Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Resources
2.2. Heatmap and Hierarchical Clustering
2.3. PCA
2.4. Scatterplots and Correlation Analysis
Correlation Matrix Analysis
- The mean expression values of mesenchymal (mean MES) and epithelial (mean EPITH) genes, as well as their ratio (MES/EPITH ratio), were calculated for each sample.
- The mean MES, mean EPITH, and MES/EPITH ratio were added to the metadata for each sample.
- The expression data (either the whole transcriptome or a restricted MES and EPITH gene dataset) were reduced for subsequent analysis by collapsing gene expression values along with the corresponding mean MES, mean EPITH, and MES/EPITH ratio across samples of the same cell type.
- Embryonic origin annotations were assigned to each cell type.
- A Pearson correlation matrix was generated across collapsed cell types, displaying annotation data related to embryonic origin, mean MES, mean EPITH, and the MES/EPITH ratio.
2.5. Differential Expression Analysis
2.6. Bar Plots and Statistics
3. Results
3.1. Pre-Implantation Embryo Displays a Predominant Mesenchymal Transcriptional Phenotype
3.2. Epiblast Displays an Intermediate Phenotype Between Mesoderm and Ectoderm/Endoderm
3.3. Mesenchymal/Epithelial Profile of Different Adult Cell Types Reflects Embryonic Origin
3.4. The Basal Cells of Adult Epithelial Tissues Retain a Hybrid E/M Phenotype
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, E.D. Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In Epithelial-Mesenchymal Interactions; 18th Hahnemann Symposium; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1968. [Google Scholar]
- Trelstad, R.L.; Hay, E.D.; Revel, J.D. Cell contact during early morphogenesis in the chick embryo. Dev. Biol. 1967, 16, 78–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef]
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Battula, V.L.; Evans, K.W.; Hollier, B.G.; Shi, Y.; Marini, F.C.; Ayyanan, A.; Wang, R.Y.; Brisken, C.; Guerra, R.; Andreeff, M.; et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem. Cells 2010, 28, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.W.; Weinberg, R.A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 2021, 21, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef]
- Dong, J.; Hu, Y.; Fan, X.; Wu, X.; Mao, Y.; Hu, B.; Guo, H.; Wen, L.; Tang, F. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biol. 2018, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Huang, K.; Cai, C.; Cai, L.; Jiang, C.Y.; Feng, Y.; Liu, Z.; Zeng, Q.; Cheng, L.; Sun, Y.E.; et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013, 500, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yang, M.; Guo, H.; Yang, L.; Wu, J.; Li, R.; Liu, P.; Lian, Y.; Zheng, X.; Yan, J.; et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 2013, 20, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Mittnenzweig, M.; Mayshar, Y.; Cheng, S.; Ben-Yair, R.; Hadas, R.; Rais, Y.; Chomsky, E.; Reines, N.; Uzonyi, A.; Lumerman, L.; et al. A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell 2021, 184, 2825–2842.e2822. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Edsgärd, D.; Reinius, B.; Deng, Q.; Panula, S.P.; Codeluppi, S.; Plaza Reyes, A.; Linnarsson, S.; Sandberg, R.; Lanner, F. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell 2016, 165, 1012–1026. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, G.; Drokhlyansky, E.; Anand, S.; Fiskin, E.; Subramanian, A.; Slyper, M.; Wang, J.; Van Wittenberghe, N.; Rouhana, J.M.; Waldman, J.; et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022, 376, eabl4290. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Ziomek, C.A. The foundation of two distinct cell lineages within the mouse morula. Cell 1981, 24, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.P.; Ghassemifar, M.R.; Sheth, B. Junctional complexes in the early mammalian embryo. Semin. Reprod. Med. 2000, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Maro, B.; Takeichi, M. The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres. J. Embryol. Exp. Morphol. 1986, 93, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Minot, C.-S. The Mesoderm and Coelom of Vertebrates. Am. Nat. 1890, 24, 877–898. [Google Scholar] [CrossRef]
- Kalluri, R. EMT: When epithelial cells decide to become mesenchymal-like cells. J. Clin. Investig. 2009, 119, 1417–1419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiè, M. Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells. J. Dev. Biol. 2025, 13, 1. https://doi.org/10.3390/jdb13010001
Galiè M. Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells. Journal of Developmental Biology. 2025; 13(1):1. https://doi.org/10.3390/jdb13010001
Chicago/Turabian StyleGaliè, Mirco. 2025. "Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells" Journal of Developmental Biology 13, no. 1: 1. https://doi.org/10.3390/jdb13010001
APA StyleGaliè, M. (2025). Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells. Journal of Developmental Biology, 13(1), 1. https://doi.org/10.3390/jdb13010001