Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Resources
2.2. Heatmap and Hierarchical Clustering
2.3. PCA
2.4. Scatterplots and Correlation Analysis
Correlation Matrix Analysis
- The mean expression values of mesenchymal (mean MES) and epithelial (mean EPITH) genes, as well as their ratio (MES/EPITH ratio), were calculated for each sample.
- The mean MES, mean EPITH, and MES/EPITH ratio were added to the metadata for each sample.
- The expression data (either the whole transcriptome or a restricted MES and EPITH gene dataset) were reduced for subsequent analysis by collapsing gene expression values along with the corresponding mean MES, mean EPITH, and MES/EPITH ratio across samples of the same cell type.
- Embryonic origin annotations were assigned to each cell type.
- A Pearson correlation matrix was generated across collapsed cell types, displaying annotation data related to embryonic origin, mean MES, mean EPITH, and the MES/EPITH ratio.
2.5. Differential Expression Analysis
2.6. Bar Plots and Statistics
3. Results
3.1. Pre-Implantation Embryo Displays a Predominant Mesenchymal Transcriptional Phenotype
3.2. Epiblast Displays an Intermediate Phenotype Between Mesoderm and Ectoderm/Endoderm
3.3. Mesenchymal/Epithelial Profile of Different Adult Cell Types Reflects Embryonic Origin
3.4. The Basal Cells of Adult Epithelial Tissues Retain a Hybrid E/M Phenotype
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, E.D. Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In Epithelial-Mesenchymal Interactions; 18th Hahnemann Symposium; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1968. [Google Scholar]
- Trelstad, R.L.; Hay, E.D.; Revel, J.D. Cell contact during early morphogenesis in the chick embryo. Dev. Biol. 1967, 16, 78–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef]
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Battula, V.L.; Evans, K.W.; Hollier, B.G.; Shi, Y.; Marini, F.C.; Ayyanan, A.; Wang, R.Y.; Brisken, C.; Guerra, R.; Andreeff, M.; et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem. Cells 2010, 28, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.W.; Weinberg, R.A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 2021, 21, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef]
- Dong, J.; Hu, Y.; Fan, X.; Wu, X.; Mao, Y.; Hu, B.; Guo, H.; Wen, L.; Tang, F. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biol. 2018, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Huang, K.; Cai, C.; Cai, L.; Jiang, C.Y.; Feng, Y.; Liu, Z.; Zeng, Q.; Cheng, L.; Sun, Y.E.; et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013, 500, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yang, M.; Guo, H.; Yang, L.; Wu, J.; Li, R.; Liu, P.; Lian, Y.; Zheng, X.; Yan, J.; et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 2013, 20, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Mittnenzweig, M.; Mayshar, Y.; Cheng, S.; Ben-Yair, R.; Hadas, R.; Rais, Y.; Chomsky, E.; Reines, N.; Uzonyi, A.; Lumerman, L.; et al. A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell 2021, 184, 2825–2842.e2822. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Edsgärd, D.; Reinius, B.; Deng, Q.; Panula, S.P.; Codeluppi, S.; Plaza Reyes, A.; Linnarsson, S.; Sandberg, R.; Lanner, F. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell 2016, 165, 1012–1026. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, G.; Drokhlyansky, E.; Anand, S.; Fiskin, E.; Subramanian, A.; Slyper, M.; Wang, J.; Van Wittenberghe, N.; Rouhana, J.M.; Waldman, J.; et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022, 376, eabl4290. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Ziomek, C.A. The foundation of two distinct cell lineages within the mouse morula. Cell 1981, 24, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Fleming, T.P.; Ghassemifar, M.R.; Sheth, B. Junctional complexes in the early mammalian embryo. Semin. Reprod. Med. 2000, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Maro, B.; Takeichi, M. The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres. J. Embryol. Exp. Morphol. 1986, 93, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Minot, C.-S. The Mesoderm and Coelom of Vertebrates. Am. Nat. 1890, 24, 877–898. [Google Scholar] [CrossRef]
- Kalluri, R. EMT: When epithelial cells decide to become mesenchymal-like cells. J. Clin. Investig. 2009, 119, 1417–1419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiè, M. Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells. J. Dev. Biol. 2025, 13, 1. https://doi.org/10.3390/jdb13010001
Galiè M. Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells. Journal of Developmental Biology. 2025; 13(1):1. https://doi.org/10.3390/jdb13010001
Chicago/Turabian StyleGaliè, Mirco. 2025. "Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells" Journal of Developmental Biology 13, no. 1: 1. https://doi.org/10.3390/jdb13010001
APA StyleGaliè, M. (2025). Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells. Journal of Developmental Biology, 13(1), 1. https://doi.org/10.3390/jdb13010001