Current Advances in the Management of Diabetes Mellitus
Abstract
:1. Introduction
2. Methods
3. Risk Factors of Diabetes
4. Management of Diabetes
4.1. Internet Intervention for Lifestyle Modification in Diabetes
4.2. Nanotechnology and Diabetes
4.3. Medical Nutrition Therapy in Diabetes
4.4. Gene Therapy and Diabetes Mellitus
4.5. Stem Cell Therapy in Diabetes
4.6. Latest Inventions in Diabetes Management
4.6.1. Drugs Recently Introduced
4.6.2. Drugs in the Pipeline
5. Discussion of Major Findings
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giovannini, P.; Howes, M.J.R.; Edwards, S.E. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. J. Ethnopharmacol. 2016, 184, 58–71. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. Data from: IFD Diabetes Altas Globally. IDF Diabetes Atlas, 8th ed, 2017. Available online: https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf (accessed on 11 May 2022).
- WHO. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016; Available online: http://www.who.int/diabetes/global-report/en/ (accessed on 11 May 2022).
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef]
- Group, T.D.P. Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabet. Med. 2006, 23, 857–866. [Google Scholar] [CrossRef]
- Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 2013, 17, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Control and Complications Trial Research Group; Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of Intensive Treatment of diabetes on the development and progression of ling-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [PubMed]
- Callejas, D.; Mann, C.J.; Ayuso, E.; Lage, R.; Grifoll, I.; Roca, C.; Andaluz, A.; Ruiz-de Gopegui, R.; Montané, J.; Muñoz, S.; et al. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes 2013, 62, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Mavridis, D.; Nicolucci, A.; Johnson, D.W.; Tonelli, M.; Craig, J.C.; Maggo, J.; Gray, V.; De Berardis, G.; Ruospo, M.; et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes a meta-analysis. J. Am. Med. Assoc. 2016, 316, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Defronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metab. Clin. Exp. 2016, 65, 20–29. [Google Scholar] [CrossRef]
- Banting, F.G.; Best, C.H. Pancreatic extracts. J. Lab. Clin. Med. 1990, 115, 254–272. [Google Scholar] [PubMed]
- Control, T.D.; Trial, C. Hypoglycemia in the diabetes control and complications trial. Diabetes 1997, 46, 271–286. [Google Scholar] [CrossRef]
- Group, T.D.R. Weight gain associated with intensive therapy in the diabetes control and complications trial. Diabetes Care 1988, 11, 567–573. [Google Scholar] [CrossRef]
- Meek, T.H.; Morton, G.J. The role of leptin in diabetes: Metabolic effects. Diabetologia 2016, 59, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.-W.; Jung, J.H.; Park, J.E.; Lee, J.H.; Sim, K.H.; Park, J.; Kim, M.H.; Yoo, K.-B. The relationship between age of onset and risk factors including family history and life style in Korean population with type 2 diabetes mellitus. J. Phys. Ther. Sci. 2018, 30, 201–206. [Google Scholar] [CrossRef]
- Asiimwe, D.; Mauti, G.O.; Kiconco, R. Prevalence and Risk Factors Associated with Type 2 Diabetes in Elderly Patients Aged 45–80 Years at Kanungu District. J. Diabetes Res. 2020, 2020, 5152146. [Google Scholar] [CrossRef]
- Mordarska, K.; Godziejewska-Zawada, M. Diabetes in the elderly. Prz. Menopauzalny 2017, 16, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Mechanisms of insulin resistance in obesity. Front. Med. China 2013, 7, 14–24. [Google Scholar] [CrossRef]
- FDA. Cigarette Smoking: A Risk Factor for Type 2 Diabetes. 2020. Available online: https://www.fda.gov/tobacco-products/health-effects-tobacco-use/cigarette-smoking-risk-factor-type-2-diabetes (accessed on 20 July 2022).
- Herman, W.H.; Ye, W.; Griffin, S.J.; Simmons, R.K.; Davies, M.J.; Khunti, K.; Rutten, G.E.H.M.; Sandbaek, A.; Lauritzen, T.; Borch-Johnsen, K.; et al. Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: A simulation of the results of the Anglo-Danish-Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe). Diabetes Care 2015, 38, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.J. Lifestyle modifications for diabetes management. Endocrinol. Metab. Clin. North Am. 1997, 26, 499–510. [Google Scholar] [CrossRef]
- Chong, S.; Ding, D.; Byun, R.; Comino, E.; Bauman, A.; Jalaludin, B. Lifestyle changes after a diagnosis of type 2 diabetes. Diabetes Spectr. 2017, 30, 43–50. [Google Scholar] [CrossRef]
- Cotter, A.P.; Durant, N.; Agne, A.A.; Cherrington, A.L. Internet interventions to support lifestyle modification for diabetes management: A systematic review of the evidence. J. Diabetes Its Complicat. 2014, 28, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Veiseh, O.; Tang, B.C.; Whitehead, K.A.; Anderson, D.G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2014, 14, 45–57. [Google Scholar] [CrossRef]
- Disanto, R.M.; Subramanian, V.; Gu, Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 548–564. [Google Scholar] [CrossRef] [PubMed]
- Lemmerman, L.R.; Das, D.; Higuita-Castro, N.; Mirmira, R.G.; Gallego-Perez, D. Nanomedicine-Based Strategies for Diabetes: Diagnostics, Monitoring, and Treatment. Trends Endocrinol. Metab. 2020, 31, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Weir, G.C.; Bonner-Weir, S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 2004, 53 (Suppl. 3). [Google Scholar] [CrossRef] [PubMed]
- Tamborlane, W.; Beck, R.; Bode, B.; Buckingham, B.; Chase, H.; Clemons, R.; Fiallo-Scharer, R.; Fox, L.; Gilliam, L.; Hirsch, I.; et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 2008, 359, 1464–1476. [Google Scholar] [CrossRef]
- Edelman, S.V.; Argento, N.B.; Pettus, J.; Hirsch, I.B. Clinical implications of real-time and intermittently scanned continuous glucose monitoring. Diabetes Care 2018, 41, 2265–2274. [Google Scholar] [CrossRef]
- Hovorka, R.; Nodale, M.; Haidar, A.; Wilinska, M.E. Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: Drawbacks and way forward. Diabetes Technol. Ther. 2013, 15, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, V. Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens. Bioelectron. 2013, 47, 12–25. [Google Scholar] [CrossRef]
- Grunberger, G. The need for better insulin therapy. Diabetes Obes. Metab. 2013, 15 (Suppl. 1), 1–5. [Google Scholar] [CrossRef]
- Lagopati, N.; Pavlatou, E. Nanotechnology in Diabetes Management. Interv. Obes. Diabetes 2021, 5, 419–424. [Google Scholar] [CrossRef]
- Garber, A.J.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bloomgarden, Z.T.; Bush, M.A.; Dagogo-Jack, S.; DeFronzo, R.A.; Einhorn, D.; Fonseca, V.A.; et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm—2018 executive summary. Endocr. Pract. 2018, 24, 91–120. [Google Scholar] [CrossRef]
- Viswanathan, V.; Krishnan, D.; Kalra, S.; Chawla, R.; Tiwaskar, M.; Saboo, B.; Baruah, M.; Chowdhury, S.; Makkar, B.M.; Jaggi, S. Insights on Medical Nutrition Therapy for Type 2 Diabetes Mellitus: An Indian Perspective. Adv. Ther. 2019, 36, 520–547. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients); National Academy Press: Washington, DC, USA, 2005. [Google Scholar]
- Moreno-Castilla, C.; Mauricio, D.; Hernandez, M. Role of Medical Nutrition Therapy in the Management of Gestational Diabetes Mellitus. Curr. Diabetes Rep. 2016, 16, 22. [Google Scholar] [CrossRef]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science 2018, 175. [Google Scholar] [CrossRef]
- Xu, R.; Li, H.; Lai-yin, T.; Hsiang-fu, K.; Lu, H.; Lam, K. Diabetes Gene Therapy: Potential and Challenges. Curr. Gene Ther. 2003, 3, 65–82. [Google Scholar] [CrossRef]
- Wong, M.S.; Hawthorne, W.J.; Manolios, N. Gene therapy in diabetes. Self/Nonself 2010, 1, 165–175. [Google Scholar] [CrossRef]
- Mali, S. Delivery systems for gene therapy. Indian J. Hum. Genet. 2013, 19, 3–8. [Google Scholar] [CrossRef]
- Kaufmann, K.B.; Büning, H.; Galy, A.; Schambach, A.; Grez, M. Gene therapy on the move. EMBO Mol. Med. 2013, 5, 1642–1661. [Google Scholar] [CrossRef]
- Tsokos, G.C.; Nepom, G.T. Gene therapy in the treatment of autoimmune diseases. J. Clin. Investig. 2000, 106, 181–183. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, S.; Li, X.; Zheng, P.; Hu, F.; Zhou, Z. Vaccination with a co-expression DNA plasmid containing GAD65 fragment gene and IL-10 gene induces regulatory CD4+ T cells that prevent experimental autoimmune diabetes. Diabetes/Metab. Res. Rev. 2016, 32, 522–533. [Google Scholar] [CrossRef]
- Chellappan, D.K.; Yap, W.S.; Bt Ahmad Suhaimi, N.A.; Gupta, G.; Dua, K. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med. 2018, 60, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Bakay, M.; Pandey, R.; Hakonarson, H. Genes involved in type 1 diabetes: An update. Genes 2013, 4, 499–521. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.H.; Park, K.S. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp. Mol. Med. 2016, 48, e220–e228. [Google Scholar] [CrossRef]
- Florez, J.C. Pharmacogenetics in type 2 diabetes: Precision medicine or discovery tool? Diabetologia 2017, 60, 800–807. [Google Scholar] [CrossRef]
- Abderrazak, A.; El Hadri, K.; Bosc, E.; Blondeau, B.; Slimane, M.N.; Büchele, B.; Simmet, T.; Couchie, D.; Rouis, M. Inhibition of the inflammasome NLRP3 by arglabin attenuates inflammation, protects pancreatic β-cells from apoptosis, and prevents type 2 diabetes mellitus development in ApoE2Ki mice on a chronic high-fat diet. J. Pharmacol. Exp. Ther. 2016, 357, 487–494. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, L.; Li, C.; Chen, Y.; Tai, Y.; Shen, Y.; Sun, Z. Advances and potential of gene therapy for type 2 diabetes mellitus. Biotechnol. Biotechnol. Equip. 2019, 33, 1150–1157. [Google Scholar] [CrossRef]
- Mccall, M.D.; Toso, C.; Baetge, E.E.; Shapiro, A.M.J. Are stem cells a cure for diabetes? Clin. Sci. 2009, 118, 87–97. [Google Scholar] [CrossRef]
- Abdulazeez, S.S. Diabetes treatment: A rapid review of the current and future scope of stem cell research. Saudi Pharm. J. 2015, 23, 333–340. [Google Scholar] [CrossRef]
- Bonner-Weir, S.; Baxter, L.A.; Schuppin, G.T.; Smith, F.E. A second pathway for regeneration of adult exocrine and endocrine pancreas: A possible recapitulation of embryonic development. Diabetes 1993, 42, 1715–1720. [Google Scholar] [CrossRef]
- Bonner-Weir, S.; Taneja, M.; Weir, G.C.; Tatarkiewicz, K.; Song, K.H.; Sharma, A.; O’Neil, J.J. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 2000, 97, 7999–8004. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Ustinov, J.; Pulkkinen, M.A.; Lundin, K.; Korsgren, O.; Otonkoski, T. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 2003, 52, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Brazelton, T.R.; Rossi, F.M.; Keshet, G.I.; Blau, H.M. From Marrow to Brain: Expression of Neuronal Phenotypes in Adult Mice Timothy. Science 2000, 290, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.S.; Theise, N.D.; Collector, M.I.; Henegariu, O.; Hwang, S.; Gardner, R.; Neutzel, S.; Sharkis, S.J. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001, 105, 369–377. [Google Scholar] [CrossRef]
- Jiang, Y.; Jahagirdar, B.N.; Reinhardt, R.L.; Schwartz, R.E.; Keene, C.D.; Ortiz-Gonzalez, X.R.; Reyes, M.; Lenvik, T.; Lund, T.; Blackstad, M.; et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002, 418, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ianus, A.; Holz, G.G.; Theise, N.D.; Hussain, M.A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Investig. 2003, 111, 843–850. [Google Scholar] [CrossRef]
- Hess, D.; Li, L.; Martin, M.; Sakano, S.; Hill, D.; Strutt, B.; Thyssen, S.; Gray, D.A.; Bhatia, M. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat. Biotechnol. 2003, 21, 763–770. [Google Scholar] [CrossRef]
- Couri, C.E.B.; Oliveira, M.C.B.; Stracieri, A.B.P.L.; Moraes, D.A.; Madeira, M.I.A.; Malmegrim, K.C.R.; Simo, B.P.; Foss, M.C.; Burt, R.K. C-Peptide Levels and Insulin Independence Following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA 2009, 301, 1573–1579. [Google Scholar] [CrossRef]
- Estrada, E.J.; Valacchi, F.; Nicora, E.; Brieva, S.; Esteve, C.; Echevarria, L.; Froud, T.; Bernetti, K.; Cayetano, S.M.; Velazquez, O.; et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transplant. 2008, 17, 1295–1304. [Google Scholar] [CrossRef]
- FDA. FDA Approves Novel, Dual-Targeted Treatment for Type 2 Diabetes. 2022. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-dual-targeted-treatment-type-2-diabetes (accessed on 16 September 2022).
- Bertsch, T. An Introduction to Tirzepatide. Clin. Diabetes 2022, 40, 371–372. [Google Scholar] [CrossRef]
- Kawai, T.; Sun, B.; Yoshino, H.; Feng, D.; Suzuki, Y.; Fukazawa, M.; Nagao, S.; Wainscott, D.B.; Showalter, A.D.; Droz, B.A.; et al. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proc. Natl. Acad. Sci. USA 2020, 117, 29959–29967. [Google Scholar] [CrossRef]
- SCOHIA. SCO-094 GLP-1R/GIPR Dual Agonist. 2022. Available online: https://www.scohia.com/eng/sys/pipeline/sco-094/ (accessed on 16 September 2022).
- Piemonti, L.; Keymeulen, B.; Gillard, P.; Linn, T.; Bosi, E.; Rose, L.; Pozzilli, P.; Giorgino, F.; Cossu, E.; Daffonchio, L.; et al. Ladarixin, an inhibitor of the interleukin-8 receptors CXCR1 and CXCR2, in new-onset type 1 diabetes: A multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2022, 24, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Task Force for Writing Nutrition Principles and Recommendations for the Management of Diabetes and Related Complications. American Diabetes Association position statement: Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. J. Am. Diet. Assoc. 2002, 102, 109–118. [Google Scholar] [CrossRef]
- Casares, S.; Hurtado, A.; McEvoy, R.C.; Sarukhan, A.; von Boehmer, H.; Brumeanu, T. Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide-MHC class II chimera. Nature Inmmunol. 2002, 3, 383–391. [Google Scholar] [CrossRef]
- Dong, H.; Altomonte, J.; Morral, N.; Meseck, M.; Thung, S.N.; Woo, S.L.C. Basal insulin gene expression significantly improves conventional insulin therapy in type 1 diabetic rats. Diabetes 2002, 51, 130–138. [Google Scholar] [CrossRef]
- Sharma, N.R.; Rao, G.H.R. Diabetes Management: Expectations and Limitations. J. Diabetes Metab. 2016, 7, 4. [Google Scholar] [CrossRef]
- Touchefeu, Y.; Harrington, K.J.; Galmiche, J.P.; Vassaux, G. Review article: Gene therapy, recent developments and future prospects in gastrointestinal oncology. Aliment. Pharmacol. Ther. 2010, 32, 953–968. [Google Scholar] [CrossRef]
- Varga, C.M.; Hong, K.; Lauffenburger, D.A. Quantitative analysis of synthetic gene delivery vector design properties. Mol. Ther. 2001, 4, 438–446. [Google Scholar] [CrossRef]
- Samulski, R.J.; Sally, M.; Muzyczka, N. Adenoassociated viral vectors. In Development of Human Gene Therapy; Cold Spring Habour Laboratory Press: Cold Spring Harbor, NY, USA, 1999; pp. 131–172. [Google Scholar]
- León-Quinto, T.; Jones, J.; Skoudy, A.; Burcin, M.; Soria, B. In vitro directed differentation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 2004, 47, 1442–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, S. Time to reconsider stem cell ethics—The importance of induced pluripotent cells. J. Med. Ethics 2008, 34, 63–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Genes | Main Function |
---|---|---|
Genes modulating homeostasis of glucose | GLUTs | Involved in the re-absorption of filtered glucose from the kidney into the bloodstream |
SGLTs | Partake profoundly in muscle and hepatic glucose fluxes | |
FGFs | Functions significantly in the homeostasis of glucose | |
SIRT6 | Connected with an expression of GLUTs and increased glycolysis | |
Genes enhancing the secretion of insulin and/or sensitivity | GLP-1 and its analogs/agonists | Boost the survival of beta-cell, provoke the expression of the insulin gene, and synthesis |
GPGRs and their agonists | Enhances the secretion of insulin and GLP-1 | |
CTB-APSL | Enhances secretion of insulin and insulin resistance | |
IKK E, TBK1 | Linked with diminution in weight, insulin resistance, fatty liver as well as inflammation | |
Genes attenuating diabetic induced complications | IL-1b | Linked with inflammation and b-cell failure |
ADPN | Attenuates diabetic nephropathy | |
TGF-a | Has a function in DKD linked with nephron reduction | |
NLRP3 | Attenuates diabetic cardiomyopathy | |
CDKN2A/2B | connected with modulation of T-cell phenotype and chronic inflammation | |
HSP70 | Connected with bioenergetics of mitochondrion and diabetic sensory neuropathy | |
MicroRNAs | Implicated in the modulation of diabetic microvasculature |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloke, C.; Egwu, C.O.; Aja, P.M.; Obasi, N.A.; Chukwu, J.; Akumadu, B.O.; Ogbu, P.N.; Achilonu, I. Current Advances in the Management of Diabetes Mellitus. Biomedicines 2022, 10, 2436. https://doi.org/10.3390/biomedicines10102436
Aloke C, Egwu CO, Aja PM, Obasi NA, Chukwu J, Akumadu BO, Ogbu PN, Achilonu I. Current Advances in the Management of Diabetes Mellitus. Biomedicines. 2022; 10(10):2436. https://doi.org/10.3390/biomedicines10102436
Chicago/Turabian StyleAloke, Chinyere, Chinedu Ogbonnia Egwu, Patrick Maduabuchi Aja, Nwogo Ajuka Obasi, Jennifer Chukwu, Blessing Oluebube Akumadu, Patience Nkemjika Ogbu, and Ikechukwu Achilonu. 2022. "Current Advances in the Management of Diabetes Mellitus" Biomedicines 10, no. 10: 2436. https://doi.org/10.3390/biomedicines10102436
APA StyleAloke, C., Egwu, C. O., Aja, P. M., Obasi, N. A., Chukwu, J., Akumadu, B. O., Ogbu, P. N., & Achilonu, I. (2022). Current Advances in the Management of Diabetes Mellitus. Biomedicines, 10(10), 2436. https://doi.org/10.3390/biomedicines10102436