Feasibility of Self-Performed Lung Ultrasound with Remote Teleguidance for Monitoring at Home COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kvedar, J.; Coye, M.J.; Everett, W. Connected health: A review of technologies and strategies to improve patient care with telemedicine and telehealth. Health Aff. 2014, 33, 194–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Italian Ministry of Health. National Guidelines on Telemedicine; Italian Ministry of Health: Rome, Italy, 2012.
- Flodgren, G.; Rachas, A.; Farmer, A.J.; Inzitari, M.; Shepperd, S. Interactive telemedicine: Effects on professional practice and health care outcomes. Cochrane Database Syst. Rev. 2015, 9, CD002098. [Google Scholar] [CrossRef] [PubMed]
- Wilke, D.; Padeken, D.; Weber, T.H.; Gerzer, R. Telemedicine for the International Space Station. Acta Astronaut. 1999, 44, 579–581. [Google Scholar] [CrossRef]
- Doarn, C.R.; Nicogossian, A.E.; Merrell, R.C. Applications of telemedicine in the United States space program. Telemed. J. 1998, 4, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Nicogossian, A.E.; Pober, D.F.; Roy, S.A. Evolution of telemedicine in the space program and earth applications. Telemed. J. E Health 2001, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.M.; Metzger, G.A.; Beane, J.D.; Dedhia, P.H.; Ejaz, A.; Pawlik, T.M. Telemedicine: Patient-Provider Clinical Engagement During the COVID-19 Pandemic and Beyond. J. Gastrointest. Surg. 2020, 24, 1692–1697. [Google Scholar] [CrossRef] [PubMed]
- Temesgen, Z.M.; DeSimone, D.C.; Mahmood, M.; Libertin, C.R.; Varatharaj Palraj, B.R.; Berbari, E.F. Health Care After the COVID-19 Pandemic and the Influence of Telemedicine. Mayo Clin. Proc. 2020, 95, S66–S68. [Google Scholar] [CrossRef] [PubMed]
- Newman, P.G.; Rozycki, G.S. The history of ultrasound. Surg. Clin. N. Am. 1998, 78, 179–195. [Google Scholar] [CrossRef]
- Russell, T.C.; Crawford, P.F. Ultrasound in the austere environment: A review of the history, indications, and specifications. Mil. Med. 2013, 178, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitson, M.R.; Mayo, P.H. Ultrasonography in the emergency department. Crit. Care 2016, 20, 227. [Google Scholar] [CrossRef]
- van Wassenaer, E.A.; Daams, J.G.; Benninga, M.A.; Rosendahl, K.; Koot, B.G.; Stafrace, S.; Arthurs, O.J.; van Rijn, R.R. Non-radiologist-performed abdominal point-of-care ultrasonography in paediatrics—A scoping review. Pediatr. Radiol. 2021, 51, 1386–1399. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.P.; Sanghvi, A. Out of hospital point of care ultrasound: Current use models and future directions. Eur. J. Trauma Emerg. Surg. 2016, 42, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Guarracino, F.; Vetrugno, L.; Forfori, F.; Corradi, F.; Orso, D.; Bertini, P.; Ortalda, A.; Federici, N.; Copetti, R.; Bove, T. Lung, Heart, Vascular, and Diaphragm Ultrasound Examination of COVID-19 Patients: A Comprehensive Approach. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, E.; Goffi, A.; Tizzani, M.; Locatelli, S.M.; Porrino, G.; Losano, I.; Leone, D.; Calzolari, G.; Vesan, M.; Steri, F.; et al. Lung Ultrasonography for the Diagnosis of SARS-CoV-2 Pneumonia in the Emergency Department. Ann. Emerg. Med. 2021, 77, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Via, G.; Melniker, L.; Goffi, A.; Tavazzi, G.; Neri, L.; Villen, T.; Hoppmann, R.; Mojoli, F.; Noble, V.; et al. Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): International expert consensus. Crit. Care 2020, 24, 702. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Via, G.; Melniker, L.; Goffi, A.; Tavazzi, G.; Neri, L.; Villen, T.; Hoppmann, R.; Mojoli, F.; Noble, V.; et al. Point-of-care lung ultrasound in COVID-19 patients: Inter- and intra-observer agreement in a prospective observational study. Sci. Rep. 2021, 11, 10678. [Google Scholar]
- Pivetta, E.; Cara, I.; Paglietta, G.; Scategni, V.; Labarile, G.; Tizzani, M.; Porrino, G.; Locatelli, S.; Calzolari, G.; Morello, F.; et al. Diaphragmatic Point-of-Care Ultrasound in COVID-19 Patients in the Emergency Department-A Proof-of-Concept Study. J. Clin. Med. 2021, 10, 5291. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. Regression Modeling Strategies, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Gray, J.; Partington, A.; Karnon, J. Access, Use, and Patient-Reported Experiences of Emergency Care During the COVID-19 Pandemic: Population-Based Survey. JMIR Hum. Factors 2021, 8, e30878. [Google Scholar] [CrossRef]
- Savioli, G.; Ceresa, I.F.; Novelli, V.; Ricevuti, G.; Bressan, M.A.; Oddone, E. How the coronavirus disease 2019 pandemic changed the patterns of healthcare utilization by geriatric patients and the crowding: A call to action for effective solutions to the access block. Intern. Emerg. Med. 2021, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, E. The COVID-19 pandemic: A stress test for clinical epidemiology. Epidemiol. Prev. 2020, 44 (Suppl. S2), 28–29. [Google Scholar] [CrossRef] [PubMed]
- Impact of the COVID-19 Pandemic on the Hospital and Outpatient Clinician Workforce, Assistant Secretary for Planning and Evaluation Issue Brief. 3 May 2022. Available online: https://aspe.hhs.gov/sites/default/files/documents/9cc72124abd9ea25d58a22c7692dccb6/aspe-covid-workforce-report.pdf (accessed on 5 May 2022).
- World Health Organization. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 15 June 2022).
- European Centre for Disease. Prevention and Control Website. Available online: https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea (accessed on 19 January 2022).
- Araf, Y.; Akter, F.; Tang, Y.D.; Fatemi, R.; Parvez, S.A.; Zheng, C.; Hossain, G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Kim, S.; Nguyen, T.T.; Taitt, A.S.; Jhun, H.; Park, H.Y.; Kim, S.H.; Kim, Y.G.; Song, E.Y.; Lee, Y.; Yum, H.; et al. SARS-CoV-2 Omicron Mutation Is Faster than the Chase: Multiple Mutations on Spike/ACE2 Interaction Residues. Immune Netw. 2021, 21, e38. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, A.W.; McKee, J.L.; Ball, C.G.; Ma, I.W.Y.; Melniker, L.A. Empowering the willing: The feasibility of tele-mentored self-performed pleural ultrasound assessment for the surveillance of lung health. Ultrasound. J. 2022, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Berger, N.A.; Kaelber, D.C.; Davis, P.B.; Volkow, N.D.; Xu, R. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. medRxiv 2022. [Google Scholar] [CrossRef]
POSTERIOR LEFT | LATERAL LEFT | ANTERIOR LEFT | ANTERIOR RIGHT | LATERAL RIGHT | POSTERIOR RIGHT | |
---|---|---|---|---|---|---|
SUPERIOR | 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) | 2 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) | 3 (1–3) 3 (1–3) 3 (0–3) 2 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) | 2 (1–3) 3 (1–3) 3 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 3 (1–3) | 3 (1–3) 2 (1–3) 2.5 (1–3) 2 (1–3) 2 (1–3) 3 (1–3) 3 (1–3) 2 (1–3) | 2 (1–3) 3 (1–3) 3 (2–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) |
INFERIOR | 3 (1–3) 3 (1–3) 3 (2–3) 2 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) 3 (1–3) | 2 (1–3) 3 (1–3) 2.5 (1–3) 2 (1–3) 3 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) | 2 (1–3) 3 (1–3) 2 (1–3) 3 (1–3) 2 (1–3) 3 (1–3) 2.5 (1–3) 3 (1–3) | 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 3 (2–3) | 2 (1–3) 3 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 3 (1–3) 2 (1–3) | 3 (0–3) 3 (1–3) 3 (1–3) 3 (1–3) 2 (1–3) 3 (1–3) 3 (1–3) 3 (2–3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pivetta, E.; Ravetti, A.; Paglietta, G.; Cara, I.; Buggè, F.; Scozzari, G.; Maule, M.M.; Morello, F.; Locatelli, S.; Lupia, E. Feasibility of Self-Performed Lung Ultrasound with Remote Teleguidance for Monitoring at Home COVID-19 Patients. Biomedicines 2022, 10, 2569. https://doi.org/10.3390/biomedicines10102569
Pivetta E, Ravetti A, Paglietta G, Cara I, Buggè F, Scozzari G, Maule MM, Morello F, Locatelli S, Lupia E. Feasibility of Self-Performed Lung Ultrasound with Remote Teleguidance for Monitoring at Home COVID-19 Patients. Biomedicines. 2022; 10(10):2569. https://doi.org/10.3390/biomedicines10102569
Chicago/Turabian StylePivetta, Emanuele, Anna Ravetti, Giulia Paglietta, Irene Cara, Federico Buggè, Gitana Scozzari, Milena M. Maule, Fulvio Morello, Stefania Locatelli, and Enrico Lupia. 2022. "Feasibility of Self-Performed Lung Ultrasound with Remote Teleguidance for Monitoring at Home COVID-19 Patients" Biomedicines 10, no. 10: 2569. https://doi.org/10.3390/biomedicines10102569
APA StylePivetta, E., Ravetti, A., Paglietta, G., Cara, I., Buggè, F., Scozzari, G., Maule, M. M., Morello, F., Locatelli, S., & Lupia, E. (2022). Feasibility of Self-Performed Lung Ultrasound with Remote Teleguidance for Monitoring at Home COVID-19 Patients. Biomedicines, 10(10), 2569. https://doi.org/10.3390/biomedicines10102569