. PLoS ONE 2021, 16, e0251916. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Yien, E.L.H.; Shi, L.W.; Si, L.Y.; Qi, S.H.; Ling, L.S.C.; Lun, T.W.; Chen, Y.N. Systematic Review of Efficacy and Safety of Newer Antidiabetic Drugs Approved from 2013 to 2017 in Controlling HbA1c in Diabetes Patients. Pharmacy 2018, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Rakhmat, I.I.; Kusmala, Y.Y.; Handayani, D.R.; Juliastuti, H.; Nawangsih, E.N.; Wibowo, A.; Lim, M.A.; Pranata, R. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19)—A systematic review, meta-analysis, and meta-regression. Diabetes Metab. Syndr. 2021, 15, 777–782. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (N.O.S.) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses; The Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2011; Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 30 August 2022).
- Kahkoska, A.R.; Abrahamsen, T.J.; Alexander, G.C.; Bennett, T.D.; Chute, C.G.; Haendel, M.A.; Klein, K.R.; Mehta, H.; Miller, J.D.; Moffitt, R.A.; et al. Association Between Glucagon-Like Peptide 1 Receptor Agonist and Sodium-Glucose Cotransporter 2 Inhibitor Use and COVID-19 Outcomes. Diabetes Care 2021, 44, 1564–1572. [Google Scholar] [CrossRef]
- Elibol, A.; Eren, D.; Erdoğan, M.D.; Elmaağaç, M.; Dizdar, O.S.; Çelik, İ.; Günal, A.I. Factors influencing on development of COVID-19 pneumonia and association with oral antidiabetic drugs in hospitalized patients with diabetes mellitus. Prim. Care Diabetes 2021, 15, 806–812. [Google Scholar] [CrossRef]
- Nyland, J.E.; Raja-Khan, N.T.; Bettermann, K.; Haouzi, P.A.; Leslie, D.L.; Kraschnewski, J.L.; Parent, L.J.; Grigson, P.S. Diabetes, Drug Treatment, and Mortality in COVID-19: A Multinational Retrospective Cohort Study. Diabetes 2021, 70, 2903–2916. [Google Scholar] [CrossRef]
- Roussel, R.; Darmon, P.; Pichelin, M.; Goronflot, T.; Abouleka, Y.; Ait Bachir, L.; Allix, I.; Ancelle, D.; Barraud, S.; Bordier, L.; et al. Use of dipeptidyl peptidase-4 inhibitors and prognosis of COVID-19 in hospitalized patients with type 2 diabetes: A propensity score analysis from the CORONADO study. Diabetes Obes. Metab. 2021, 23, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Israelsen, S.B.; Pottegård, A.; Sandholdt, H.; Madsbad, S.; Thomsen, R.W.; Benfield, T. Comparable COVID-19 outcomes with current use of GLP-1 receptor agonists, DPP-4 inhibitors or SGLT-2 inhibitors among patients with diabetes who tested positive for SARS-CoV-2. Diabetes Obes. Metab. 2021, 23, 1397–1401. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Wu, B.; Wang, W.X.; Lei, F.; Cheng, X.; Qin, J.J.; Cai, J.J.; Zhang, X.J.; Zhou, F.; Liu, Y.M.; et al. No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19. World J. Clin. Cases 2020, 8, 5576–5588. [Google Scholar] [CrossRef] [PubMed]
- Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; et al. Sitagliptin Treatment at the Time of Hospitalisation was Associated with Reduced Mortality in Patients with Type 2 Diabetes and COVID-19: A Multicenter, Case-Control, Retrospective, Observational Study. Diabetes Care 2020, 43, 2999–3006. [Google Scholar] [CrossRef]
- Valencia, I.; Peiró, C.; Lorenzo, Ó.; Sánchez-Ferrer, C.F.; Eckel, J.; Romacho, T. DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications? Front. Pharmacol. 2020, 11, 1161. [Google Scholar] [CrossRef] [PubMed]
- Nong, N.T.P.; Hsu, J.-L. Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int. J. Mol. Sci. 2021, 22, 9508. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune-modulatory functions. Pharmacol. Ther. 2020, 209, 107503. [Google Scholar] [CrossRef]
- Chung, S.; Kim, G.-H. Use of Anti-Diabetic Agents in Non-Diabetic Kidney Disease: From Bench to Bedside. Life 2021, 11, 389. [Google Scholar] [CrossRef]
- Bonora, B.M.; Avogaro, A.; Fadini, G.P. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: Narrative review and meta-analysis. J. Endocrinol. Investig. 2021, 44, 1379–1386. [Google Scholar] [CrossRef]
- Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev. 2014, 35, 992–1019. [Google Scholar] [CrossRef]
- Wong, C.; Lui, D.; Lui, A.; Kwok, A.; Low, M.; Lau, K.; Au, I.; Xiong, X.; Chung, M.; Lau, E.; et al. Use of DPP4i reduced odds of clinical deterioration and hyperinflammatory syndrome in COVID-19 patients with type 2 diabetes: Propensity score analysis of a territory-wide cohort in Hong Kong. Diabetes Metab. 2022, 48, 101307. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M.; Stoian, A.P.; Rizzo, M.; Serban, D.; Nuzzo, D.; Mazilu, L.; Suceveanu, A.I.; Dascalu, A.M.; Parepa, I.R. The Role of Endothelium in COVID-19. Int. J. Mol. Sci. 2021, 22, 11920. [Google Scholar] [CrossRef] [PubMed]
- Kifle, Z.D.; Woldeyohanin, A.E.; Demeke, C.A. SARS-CoV-2 and diabetes: A potential therapeutic effect of dipeptidyl peptidase 4 inhibitors in diabetic patients diagnosed with COVID-19. Metab. Open 2021, 12, 100134. [Google Scholar] [CrossRef]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (A.D.A.) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patoulias, D.; Doumas, M. Dipeptidyl Peptidase-4 Inhibitors and COVID-19-Related Deaths among Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Observational Studies. Endocrinol. Metab. 2021, 36, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Chen, W.; Htwe, Y.M.; Tatsumi, K.; Dudek, S.M. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am. J. Physiol. Lung Cell Mol. 2018, 315, L834–L845. [Google Scholar] [CrossRef]
- Patoulias, D.; Papadopoulos, C.; Boulmpou, A.; Doumas, M. Meta-analysis of the hallmark cardiovascular and renal outcome trials addressing the risk for respiratory tract infections with sodium-glucose co-transporter-2 inhibitors: Implications for the COVID-19 pandemic. Diabetes Obes. Metab. 2021, 23, 1696–1700. [Google Scholar] [CrossRef]
- Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef]
- Katsiki, N.; Ferrannini, E. Anti-inflammatory properties of antidiabetic drugs: A “promised land” in the COVID-19 era? J. Diabetes Complicat. 2020, 34, 107723. [Google Scholar] [CrossRef]
- Cowie, M.R.; Fisher, M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 2020, 17, 761–772. [Google Scholar] [CrossRef]
- Alshnbari, A.S.; Millar, S.A.; O’Sullivan, S.E.; Idris, I. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Endothelial Function: A Systematic Review of Preclinical Studies. Diabetes Ther. 2020, 11, 1947–1963. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.; Berwanger, O.; Koch, G.G.; Martinez, F.; Mukhtar, O.; Verma, S.; Chopra, V.; Javaheri, A.; Ambery, P.; Gasparyan, S.B.; et al. Effects of dapagliflozin on prevention of major clinical events and recovery in patients with respiratory failure because of COVID-19: Design and rationale for the DARE-19 study. Diabetes Obes. Metab. 2021, 23, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, Y.; PanteaStoian, A.; Silva-Nunes, J.; Sonmez, A.; Rizvi, A.A.; Janez, A.; Rizzo, M. The role of GLP-1 receptor agonists during COVID-19 pandemia: A hypothetical molecular mechanism. Expert Opin. Drug Saf. 2021, 20, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Belančić, A.; Kresović, A.; TroskotDijan, M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin. Obes. 2021, 11, e12439. [Google Scholar] [CrossRef]
- Chee, Y.J.; Tan, S.K.; Yeoh, E. Dissecting the interaction between COVID-19 and diabetes mellitus. J. Diabetes Investig. 2020, 11, 1104–1114. [Google Scholar] [CrossRef]
- Shao, S.; Yang, Q.; Pan, R.; Yu, X.; Chen, Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front. Endocrinol. 2021, 12, 731974. [Google Scholar] [CrossRef]
- Jin, T.; Liu, M. Letter to the editor: Comment on GLP-1-based drugs and COVID-19 treatment. Acta Pharm. Sin B 2020, 10, 1249–1250. [Google Scholar] [CrossRef]
- Rogliani, P.; Matera, M.G.; Calzetta, L.; Hanania, N.A.; Page, C.; Rossi, I.; Andreadi, A.; Galli, A.; Coppola, A.; Cazzola, M.; et al. Long-term observational study on the impact of GLP-1R agonists on lung function in diabetic patients. Respir. Med. 2019, 154, 86–92. [Google Scholar] [CrossRef]
- Lee, J.H. Potential therapeutic effect of glucagon-like peptide-1 receptor agonists on COVID-19-induced pulmonary arterial hypertension. Med. Hypotheses 2022, 158, 110739. [Google Scholar] [CrossRef]
- Giorgino, F.; Bhana, S.; Czupryniak, L.; Dagdelen, S.; Galstyan, G.R.; Janež, A.; Lalić, N.; Nouri, N.; Rahelić, D.; Stoian, A.P.; et al. Management of patients with diabetes and obesity in the COVID-19 era: Experiences and learnings from South and East Europe, the Middle East, and Africa. Diabetes Res. Clin. Pract. 2021, 172, 108617. [Google Scholar] [CrossRef]
- Vinciguerra, M.; Romiti, S.; Sangiorgi, G.M.; Rose, D.; Miraldi, F.; Greco, E. SARS-CoV-2 and Atherosclerosis: Should COVID-19 Be Recognized as a New Predisposing Cardiovascular Risk Factor? J. Cardiovasc. Dev. Dis. 2021, 8, 130. [Google Scholar] [CrossRef]
- Hariyanto, T.I.; Intan, D.; Hananto, J.E.; Putri, C.; Kurniawan, A. Pre-admission glucagon-like peptide-1 receptor agonist (GLP-1RA) and mortality from coronavirus disease 2019 (COVID-19): A systematic review, meta-analysis, and meta-regression. Diabetes Res. Clin. Pract. 2021, 179, 109031. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, S.R.; Rubino, F.; Khunti, K.; Mingrone, G.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; Amiel, S.; Holt, R.I.; Skyler, J.S.; et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 546–550. [Google Scholar] [CrossRef]
- Abuhasira, R.; Ayalon-Dangur, I.; Zaslavsky, N.; Koren, R.; Keller, M.; Dicker, D.; Grossman, A. A Randomized Clinical Trial of Linagliptin vs. Standard of Care in Patients Hospitalized with Diabetes and COVID-19. Front. Endocrinol. 2021, 12, 794382. [Google Scholar] [CrossRef]
- Dalan, R.; Ang, L.W.; Tan, W.; Fong, S.W.; Tay, W.C.; Chan, Y.H.; Renia, L.; Ng, L.; Lye, D.C.; Chew, D.; et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: An observational study. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, e48–e51. [Google Scholar] [CrossRef] [PubMed]
- Koufakis, T.; Maltese, G.; Metallidis, S.; Zebekakis, P.; Kotsa, K. Looking deeper into the findings of DARE-19: Failure or an open door to future success? Pharmacol. Res. 2021, 173, 105872. [Google Scholar] [CrossRef]
- Koufakis, T.; Mustafa, O.G.; Ajjan, R.A.; Garcia-Moll, X.; Zebekakis, P.; Dimitriadis, G.; Kotsa, K. From Skepticism to Hope: The Evolving Concept of the Initiation and Use of Sodium-Glucose Cotransporter 2 Inhibitors in Hospitalized Patients. Drugs 2022, 82, 949–955. [Google Scholar] [CrossRef]
- Koufakis, T.; Pavlidis, A.N.; Metallidis, S.; Kotsa, K. Sodium-glucose co-transporter 2 inhibitors in COVID-19: Meeting at the crossroads between heart, diabetes and infectious diseases. Int. J. Clin. Pharm. 2021, 43, 764–767. [Google Scholar] [CrossRef]
- Caballero, A.E.; Ceriello, A.; Misra, A.; Aschner, P.; McDonnell, M.E.; Hassanein, M.; Ji, L.; Mbanya, J.C.; Fonseca, V.A. COVID-19 in people living with diabetes: An international consensus. J. Diabetes Complicat. 2020, 34, 107671. [Google Scholar] [CrossRef]
- Khunti, K.; Aroda, V.R.; Bhatt, D.L.; Bozkurt, B.; Buse, J.B.; Heerspink, H.L.; Inzucchi, S.E.; Lam, C.; Marx, N.; McMurray, J.; et al. Re-examining the widespread policy of stopping sodium-glucose cotransporter-2 inhibitors during acute illness: A perspective based on the updated evidence. Diabetes Obes. Metab. 2022, 24, 2071–2080. [Google Scholar] [CrossRef]
Secondary Outcome | Main Outcome | Number of Patients | Study Type | Date of Publishing | Author |
---|---|---|---|---|---|
mortality rate over the observation period was 2.29% for GLP-1 Ra, 2.48% for SGLT2i, and 6.18% for DPP4i. Emergency room visits rate was 28.84% for GLP-1 Ra, 29.3% for SGLT2i, and 36.6% for DPP4i. hospitalizations rate was 21.89% for GLP-1 Ra, 23.22%, for SGLT2i, and 33.38% for DPP4i. The need for mechanical ventilation within 14 days of a positive SARS-CoV-2 test rate was 5.78% for GLP-1 Ra, 6.17% for SGLT2i, and 8.54% for DPP4i. | 60-day mortality from a positive SARS-CoV-2 test according to premorbid medication use—2.06% for GLP-1 Ra; 2.32% for SGLT2i; respectively, 5.67% for DPP4i. Both GLP1-RA and SGLT2i use were associated with lower 60-day mortality compared with DPP4i use (OR 0.54 [95% CI 0.37–0.80] and 0.66 [0.50–0.86], respectively). | 12,446 | Observational study | Epub June 2021 | Kahkoska et al. [20] |
no association between DPP4i and SGLT2i use with 75-days mortality (Survivor—55.7% vs. non-survivor 61.5% for DPP4-i, p = 0.342; Survivor—12.3% vs. non-survivor 15.4% for SGLT2-i, p = 0.482) | pneumonia development was associated with DPP-4i use (p = 0.01) and SGLT-2i use (p = 0.006) | 432 | cross-sectional study | Epub August 2021 | Elibol et al. [21] |
Hospital admission -RR 0.53, CI 0.47–0.59, p < 0.001, for GLP1-Ra -RR 1.04, CI 0.97–1.11, p = 0.3, for DPP4-i Respiratory complications -RR 0.56, CI 0.50–0.63, p < 0.001, for GLP1-Ra -RR 0.88, CI 0.82–0.95, p = 0.001, for DPP4-i | 28-day mortality was reduced: -RR 0.41, CI 0.3–0.55, p < 0.001, for GLP1-Ra -RR 1.23, CI 1.05–1.43, p = 0.009, for DPP4-i | 229,809 | retrospective study | Epub September 2021 | Nyland et al. [22] |
DPP-4i users vs. nonusers of DPP4-i: -Intermittent mechanical Ventilation at 7 days: 19.1% vs. 18.5%, p = 0.7169 -Intermittent mechanical Ventilation at 28 days: 20.3% versus 19.2%, p = 0.5527 -Death at 7 days: 9.7% versus 11.7%, p = 0.2048 -Death at 28 days: 18.1% versus 21.8%, p = 0.0561 | composite endpoint combining tracheal intubation for mechanical ventilation and death within seven days of admission had similar rates in users and nonusers of DPP-4i (27.7% vs. 28.6%; p = 0.68) | 2449 | Secondary analysis study of the CORONADO study | Epub February 2021 | Roussel et al. [23] |
ICU admission -GLP-1 Ra versus SGLT-2i RR of 0.89 (0.38–2.07) -DPP-4i versus SGLT-2i RR of 1.73 (0.78–3.85) Mechanical ventilation -GLP-1 Ra versus SGLT-2i RR of 0.95 (0.37–2.46) -DPP-4i versus SGLT-2i RR of 2.41 (0.95–6.13) Hospital admission -GLP-1 Ra versus SGLT-2i RR of 1.17 (0.87–1.57) | 30-day mortality after a positive SARS-CoV-2 test -GLP-1 Ra versus SGLT-2i RR of 1.03 (0.45–2.35) -DPP-4i versus SGLT-2i RR of 4.13 (1.85–9.26) -DPP-4i versus SGLT-2i RR of 1.53 (1.14–2.05) | 1970 | population-based cohort study | Epub February 2021 | Israelsen et al. [24] |
comparable incidences and risks between the DPP4i and non-DPP4i groups of the secondary outcomes: -occurrences of septic shock (p = 0.82); ARDS (p = 0.85), acute organ injury (kidney-p = 0.98, liver-p = 0.25, and cardiac-p = 0.28) | 28-day all-cause mortality between DPP-4i users and non-DPP4 users: 1.8% vs. 3.3%; OR = 0.58 95% CI: 0.12–2.68, p = 0.48) | 2563 | multicentre retrospective cohort study | November 2020 | Zhou et al. [25] |
decreased risk for the need for mechanical ventilation as compared with treatment with the standard of care (HR 0.27 [CI 0.11–0.62]; p = 0.003) reduced risk for the need for ICU in the sitagliptin-treated group as compared with the standard-of-care group (HR 0.51 [CI 0.27–0.95]; p = 0.03) no difference in the requirement of ECMO as compared with treatment with the standard of care (HR 1.15 [CI 0.41–3.17]) overall improvement of clinical score vs. standard of care (60% vs. 38%, p = 0.0001) | mortality at 30 days in sitagliptin versus standard of care 18% versus 37%, p = 0.0001; in-hospital death (OR 0.37 [CI 0.23–0.62]; p = 0.0001) hospital discharge at 30 days in sitagliptin versus standard of care 71% versus 52.66%, p = 0.0008; time to clinical endpoint (death/discharge) (hazard ratio [HR] 0.44 [95% CI 0.29–0.66]; p = 0.0001 | 338 | multicentre, case-control, retrospective, observational study | Epub September 2020 | Solerte et al. [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmen, T.; Pietroșel, V.-A.; Mihai, B.-M.; Bica, I.C.; Teodorescu, C.; Păunescu, H.; Coman, O.A.; Mihai, D.-A.; Pantea Stoian, A. Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19. Biomedicines 2022, 10, 2624. https://doi.org/10.3390/biomedicines10102624
Salmen T, Pietroșel V-A, Mihai B-M, Bica IC, Teodorescu C, Păunescu H, Coman OA, Mihai D-A, Pantea Stoian A. Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19. Biomedicines. 2022; 10(10):2624. https://doi.org/10.3390/biomedicines10102624
Chicago/Turabian StyleSalmen, Teodor, Valeria-Anca Pietroșel, Bianca-Margareta Mihai, Ioana Cristina Bica, Claudiu Teodorescu, Horia Păunescu, Oana Andreia Coman, Doina-Andrada Mihai, and Anca Pantea Stoian. 2022. "Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19" Biomedicines 10, no. 10: 2624. https://doi.org/10.3390/biomedicines10102624