Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Molecular Basis for OI Type V
4.2. Clinical Phenotypes of Patients with OI Type V
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palomo, T.; Vilacą, T.; Lazaretti-Castro, M. Osteogenesis imperfecta: Diagnosis and treatment. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, F.S.; Sillence, D.O. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. Part A 2014, 164, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, K.; Åström, E.; Rubin, C.J.; Grigelioniene, G.; Malmgren, B.; Ljunggren, Ö.; Kindmark, A. Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur. J. Hum. Genet. 2015, 23, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Nadyrshina, D.; Zaripova, A.; Tyurin, A.; Minniakhmetov, I.; Zakharova, E.; Khusainova, R. Osteogenesis Imperfecta: Search for Mutations in Patients from the Republic of Bashkortostan (Russia). Genes 2022, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Marini, J.C.; Forlino, A.; Bächinger, H.P.; Bishop, N.J.; Byers, P.H.; De Paepe, A.; Fassier, F.; Fratzl-Zelman, N.; Kozloff, K.M.; Krakow, D.; et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 2017, 3, 17052. [Google Scholar] [CrossRef] [PubMed]
- Schindeler, A.; Lee, L.R.; O’Donohue, A.K.; Ginn, S.L.; Munns, C.F. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J. Bone Miner. Res. 2022, 37, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Syx, D.; Guillemyn, B.; Symoens, S.; Sousa, A.B.; Medeira, A.; Whiteford, M.; Hermanns-Lê, T.; Coucke, P.J.; De Paepe, A.; Malfait, F. Defective Proteolytic Processing of Fibrillar Procollagens and Prodecorin Due to Biallelic BMP1 Mutations Results in a Severe, Progressive Form of Osteogenesis Imperfecta. J. Bone Miner. Res. 2015, 30, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Imamura, Y.; Steiglitz, B.M.; Greenspan, D.S. Bone morphogenetic protein-1 processes the NH2-terminal propeptide, and a furin-like proprotein convertase processes the COOH-terminal propeptide of pro-α1(V) collagen. J. Biol. Chem. 1998, 273, 27511–27517. [Google Scholar] [CrossRef]
- Li, S.W.; Sieron, A.L.; Fertala, A.; Hojima, Y.; Arnold, W.V.; Prockop, D.J. The C-proteinase that processes procollagens to fibrillar collagens is identical to the protein previously identified as bone morphogenic protein-1. Proc. Natl. Acad. Sci. USA 1996, 93, 5127–5130. [Google Scholar] [CrossRef] [PubMed]
- Uzel, M.I.; Scott, I.C.; Babakhanlou-Chase, H.; Palamakumbura, A.H.; Pappano, W.N.; Hong, H.H.; Greenspan, D.S.; Trackman, P.C. Multiple Bone Morphogenetic Protein 1-related Mammalian Metalloproteinases Process Pro-lysyl Oxidase at the Correct Physiological Site and Control Lysyl Oxidase Activation in Mouse Embryo Fibroblast Cultures. J. Biol. Chem. 2001, 276, 22537–22543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral, W.A.; Barnes, A.M.; Adeyemo, A.; Cushing, K.; Chitayat, D.; Porter, F.D.; Panny, S.R.; Gulamali-Majid, F.; Tishkoff, S.A.; Rebbeck, T.R.; et al. A founder mutation in LEPRE1 carried by 1.5% of West Africans and 0.4% of African Americans causes lethal recessive osteogenesis imperfecta. Genet. Med. 2012, 14, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Marom, R.; Rabenhorst, B.M.; Morello, R. Osteogenesis imperfecta: An update on clinical features and therapies. Eur. J. Endocrinol. 2020, 183, R95–R106. [Google Scholar] [CrossRef] [PubMed]
- Bardai, G.; Moffatt, P.; Glorieux, F.H.; Rauch, F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: Diagnostic yield and mutation spectrum. Osteoporos. Int. 2016, 27, 3607–3613. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Asan; Ma, D.; Lv, F.; Xu, X.; Wang, J.; Xia, W.; Jiang, Y.; Wang, O.; Xing, X.; et al. Gene mutation spectrum and genotype-phenotype correlation in a cohort of Chinese osteogenesis imperfecta patients revealed by targeted next generation sequencing. Osteoporos. Int. 2017, 28, 2985–2995. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, S.; McInerney-Leo, A.M.; McKenzie, F.A.; Baynam, G.; Broley, S.; Cavan, B.V.; Munns, C.F.; Pruijs, J.E.H.; Sillence, D.; Terhal, P.A.; et al. The IFITM5 mutation c.-14C>T results in an elongated transcript expressed in human bone; And causes varying phenotypic severity of osteogenesis imperfecta type v. BMC Musculoskelet. Disord. 2014, 15, 107. [Google Scholar] [CrossRef]
- Lee, K.S.; Song, H.R.; Cho, T.J.; Kim, H.J.; Lee, T.M.; Jin, H.S.; Park, H.Y.; Kang, S.; Jung, S.C.; Koo, S.K. Mutational spectrum of type I collagen genes in Korean patients with osteogenesis imperfecta. Hum. Mutat. 2006, 27, 599. [Google Scholar] [CrossRef]
- Zhytnik, L.; Maasalu, K.; Duy, B.H.; Pashenko, A.; Khmyzov, S.; Reimann, E.; Prans, E.; Kõks, S.; Märtson, A. De novo and inherited pathogenic variants in collagen-related osteogenesis imperfecta. Mol. Genet. Genom. Med. 2019, 7, e559. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, H.; Zhang, Z. Comparing Clinical and Genetic Characteristics of De Novo and Inherited COL1A1/COL1A2 Variants in a Large Chinese Cohort of Osteogenesis Imperfecta. Front. Endocrinol. 2022, 13, 935905. [Google Scholar] [CrossRef]
- Shapiro, J.R.; Lietman, C.; Grover, M.; Lu, J.T.; Nagamani, S.C.S.; Dawson, B.C.; Baldridge, D.M.; Bainbridge, M.N.; Cohn, D.H.; Blazo, M.; et al. Phenotypic variability of osteogenesis imperfecta type v caused by an IFITM5 mutation. J. Bone Miner. Res. 2013, 28, 1523–1530. [Google Scholar] [CrossRef]
- Cao, Y.J.; Wei, Z.; Zhang, H.; Zhang, Z.L. Expanding the clinical spectrum of osteogenesis imperfecta type V: 13 additional patients and review. Front. Endocrinol. 2019, 10, 375. [Google Scholar] [CrossRef]
- Kiritsi, D.; Huilaja, L.; Franzke, C.W.; Kokkonen, N.; Pazzagli, C.; Schwieger-Briel, A.; Larmas, M.; Bruckner-Tuderman, L.; Has, C.; Tasanen, K. Junctional epidermolysis bullosa with LAMB3 splice-site mutations. Acta Derm. Venereol. 2015, 95, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Battle, W.H.; Shattock, S.G. A remarkable Case of Diffuse Cancellous Osteoma of the Femur following a Fracture, in which similar growths afterwards developed in connection with other bones. J. R. Soc. Med. 1908, 1, 83–115. [Google Scholar] [CrossRef]
- Roberts, J.B. Bilateral hyperplastic callus formation in osteogenesis imperfecta: A case report. J. Bone Jt. Surg. Ser. A 1976, 58, 1164–1166. [Google Scholar] [CrossRef]
- Burchardt, A.J.; Wagner, A.; Basse, P. Hyperplastic callus formation in osteogenesis imperfecta: A case report. Acta Radiol. 1994, 35, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Glorieux, F.H. Osteogenesis imperfecta. Lancet 2004, 363, 1377–1385. [Google Scholar] [CrossRef]
- Stoss, H.; Pontz, B.; Vetter, U.; Karbowski, A.; Brenner, R.; Spranger, J. Osteogenesis imperfecta and hyperplastic callus formation: Light- and electron-microscopic findings. Am. J. Med. Genet. 1993, 45, 260. [Google Scholar] [CrossRef] [PubMed]
- Fleming, F.; Woodhead, H.J.; Briody, J.N.; Hall, J.; Cowell, C.T.; Ault, J.; Kozlowski, K.; Sillence, D.O. Cyclic bisphosphonate therapy in osteogenesis imperfecta type V. J. Paediatr. Child Health 2005, 41, 147–151. [Google Scholar] [CrossRef]
- Dong, Y.L.; Cho, T.J.; In, H.C.; Chin, Y.C.; Won, J.Y.; Ji, H.K.; Yong, K.P. Clinical and Radiological Manifestations of Osteogenesis Imperfecta Type V. J. Korean Med. Sci. 2006, 21, 709–714. [Google Scholar] [CrossRef]
- Takagi, M.; Sato, S.; Hara, K.; Tani, C.; Miyazaki, O.; Nishimura, G.; Hasegawa, T. A recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am. J. Med. Genet. Part A 2013, 161, 1980–1982. [Google Scholar] [CrossRef] [PubMed]
- Hanagata, N.; Li, X.; Morita, H.; Takemura, T.; Li, J.; Minowa, T. Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J. Bone Miner. Metab. 2011, 29, 279–290. [Google Scholar] [CrossRef]
- Semler, O.; Garbes, L.; Keupp, K.; Swan, D.; Zimmermann, K.; Becker, J.; Iden, S.; Wirth, B.; Eysel, P.; Koerber, F.; et al. A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type v with hyperplastic callus. Am. J. Hum. Genet. 2012, 91, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Monti, E.; Venturi, G.; Gandini, A.; Mottes, M.; Antoniazzi, F. The recurrent causal mutation for osteogenesis imperfecta type V occurs at a highly methylated CpG dinucleotide within the IFITM5 gene. J. Pediatr. Genet. 2015, 3, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Hanagata, N. IFITM5 mutations and osteogenesis imperfecta. J. Bone Miner. Metab. 2016, 34, 123–131. [Google Scholar] [CrossRef]
- Guillén-Navarro, E.; Ballesta-Martínez, M.J.; Valencia, M.; Bueno, A.M.; Martinez-Glez, V.; López-González, V.; Burnyte, B.; Utkus, A.; Lapunzina, P.; Ruiz-Perez, V.L. Two mutations in IFITM5 causing distinct forms of osteogenesis imperfecta. Am. J. Med. Genet. Part A 2014, 164, 1136–1142. [Google Scholar] [CrossRef]
- Farber, C.R.; Reich, A.; Barnes, A.M.; Becerra, P.; Rauch, F.; Cabral, W.A.; Bae, A.; Quinlan, A.; Glorieux, F.H.; Clemens, T.L.; et al. A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs Osteoblast production of pigment epithelium-derived factor. J. Bone Miner. Res. 2014, 29, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Bhatia, N.S.; Vasanwala, R.F.; Chay, P.L.; Lim, K.B.L.; Khoo, P.C.; Schwarze, U.; Jamuar, S.S. A novel Ser40Trp variant in IFITM5 in a family with osteogenesis imperfecta and review of the literature. Clin. Dysmorphol. 2019, 28, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, Y.; Huang, H. A novel variant of the IFITM5 gene within the 5′-UTR causes neonatal transverse clavicular fracture: Expanding the genetic spectrum. Mol. Genet. Genom. Med. 2020, 8, e1287. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, P.; Gaumond, M.H.; Salois, P.; Sellin, K.; Bessette, M.C.; Godin, É.; De Oliveira, P.T.; Atkins, G.J.; Nanci, A.; Thomas, G. Bril: A novel bone-specific modulator of mineralization. J. Bone Miner. Res. 2008, 23, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Kasaai, B.; Gaumond, M.H.; Moffatt, P. Regulation of the bone-restricted IFITM-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J. Biol. Chem. 2013, 288, 13278–13294. [Google Scholar] [CrossRef]
- Patoine, A.; Gaumond, M.H.; Jaiswal, P.K.; Fassier, F.; Rauch, F.; Moffatt, P. Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfecta mutations on its cellular destination. J. Bone Miner. Res. 2014, 29, 2004–2016. [Google Scholar] [CrossRef]
- Cho, T.J.; Lee, K.E.; Lee, S.K.; Song, S.J.; Kim, K.J.; Jeon, D.; Lee, G.; Kim, H.N.; Lee, H.R.; Eom, H.H.; et al. A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type v. Am. J. Hum. Genet. 2012, 91, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Hickford, D.; Frankenberg, S.; Shaw, G.; Renfree, M.B. Evolution of vertebrate interferon inducible transmembrane proteins. BMC Genom. 2012, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Bassano, I.; Ong, S.H.; Lawless, N.; Whitehead, T.; Fife, M.; Kellam, P. Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes. BMC Genom. 2017, 18, 419. [Google Scholar] [CrossRef] [PubMed]
- MacMicking, J.D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 2012, 12, 367–382. [Google Scholar] [CrossRef]
- Siegrist, F.; Ebeling, M.; Certa, U. The small interferon-induced transmembrane genes and proteins. J. Interf. Cytokine Res. 2011, 31, 183–197. [Google Scholar] [CrossRef]
- Lietman, C.D.; Marom, R.; Munivez, E.; Bertin, T.K.; Jiang, M.M.; Chen, Y.; Dawson, B.; Weis, M.A.; Eyre, D.; Lee, B. A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J. Bone Miner. Res. 2015, 30, 498–507. [Google Scholar] [CrossRef]
- Lange, U.C.; Adams, D.J.; Lee, C.; Barton, S.; Schneider, R.; Bradley, A.; Surani, M.A. Normal Germ Line Establishment in Mice Carrying a Deletion of the Ifitm/Fragilis Gene Family Cluster. Mol. Cell. Biol. 2008, 28, 4688–4696. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.J.; Poddar, S.; Farzan, M.; Diamond, M.S. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J. Virol. 2016, 90, 8212–8225. [Google Scholar] [CrossRef]
- Perreira, J.M.; Chin, C.R.; Feeley, E.M.; Brass, A.L. IFITMs restrict the replication of multiple pathogenic viruses. J. Mol. Biol. 2013, 425, 4937–4955. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.C.; Zhong, G.; Huang, I.C.; Farzan, M. IFITM-family proteins: The cell’s first line of antiviral defense. Annu. Rev. Virol. 2014, 1, 261–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patoine, A.; Husseini, A.; Kasaai, B.; Gaumond, M.H.; Moffatt, P. The osteogenic cell surface marker BRIL/IFITM5 is dispensable for bone development and homeostasis in mice. PLoS ONE 2017, 12, e0184568. [Google Scholar] [CrossRef]
- Lu, Y.; Zuo, Q.; Zhang, Y.; Wang, Y.; Li, T.; Han, J. The expression profile of IFITM family gene in rats. Intractable Rare Dis. Res. 2017, 6, 274–280. [Google Scholar] [CrossRef]
- Mrosk, J.; Bhavani, G.S.L.; Shah, H.; Hecht, J.; Krüger, U.; Shukla, A.; Kornak, U.; Girisha, K.M. Diagnostic strategies and genotype-phenotype correlation in a large Indian cohort of osteogenesis imperfecta. Bone 2018, 110, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Mohd Nawawi, N.; Selveindran, N.M.; Rasat, R.; Chow, Y.P.; Abdul Latiff, Z.; Syed Zakaria, S.Z.; Jamal, R.; Abdul Murad, N.A.; Abd Aziz, B.B. Genotype-phenotype correlation among Malaysian patients with osteogenesis imperfecta. Clin. Chim. Acta 2018, 484, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ohata, Y.; Takeyari, S.; Nakano, Y.; Kitaoka, T.; Nakayama, H.; Bizaoui, V.; Yamamoto, K.; Miyata, K.; Yamamoto, K.; Fujiwara, M.; et al. Comprehensive genetic analyses using targeted next-generation sequencing and genotype-phenotype correlations in 53 Japanese patients with osteogenesis imperfecta. Osteoporos. Int. 2019, 30, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Yalçintepe, S.; Atll, E.I.; Sanrl, A.; Ylldlrlm, R.; Tütüncüler, F.; Çelik, M.; Atll, E.; Sag, S.Ö.; Eker, D.; et al. Targeted High-Throughput Sequencing Analysis Results of Osteogenesis Imperfecta Patients from Different Regions of Turkey. Genet. Test. Mol. Biomark. 2021, 25, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Zeitlin, L.; Rauch, F.; Travers, R.; Munns, C.; Glorieux, F.H. The effect of cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta Type V. Bone 2006, 38, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Brizola, E.; Mattos, E.P.; Ferrari, J.; Freire, P.O.A.; Germer, R.; Llerena, J.C.; Félix, T.M. Clinical and Molecular Characterization of Osteogenesis Imperfecta Type v. Mol. Syndromol. 2015, 6, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Ma, D.; Lv, F.; Xu, X.; Xia, W.; Jiang, Y.; Wang, O.; Xing, X.; Zhou, P.; et al. Osteogenesis imperfecta type V: Genetic and clinical findings in eleven Chinese patients. Clin. Chim. Acta 2016, 462, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Dwan, K.; Phillipi, C.A.; Steiner, R.D.; Basel, D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst. Rev. 2016, 2016, CD005088. [Google Scholar] [CrossRef]
- Cheung, M.S.; Azouz, E.M.; Glorieux, F.H.; Rauch, F. Hyperplastic callus formation in osteogenesis imperfecta type V: Follow-up of three generations over ten years. Skelet. Radiol. 2008, 37, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, P.; Stephen, J.; Iyengar, R.; Phadke, S.R. Worsening of callus hyperplasia after bisphosphonate treatment in type V osteogenesis imperfecta. Indian Pediatr. 2016, 53, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Clewemar, P.; Hailer, N.P.; Hailer, Y.; Klar, J.; Kindmark, A.; Ljunggren, Ö.; Stattin, E.L. Expanding the phenotypic spectrum of osteogenesis imperfecta type V including heterotopic ossification of muscle origins and attachments. Mol. Genet. Genom. Med. 2019, 7, e00723. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Moffatt, P.; Cheung, M.; Roughley, P.; Lalic, L.; Lund, A.M.; Ramirez, N.; Fahiminiya, S.; Majewski, J.; Glorieux, F.H. Osteogenesis imperfecta type V: Marked phenotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J. Med. Genet. 2013, 50, 21–24. [Google Scholar] [CrossRef] [Green Version]
Patient | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex, M/F | M | F | F | M | F | M | F | F | F | F | M | F |
Age at admission, year | 7 | 25 | 24 | 4.75 | 6 | 1.8 | 4 | 32 | 2.5 | 9 | 23 | 42 |
Age of clinical diagnosis, year | 2.5 | 25 | 14 | 1.7 | 1.25 | 1.3 | 3 | 2 | 0.9 | 2 | 2 | 4 |
Age of molecular diagnosis, year | 3 | 25 | 24 | 3 | 2.5 | 1.5 | 3.5 | 32 | 1.4 | 4.2 | 23 | 42 |
Classical OI type V | + | − | − | − | − | − | − | + | + | + | + | − |
Family history | − | − | − | − | − | − | − | − | − | − | − | − |
Ethnicity | B | R | R | R | R | R | R | R | R | Mixed (R + M) | R | Mixed (Ch + U) |
Height, (SD Score) | −2.1 | 1.4 | 1.1 | −1.21 | −2.67 | −1.54 | −2.04 | −5.4 | −1.03 | −1.78 | −3.54 | −2.48 |
Weight, (SD Score) | −1.96 | −3.1 | −3.3 | −0.84 | −1.88 | −0.26 | −2.92 | −0.66 | −2.23 | −3.13 | −0.74 | 0.09 |
Age of 1st fracture, year | 2.5 | at birth | at birth | at birth | 7 | 8 | 1.5 | at birth | 4 | 2 | 1 | 1.10 |
Fractures total | 10 | >15 | >50 | 8 | 11 | 3 | 6 | 35 | 4 | 10 | 40 | 12 |
Age of BFT start, year | 2.5 | − | − | − | 2.5 | 1.3 | 3 | − | 1.5 | 4.2 | 9 | 34 |
Mobility | + | + | − (wheelchair) | + | + | + | + | − (wheelchair) | + | + | − (wheelchair) | − (wheelchair) |
Patient | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blue sclera | + | + | − | − | + | + | + | − | − | − | − | − |
Hearing loss | − | − | − | − | − | − | − | − | − | − | − | − |
Dentinogenesis imperfecta | − | − | − | − | − | − | − | − | − | − | − | − |
Vertebral fracture | + | + | + | + | + | − | − | − | − | − | − | − |
Limited rotation of forearm | + | + | + | + | + | − | − | + | − | + | + | − |
Speech disorder | + | − | − | − | − | − | − | − | − | − | − | − |
Intellectual disability | − | − | − | − | − | − | − | − | − | − | − | − |
Patient | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hypertrophic callus | + | − | − | − | − | − | − | − | + | + | + | − |
CIM | + | + | − | − | − | − | − | + | − | + | + | − |
Scoliosis | + | + | + | + | + | − | − | + | − | + | + | + |
BMD (g/cm2) | n/a | 0.653 | arms = 0.910 legs = 0.697 body = 1.15 | n/a | LS = 0.870 TB = 0.850 | n/a | LS = 0.231 | LS = 0.719 FN = 0.634 | n/a | LS = 0.254 | LS = 0.344 | n/a |
BMD Z score | radius −6.3; tibia −6.6 | −0.5 | −0.5 | n/a | 0.5 | n/a | TB = −1.3 LS = −3.9 | LS = −3.1 FN = −2.4 | n/a | LS = −5.6 | LS = − 3.6 | n/a |
Zeitlin, 2006 [57] | Dong, 2006 [28] | Cho, 2012 [41] | Shapiro, 2013 [19] | Lazarus, 2014 [15] | Brizola, 2015 [58] | Liu, 2016 [59] | Cao, 2019 [20] | Our Results | |
---|---|---|---|---|---|---|---|---|---|
N | 11 | 12 | 16 | 17 | 9 | 7 | 11 | 13 | 12 |
Populations | Canada | Korean | Korean | USA | Australia | Brazil | China | Mixed | Russians |
Age, years (Me, Q1; Q3) | 8.7 (1.8; 15) | 25 (10; 45) | 20 (8; 46) | 23 (7; 36) | 11 (8; 25) | 18 (10; 51) | 10 (3.3; 16) | 16.5 (10; 39) | 6.5 (4; 24) |
Height (Z score) (Me, Q1; Q3) | −2.6 (−6.0; 0.7) | 0.12 (−1.4; 0.62) | −0.94 (−2.43; 0.2) | −2.9 (−4.3; −1.5) | −2.37 (−3; −1.1) | n/a | −2.2 (−3.7; −0.5) | n/a | −2.09 (−3;1; −0.8) |
Blue sclera, n (%) | n/a | 0 | 0 | 2 (11.7) | 0 | 2 (28.6) | 0 | 0 | 5 (41.7) |
DI, n (%) | 0 | 0 | 0 | n/a | 0 | 0 | 0 | 1 (7,7) | 0 |
HC, n (%) | 7 (64) | 1 (8.3) | 9 (56.2) | 9 (53) | 5 (55.5) | 3 (42.8) | 10 (91) | 5 (38.4) | 4 (33.3) |
CIM, n (%) | 11 (100) | 12 (100) | 16 (100) | 13 (76.4) | 9 (100) | 7 (100) | 9 (81.8) | 12 (92.3) | 5 (41.7) |
DRH, n (%) | 4 (36) | 10 (83.3) | 9 (56.2) | 14 (82.3) | 9 (100) | 4 (57.1) | 9 (81.8) | 12 (92.3) | 1 (8.3) |
JC, n (%) | 11 (100) | 12 (100) | n/a | 15 (88.2) | n/a | n/a | 8 (72.7) | 12 (92.3) | 8 (66.7) |
LBD, n (%) | 10 (90) | n/a | n/a | n/a | n/a | n/a | n/a | 6 (46.1) | 12 (100) |
VC, n (%) | 11 (100) | n/a | n/a | n/a | n/a | 7 (100) | 6 (54.5) | 7 (53.8) | 5 (41.7) |
Scoliosis, n (%) | 8 (73) | 4 (33.3) | 10 (62.5) | 13 (76.4) | n/a | 6 (85.7) | 4 (36.3) | 7 (53.8) | 9 (75) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyurin, A.; Merkuryeva, E.; Zaripova, A.; Markova, T.; Nagornova, T.; Dantsev, I.; Nadyrshina, D.; Zakharova, E.; Khusainova, R. Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review. Biomedicines 2022, 10, 2363. https://doi.org/10.3390/biomedicines10102363
Tyurin A, Merkuryeva E, Zaripova A, Markova T, Nagornova T, Dantsev I, Nadyrshina D, Zakharova E, Khusainova R. Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review. Biomedicines. 2022; 10(10):2363. https://doi.org/10.3390/biomedicines10102363
Chicago/Turabian StyleTyurin, Anton, Elena Merkuryeva, Aliya Zaripova, Tatyana Markova, Tatyana Nagornova, Ilya Dantsev, Dina Nadyrshina, Ekaterina Zakharova, and Rita Khusainova. 2022. "Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review" Biomedicines 10, no. 10: 2363. https://doi.org/10.3390/biomedicines10102363
APA StyleTyurin, A., Merkuryeva, E., Zaripova, A., Markova, T., Nagornova, T., Dantsev, I., Nadyrshina, D., Zakharova, E., & Khusainova, R. (2022). Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review. Biomedicines, 10(10), 2363. https://doi.org/10.3390/biomedicines10102363