Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 19, Issue 9 (September 2014), Pages 12898-15360

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-145
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle GA3 and Other Signal Regulators (MeJA and IAA) Improve Xanthumin Biosynthesis in Different Manners in Xanthium strumarium L.
Molecules 2014, 19(9), 12898-12908; https://doi.org/10.3390/molecules190912898
Received: 22 June 2014 / Revised: 9 August 2014 / Accepted: 11 August 2014 / Published: 25 August 2014
PDF Full-text (1558 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Xanthanolides from Xanthium strumarium L. exhibit various pharmacological activities and these compounds are mainly produced in the glandular trichomes of aerial plant parts. The regulation of xanthanolide biosynthesis has never been reported in the literature. In this study, the effects of phytohormonal stimulation
[...] Read more.
Xanthanolides from Xanthium strumarium L. exhibit various pharmacological activities and these compounds are mainly produced in the glandular trichomes of aerial plant parts. The regulation of xanthanolide biosynthesis has never been reported in the literature. In this study, the effects of phytohormonal stimulation on xanthumin (a xanthanolide compound) biosynthesis, glandular trichomes and germacrene A synthase (GAS) gene expression in X. strumarium L. young leaves were investigated. The exogenous applications of methyl jasmonate (MeJA), indole-3-acetic acid (IAA), and gibberrellin A3 (GA3) at appropriate concentrations were all found to improve xanthumin biosynthesis, but in different ways. It was suggested that a higher gland density stimulated by MeJA (400 µM) or IAA (200 µM) treatment caused at least in part an improvement in xanthumin production, whereas GA3 (10 µM) led to an improvement by up-regulating xanthumin biosynthetic genes within gland cells, not by forming more glandular trichomes. Compared to the plants before the flowering stage, plants that had initiated flowering showed enhanced xanthumin biosynthesis, but no higher gland density, an effect was similar to that caused by exogenous GA3 treatment. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation
Molecules 2014, 19(9), 12909-12924; https://doi.org/10.3390/molecules190912909
Received: 16 June 2014 / Revised: 7 August 2014 / Accepted: 12 August 2014 / Published: 25 August 2014
Cited by 8 | PDF Full-text (2578 KB) | HTML Full-text | XML Full-text
Abstract
The present study investigated the effects of egg yolk-derived peptide (YPEP) on osteogenic activities and MAPK-regulation of osteogenic gene expressions. The effects of YPEP on cell proliferation, alkaline phosphatase activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of
[...] Read more.
The present study investigated the effects of egg yolk-derived peptide (YPEP) on osteogenic activities and MAPK-regulation of osteogenic gene expressions. The effects of YPEP on cell proliferation, alkaline phosphatase activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN were examined using western blot analysis. YPEP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. YPEP activated ERK1/2, p38, and ELK1 phosphorylation whereas JNK and cJUN were not affected by YPEP. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased while BGLAP (osteocalcin) was not affected by YPEP. The ERK1/2 inhibitor (PD98509) blocked the YPEP-induced COL1A1 and ALPL gene expressions as well as ELK1 phosphorylation. The p38 inhibitor (SB203580) blocked YPEP-induced COL1A1 and ALPL gene expressions. SPP1 gene expression was not affected by these MAPK inhibitors. In conclusion, YPEP treatment stimulates the osteogenic differentiation via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of YPEP. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Figures

Graphical abstract

Open AccessArticle Effect of Meadowsweet Flower Extract-Pullulan Coatings on Rhizopus Rot Development and Postharvest Quality of Cold-Stored Red Peppers
Molecules 2014, 19(9), 12925-12939; https://doi.org/10.3390/molecules190912925
Received: 16 July 2014 / Revised: 12 August 2014 / Accepted: 15 August 2014 / Published: 25 August 2014
Cited by 6 | PDF Full-text (1104 KB) | HTML Full-text | XML Full-text
Abstract
The study involved an examination of the antifungal activity on red peppers of pullulan coating (P) and pullulan coating containing either water-ethanol (P + eEMF) or ethanol extract of meadowsweet flowers (P + eEMF). Pullulan was obtained from a culture of Aureobasidium pullulans
[...] Read more.
The study involved an examination of the antifungal activity on red peppers of pullulan coating (P) and pullulan coating containing either water-ethanol (P + eEMF) or ethanol extract of meadowsweet flowers (P + eEMF). Pullulan was obtained from a culture of Aureobasidium pullulans B-1 mutant. Both non-inoculated peppers and those artificially inoculated with Rhizopus arrhizus were coated and incubated at 24 °C for 5 days. The intensity of the decay caused by Rhizopus arrhizus in the peppers with P and P + eEMF coatings was nearly 3-fold lower, and in the case of P + weEMF 5-fold lower, than that observed in the control peppers. Additionally, the P + weEMF coating decreased, almost two-fold the severity of pepper decay compared to other samples. The influence of coating of pepper postharvest quality was examined after 30 days of storage at 6 °C and 70%–75% RH. All coatings formed a thin and well-attached additional layer of an intensified gloss. During storage, color, total soluble solid content and weight loss of coated peppers were subject to lower changes in comparison with uncoated ones. The results indicate the possibility of the application of pullulan coatings containing MFEs as an alternative to the chemical fungicides used to combat pepper postharvest diseases. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Effect of Chlorogenic Acid on Melanogenesis of B16 Melanoma Cells
Molecules 2014, 19(9), 12940-12948; https://doi.org/10.3390/molecules190912940
Received: 17 July 2014 / Revised: 11 August 2014 / Accepted: 18 August 2014 / Published: 25 August 2014
Cited by 27 | PDF Full-text (2539 KB) | HTML Full-text | XML Full-text
Abstract
Chlorogenic acid (CGA), the ester formed between caffeic acid and l-quinic acid, is a widespread phenolic compound. It is part of the human diet, found in foods such as coffee, apples, pears, etc. CGA is also was widely used in cosmetics, but
[...] Read more.
Chlorogenic acid (CGA), the ester formed between caffeic acid and l-quinic acid, is a widespread phenolic compound. It is part of the human diet, found in foods such as coffee, apples, pears, etc. CGA is also was widely used in cosmetics, but the effects of CGA on melanogenesis are unknown. In this study, we analyzed the effects of CGA on cell proliferation, melanin content and tyrosinase of B16 murine melanoma cells. Additionally, the enzymatic reactions of CGA in B16 melanoma cells lytic solution were detected by UV spectrophotometry. Results showed CGA at 30 and 60 μM significantly suppresses cell proliferation. 8-MOP at 100 μM significantly promotes cell proliferation, but CGA can counter this. Incubated for 24 h, CGA (500 μM) improves melanogenesis while suppressing tyrosinase activity in B16 melanoma cells or 8-methoxypsoralen (8-MOP) co-incubated B16 melanoma cells. After 12 h, B16 melanoma cell treatment with CGA leads to an increase in melanin accumulation, however, after 48 h there is a decrease in melanin production which correlates broadly with a decrease in tyrosinase activity. CGA incubated with lytic solution 24 h turned brown at 37 °C. The formation of new products (with a maximum absorption at 295 nm) is associated with reduction of CGA (maximum absorption at 326 nm). Therefore, CGA has its two sidesroles in melanogenesis of B16 melanoma cells. CGA is a likely a substrate of melanin, but the metabolic product(s) of CGA may suppress melanogenesis in B16 melanoma cells by inhibiting tyrosinase activity. Full article
(This article belongs to the Special Issue Cinnamic Acids Hybrids with Biological Interest)
Figures

Figure 1

Open AccessArticle Nanoscale Lithography Mediated by Surface Self-Assembly of 16-[3,5-Bis(Mercaptomethyl)phenoxy]hexadecanoic Acid on Au(111) Investigated by Scanning Probe Microscopy
Molecules 2014, 19(9), 13010-13026; https://doi.org/10.3390/molecules190913010
Received: 7 May 2014 / Revised: 9 August 2014 / Accepted: 18 August 2014 / Published: 25 August 2014
Cited by 6 | PDF Full-text (4584 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The solution-phase self-assembly of bidentate 16-[3,5-bis(mercapto-methyl)phenoxy]hexadecanoic acid (BMPHA) on Au(111) was studied using nano-fabrication protocols with scanning probe nanolithography and immersion particle lithography. Molecularly thin films of BMPHA prepared by surface self-assembly have potential application as spatially selective layers in sensor designs. Either
[...] Read more.
The solution-phase self-assembly of bidentate 16-[3,5-bis(mercapto-methyl)phenoxy]hexadecanoic acid (BMPHA) on Au(111) was studied using nano-fabrication protocols with scanning probe nanolithography and immersion particle lithography. Molecularly thin films of BMPHA prepared by surface self-assembly have potential application as spatially selective layers in sensor designs. Either monolayer or bilayer films of BMPHA can be formed under ambient conditions, depending on the parameters of concentration and immersion intervals. Experiments with scanning probe-based lithography (nanoshaving and nanografting) were applied to measure the thickness of BMPHA films. The thickness of a monolayer and bilayer film of BMPHA on Au(111) were measured in situ with atomic force microscopy using n-octadecanethiol as an internal reference. Scanning probe-based nanofabrication provides a way to insert nanopatterns of a reference molecule of known dimensions within a matrix film of unknown thickness to enable a direct comparison of heights and surface morphology. Immersion particle lithography was used to prepare a periodic arrangement of nanoholes within films of BMPHA. The nanoholes could be backfilled by immersion in a SAM solution to produce nanodots of n-octadecanethiol surrounded by a film of BMPHA. Test platforms prepared by immersion particle lithography enables control of the dimensions of surface sites to construct supramolecular assemblies. Full article
(This article belongs to the Special Issue Template Directed Synthesis and Self-Assembly in Organic Systems)
Figures

Graphical abstract

Open AccessArticle Structures of New Phenolics Isolated from Licorice, and the Effectiveness of Licorice Phenolics on Vancomycin-Resistant Enterococci
Molecules 2014, 19(9), 13027-13041; https://doi.org/10.3390/molecules190913027
Received: 19 June 2014 / Revised: 19 August 2014 / Accepted: 20 August 2014 / Published: 25 August 2014
Cited by 8 | PDF Full-text (854 KB) | HTML Full-text | XML Full-text
Abstract
Licorice, which is the underground part of Glycyrrhiza species, has been used widely in Asian and Western countries as a traditional medicine and as a food additive. Our continuous investigation on the constituents of roots and stolons of Glycyrrhiza uralensis led to the
[...] Read more.
Licorice, which is the underground part of Glycyrrhiza species, has been used widely in Asian and Western countries as a traditional medicine and as a food additive. Our continuous investigation on the constituents of roots and stolons of Glycyrrhiza uralensis led to the isolation of two new phenolics, in addition to 14 known compounds. Structural studies including spectroscopic and simple chemical derivatizations revealed that both of the new compounds had 2-aryl-3-methylbenzofuran structures. An examination of the effectiveness of licorice phenolics obtained in this study on vancomycin-resistant strains Enterococcus faecium FN-1 and Enterococcus faecalis NCTC12201 revealed that licoricidin showed the most potent antibacterial effects against both of E. faecalis and E. faecium with a minimum inhibitory concentration (MIC) of 1.9 × 10−5 M. 8-(γ,γ-Dimethylallyl)-wighteone, isoangustone A, 3'-(γ,γ-dimethylallyl)-kievitone, glyasperin C, and one of the new 3-methyl-2-phenylbenzofuran named neoglycybenzofuran also showed potent anti-vancomycin-resistant Enterococci effects (MIC 1.9 × 10−5–4.5 × 10−5 M for E. faecium and E. faecalis). The HPLC condition for simultaneous detection of the phenolics in the extract was investigated to assess the quality control of the natural antibacterial resource, and quantitative estimation of several major phenolics in the extract with the established HPLC condition was also performed. The results showed individual contents of 0.08%–0.57% w/w of EtOAc extract for the major phenolics in the materials examined. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells
Molecules 2014, 19(9), 13061-13075; https://doi.org/10.3390/molecules190913061
Received: 5 June 2014 / Revised: 12 August 2014 / Accepted: 18 August 2014 / Published: 25 August 2014
Cited by 10 | PDF Full-text (915 KB) | HTML Full-text | XML Full-text
Abstract
P-glycoprotein (P-gp) is a major factor in multidrug resistance (MDR) which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence
[...] Read more.
P-glycoprotein (P-gp) is a major factor in multidrug resistance (MDR) which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+) and K562/S cells (P-gp−) were subjected to doxorubicin (Dox), serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833), verapamil (Ver) and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3) activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Synthesis and Biological Evaluation of New Pyridone-Annelated Isoindigos as Anti-Proliferative Agents
Molecules 2014, 19(9), 13076-13092; https://doi.org/10.3390/molecules190913076
Received: 3 July 2014 / Revised: 12 August 2014 / Accepted: 18 August 2014 / Published: 25 August 2014
Cited by 8 | PDF Full-text (1088 KB) | HTML Full-text | XML Full-text
Abstract
A selected set of substituted pyridone-annelated isoindigos 3af has been synthesized via interaction of 5- and 6-substituted oxindoles 2af with 6-ethyl-1,2,9-trioxopyrrolo[3,2-f]quinoline-8-carboxylic acid (1) in acetic acid at reflux. Among these isoindigos, the 5'-chloro and 5'-bromo
[...] Read more.
A selected set of substituted pyridone-annelated isoindigos 3af has been synthesized via interaction of 5- and 6-substituted oxindoles 2af with 6-ethyl-1,2,9-trioxopyrrolo[3,2-f]quinoline-8-carboxylic acid (1) in acetic acid at reflux. Among these isoindigos, the 5'-chloro and 5'-bromo derivatives 3b and 3d show strong and selective antiproliferative activities against a panel of human hematological and solid tumor cell-lines, but not against noncancerous cells, suggesting their potential use as anticancer agents. In all the tested cell lines, compound 3b was a 25%–50% more potent inhibitor of cell growth than 3d, suggesting the critical role of the substitution at 5'-position of the benzo-ring E. The IC50 values after 48 hours incubation with the 5'-chloro compound 3b were 6.60 µM in K562, 8.21 µM in THP-1, 8.97 µM in HepG2, 11.94 µM in MCF-7 and 14.59 µM in Caco-2 cancer cells, while the IC50 values in noncancerous HEK-293 and L-929 were 30.65 µM and 40.40 µM, respectively. In addition, compound 3b induced higher levels apoptosis in K562 cells than 3d, as determined by annexin V/7-AAD flowcytometry analysis. Therefore, further characterization of the antitproliferative mechanisms of compounds 3b and 3d may provide a novel chemotherapeutic agents. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Figure 1

Open AccessArticle Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products
Molecules 2014, 19(9), 13093-13103; https://doi.org/10.3390/molecules190913093
Received: 30 June 2014 / Revised: 4 August 2014 / Accepted: 11 August 2014 / Published: 26 August 2014
Cited by 10 | PDF Full-text (472 KB) | HTML Full-text | XML Full-text
Abstract
A rapid and efficient solvent-free one-pot synthesis of coumarin derivatives by Pechmann condensation reactions of phenols with ethyl acetoacetate using FeF3 as a catalyst under microwave irradiation is described. This one-pot synthesis on a solid inorganic support provides the products in good
[...] Read more.
A rapid and efficient solvent-free one-pot synthesis of coumarin derivatives by Pechmann condensation reactions of phenols with ethyl acetoacetate using FeF3 as a catalyst under microwave irradiation is described. This one-pot synthesis on a solid inorganic support provides the products in good yields. The newly synthesized compounds were systematically characterized by IR, 1H-NMR, 13C-NMR, MS and elemental CHN analyses. The proposed solvent-free microwave irradiation method using the environmentally friendly catalyst FeF3 offers the unique advantages of high yields, shorter reaction times, easy and quick isolation of the products, excellent chemoselectivity, and a one-pot, green synthesis. The products were screened for antimicrobial activity, and the results showed that the compounds reacted against all the tested bacteria. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Graphical abstract

Open AccessArticle Hyperspectral Imaging and Chemometric Modeling of Echinacea — A Novel Approach in the Quality Control of Herbal Medicines
Molecules 2014, 19(9), 13104-13121; https://doi.org/10.3390/molecules190913104
Received: 17 June 2014 / Revised: 7 August 2014 / Accepted: 17 August 2014 / Published: 26 August 2014
Cited by 11 | PDF Full-text (7078 KB) | HTML Full-text | XML Full-text
Abstract
Echinacea species are popularly included in various formulations to treat upper respiratory tract infections. These products are of commercial importance, with a collective sales figure of $132 million in 2009. Due to their close taxonomic alliance it is difficult to distinguish between the
[...] Read more.
Echinacea species are popularly included in various formulations to treat upper respiratory tract infections. These products are of commercial importance, with a collective sales figure of $132 million in 2009. Due to their close taxonomic alliance it is difficult to distinguish between the three Echinacea species and incidences of incorrectly labeled commercial products have been reported. The potential of hyperspectral imaging as a rapid quality control method for raw material and products containing Echinacea species was investigated. Hyperspectral images of root and leaf material of authentic Echinacea species (E. angustifolia, E. pallida and E. purpurea) were acquired using a sisuChema shortwave infrared (SWIR) hyperspectral pushbroom imaging system with a spectral range of 920–2514 nm. Principal component analysis (PCA) plots showed a clear distinction between the root and leaf samples of the three Echinacea species and further differentiated the roots of different species. A classification model with a high coefficient of determination was constructed to predict the identity of the species included in commercial products. The majority of products (12 out of 20) were convincingly predicted as containing E. purpurea, E. angustifolia or both. The use of ultra performance liquid chromatography-mass spectrometry (UPLC-MS) in the differentiation of the species presented a challenge due to chemical similarities between the solvent extracts. The results show that hyperspectral imaging is an objective and non-destructive quality control method for authenticating raw material. Full article
(This article belongs to the Special Issue Advances of Vibrational Spectroscopic Technologies in Life Sciences)
Figures

Figure 1

Open AccessArticle In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants
Molecules 2014, 19(9), 13136-13146; https://doi.org/10.3390/molecules190913136
Received: 18 June 2014 / Revised: 18 August 2014 / Accepted: 19 August 2014 / Published: 26 August 2014
Cited by 5 | PDF Full-text (681 KB) | HTML Full-text | XML Full-text
Abstract
Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected
[...] Read more.
Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05) more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites’ resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity. Full article
Open AccessArticle Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L.) Tops
Molecules 2014, 19(9), 13147-13160; https://doi.org/10.3390/molecules190913147
Received: 4 July 2014 / Revised: 15 August 2014 / Accepted: 15 August 2014 / Published: 26 August 2014
Cited by 4 | PDF Full-text (715 KB) | HTML Full-text | XML Full-text
Abstract
Sugarcane tops were extracted with 50% ethanol and fractionated by petroleum ether, ethyl acetate (EtOAc), and n-butyl alcohol successively. Eight phenolic compounds in EtOAc extracts were purified through silica gel and Sephadex LH-20 column chromatographies, and then identified by nuclear magnetic resonance
[...] Read more.
Sugarcane tops were extracted with 50% ethanol and fractionated by petroleum ether, ethyl acetate (EtOAc), and n-butyl alcohol successively. Eight phenolic compounds in EtOAc extracts were purified through silica gel and Sephadex LH-20 column chromatographies, and then identified by nuclear magnetic resonance and electrospray ionization mass spectra. The results showed that eight phenolic compounds from EtOAc extracts were identified as caffeic acid, cis-p-hydroxycinnamic acid, quercetin, apigenin, albanin A, australone A, moracin M, and 5'-geranyl-5,7,2',4'-tetrahydroxyflavone. The antioxidant and nitrite-scavenging capacities of different solvent extracts correlated positively with their total phenolic (TP) contents. Amongst various extracts, EtOAc extracts possessed the highest TP content and presented the strongest oxygen radical absorbance capacity (ORAC), 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, 2,2'-azobis-3-ethylbenthiaazoline-6-sulfonic acid (ABTS) radical-scavenging capacity, ferric reducing antioxidant power (FRAP) and nitrite-scavenging capacity. Thus, sugarcane tops could be promoted as a source of natural antioxidant. Full article
(This article belongs to the Special Issue Natural Antioxidants and Ageing)
Figures

Figure 1

Open AccessArticle Design and Synthesis of New Cholesterol-Conjugated 5-Fluorouracil: A Novel Potential Delivery System for Cancer Treatment
Molecules 2014, 19(9), 13177-13187; https://doi.org/10.3390/molecules190913177
Received: 12 May 2014 / Revised: 9 July 2014 / Accepted: 15 July 2014 / Published: 26 August 2014
Cited by 9 | PDF Full-text (1981 KB) | HTML Full-text | XML Full-text
Abstract
Cholesterol-conjugated 5-fluorouracil prodrugs were designed to be carried in vivo via low density lipoproteins (LDL) and subsequently undergo LDL-receptor-mediated internalisation into cancer cells. In vivo anti-cancer evaluation was performed using 5-fluorouracil-cholesterol conjugate in a mouse model. The obtained prodrugs were more potent than
[...] Read more.
Cholesterol-conjugated 5-fluorouracil prodrugs were designed to be carried in vivo via low density lipoproteins (LDL) and subsequently undergo LDL-receptor-mediated internalisation into cancer cells. In vivo anti-cancer evaluation was performed using 5-fluorouracil-cholesterol conjugate in a mouse model. The obtained prodrugs were more potent than 5-fluorouracil control drug at the same 5-fluorouracil content (3 mg·kg−1). Full article
Figures

Graphical abstract

Open AccessArticle Synthesis and Cytotoxic Evaluation of a Series of 2-Amino-Naphthoquinones against Human Cancer Cells
Molecules 2014, 19(9), 13188-13199; https://doi.org/10.3390/molecules190913188
Received: 9 June 2014 / Revised: 22 August 2014 / Accepted: 22 August 2014 / Published: 26 August 2014
Cited by 8 | PDF Full-text (765 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The cytotoxicity of a series of aminonaphthoquinones resulting from the reaction of suitable aminoacids with 1,4-naphthoquinone was assayed against SF-295 (glioblastoma), MDAMB-435 (breast), HCT-8 (colon), HCT-116 (colon), HL-60 (leukemia), OVCAR-8 (ovarian), NCI-H358M (bronchoalveolar lung carcinoma) and PC3-M (prostate) cancer cells and also against
[...] Read more.
The cytotoxicity of a series of aminonaphthoquinones resulting from the reaction of suitable aminoacids with 1,4-naphthoquinone was assayed against SF-295 (glioblastoma), MDAMB-435 (breast), HCT-8 (colon), HCT-116 (colon), HL-60 (leukemia), OVCAR-8 (ovarian), NCI-H358M (bronchoalveolar lung carcinoma) and PC3-M (prostate) cancer cells and also against PBMC (peripheral blood mononuclear cells). The results demonstrated that all the synthetic aminonaphthoquinones had relevant cytotoxic activity against all human cancer lines used in this experiment. Five of the compounds showed high cytotoxicity and selectivity against all cancer cell lines tested (IC50 = 0.49 to 3.89 µg·mL−1). The title compounds were less toxic to PBMC, since IC50 was 1.5 to eighteen times higher (IC50 = 5.51 to 17.61 µg·mL−1) than values shown by tumour cell lines. The mechanism of cell growth inhibition and structure–activity relationships remains as a target for future investigations. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle Cytotoxic Activity of 3,6-Dihydroxyflavone in Human Cervical Cancer Cells and Its Therapeutic Effect on c-Jun N-Terminal Kinase Inhibition
Molecules 2014, 19(9), 13200-13211; https://doi.org/10.3390/molecules190913200
Received: 15 July 2014 / Revised: 18 August 2014 / Accepted: 22 August 2014 / Published: 27 August 2014
Cited by 12 | PDF Full-text (1330 KB) | HTML Full-text | XML Full-text
Abstract
Previously we have shown that 3,6-dihydroxyflavone (3,6-DHF) is a potent agonist of the human peroxisome proliferator-activated receptor (hPPAR) with cytotoxic effects on human cervical cancer cells. To date, the mechanisms by which 3,6-DHF exerts its antitumor effects on cervical cells have not been
[...] Read more.
Previously we have shown that 3,6-dihydroxyflavone (3,6-DHF) is a potent agonist of the human peroxisome proliferator-activated receptor (hPPAR) with cytotoxic effects on human cervical cancer cells. To date, the mechanisms by which 3,6-DHF exerts its antitumor effects on cervical cells have not been clearly defined. Here, we demonstrated that 3,6-DHF exhibits a novel antitumor activity against HeLa cells with IC50 values of 25 μM and 9.8 μM after 24 h and 48 h, respectively. We also showed that the anticancer effects of 3,6-DHF are mediated via the toll-like receptor (TLR) 4/CD14, p38 mitogen-activated protein kinase (MAPK), Jun-N terminal kinase (JNK), extracellular-signaling regulated kinase (ERK), and cyclooxygenase (COX)-2 pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. We found that 3,6-DHF showed a similar IC50 (113 nM) value to that of the JNK inhibitor, SP600125 (IC50 = 118 nM) in a JNK1 kinase assay. Binding studies revealed that 3,6-DHF had a strong binding affinity to JNK1 (1.996 × 105 M1) and that the 6-OH and the carbonyl oxygen of the C ring of 3,6-DHF participated in hydrogen bonding interactions with the carbonyl oxygen and the amide proton of Met111, respectively. Therefore, 3,6-DHF may be a candidate inhibitor of JNKs, with potent anticancer effects. Full article
(This article belongs to the Special Issue Design and Study of Kinase Inhibitors)
Figures

Graphical abstract

Open AccessArticle Inhibitory Effects of Colocasia esculenta (L.) Schott Constituents on Aldose Reductase
Molecules 2014, 19(9), 13212-13224; https://doi.org/10.3390/molecules190913212
Received: 21 July 2014 / Revised: 19 August 2014 / Accepted: 22 August 2014 / Published: 27 August 2014
Cited by 14 | PDF Full-text (721 KB) | HTML Full-text | XML Full-text
Abstract
The goal of this study was to determine the rat lens aldose reductase-inhibitory effects of 95% ethanol extracts from the leaves of C. esculenta and, its organic solvent soluble fractions, including the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol
[...] Read more.
The goal of this study was to determine the rat lens aldose reductase-inhibitory effects of 95% ethanol extracts from the leaves of C. esculenta and, its organic solvent soluble fractions, including the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water (H2O) layers, using dl-glyceraldehyde as a substrate. Ten compounds, namely tryptophan (1), orientin (2), isoorientin (3), vitexin (4), isovitexin (5), luteolin-7-O-glucoside (6), luteolin-7-O-rutinoside (7), rosmarinic acid (8), 1-O-feruloyl-d-glucoside (9) and 1-O-caffeoyl-d-glucoside (10) were isolated from the EtOAc and BuOH fractions of C. esculenta. The structures of compounds 110 were elucidated by spectroscopic methods and comparison with previous reports. All the isolates were subjected to an in vitro bioassay to evaluate their inhibitory activity against rat lens aldose reductase. Among tested compounds, compounds 2 and 3 significantly inhibited rat lens aldose reductase, with IC50 values of 1.65 and 1.92 μM, respectively. Notably, the inhibitory activity of orientin was 3.9 times greater than that of the positive control, quercetin (4.12 μM). However, the isolated compounds showed only moderate ABTS+ [2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] activity. These results suggest that flavonoid derivatives from Colocasia esculenta (L.) Schott represent potential compounds for the prevention and/or treatment of diabetic complications. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Cytotoxic Compounds Isolated from Murraya tetramera Huang
Molecules 2014, 19(9), 13225-13234; https://doi.org/10.3390/molecules190913225
Received: 21 July 2014 / Revised: 21 August 2014 / Accepted: 21 August 2014 / Published: 27 August 2014
Cited by 8 | PDF Full-text (710 KB) | HTML Full-text | XML Full-text
Abstract
A new compound and seven known compounds were isolated from Murraya tetramera Huang for the first time, and they were identified with NMR and MS spectral analysis. It was confirmed that the new compound was 10-methoxy-7-methyl-2H-benzo[g]chromen-2-one (3) and the
[...] Read more.
A new compound and seven known compounds were isolated from Murraya tetramera Huang for the first time, and they were identified with NMR and MS spectral analysis. It was confirmed that the new compound was 10-methoxy-7-methyl-2H-benzo[g]chromen-2-one (3) and the others were β-eudesmol (1), trans-3β-(1-hydroxy-1-methylethyl)-8-methyl-5-methylenedecalin-2-one (2), 5,7-dimethoxy-8-[(Z)-3'-methyl-butan-1',3'-dienyl]coumarin (4), 7-geranyloxy-6-methoxycoumarin (5), 5,7-dimethoxy-8-(3-methyl-2-oxo-butyl)coumarin (6), murrangatin acetate (7) and toddalenone (8). Furthermore, the cytotoxic activity against human lung adenocarcinoma (A549), human hepatocellular carcinoma cells (SMMC-7721), human bladder tumor cells (EJ), human cervical carcinoma cells (HeLa), and human B-lineage acute lymphoblastic leukemia 1 cells (BALL-1) was evaluated for all compounds. It was found that five of them displayed various degrees of cytotoxicity against different testing targets. Compound 1 showed significant cytotoxic activity against the five cell lines (A549, SMMC-7721, EJ, Hela and BALL-1). Compounds 2 and 5 showed significant cytotoxicity against three cell lines (A549, SMMC-7721 and BALL-1). Compound 4 showed significant cytotoxicity against three cell lines (A549, EJ and BALL-1). However, compound 3 only showed fair cytotoxicity against the BALL-1 cell line. The structure-active relationships were investigated as well. These active compounds might be potential lead compounds for the treatment of cancer. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Figure 1

Open AccessArticle Schisandrin B Induces Apoptosis and Cell Cycle Arrest of Gallbladder Cancer Cells
Molecules 2014, 19(9), 13235-13250; https://doi.org/10.3390/molecules190913235
Received: 29 July 2014 / Revised: 13 August 2014 / Accepted: 18 August 2014 / Published: 27 August 2014
Cited by 9 | PDF Full-text (4185 KB) | HTML Full-text | XML Full-text | Correction
Abstract
Gallbladder cancer, with high aggressivity and extremely poor prognosis, is the most common malignancy of the bile duct. The main objective of the paper was to investigate the effects of schisandrin B (Sch B) on gallbladder cancer cells and identify the mechanisms underlying
[...] Read more.
Gallbladder cancer, with high aggressivity and extremely poor prognosis, is the most common malignancy of the bile duct. The main objective of the paper was to investigate the effects of schisandrin B (Sch B) on gallbladder cancer cells and identify the mechanisms underlying its potential anticancer effects. We showed that Sch B inhibited the viability and proliferation of human gallbladder cancer cells in a dose-, time -dependent manner through MTT and colony formation assays, and decrease mitochondrial membrane potential (ΔΨm) at a dose-dependent manner through flow cytometry. Flow cytometry assays also revealed G0/G1 phase arrest and apoptosis in GBC-SD and NOZ cells. Western blot analysis of Sch B-treated cells revealed the upregulation of Bax, cleaved caspase-9, cleaved caspase-3, cleaved PARP and downregulation of Bcl-2, NF-κB, cyclin D1 and CDK-4. Moreover, this drug also inhibited the tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data demonstrated that Sch B induced apoptosis in gallbladder cancer cells by regulating apoptosis-related protein expression, and suggests that Sch B may be a promising drug for the treatment of gallbladder cancer. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Synthesis, Leishmanicidal and Cytotoxic Activity of Triclosan-Chalcone, Triclosan-Chromone and Triclosan-Coumarin Hybrids
Molecules 2014, 19(9), 13251-13266; https://doi.org/10.3390/molecules190913251
Received: 19 May 2014 / Revised: 17 July 2014 / Accepted: 7 August 2014 / Published: 28 August 2014
Cited by 13 | PDF Full-text (826 KB) | HTML Full-text | XML Full-text
Abstract
Twelve hybrids derived from triclosan were obtained via Williamson etherification of O-triclosan alkyl bromide plus chalcone and O-coumarin or O-chromone alkyl bromide plus triclosan, respectively. Structures of the products were elucidated by spectroscopic analysis. The synthesized compounds were evaluated for antileishmanial activity against
[...] Read more.
Twelve hybrids derived from triclosan were obtained via Williamson etherification of O-triclosan alkyl bromide plus chalcone and O-coumarin or O-chromone alkyl bromide plus triclosan, respectively. Structures of the products were elucidated by spectroscopic analysis. The synthesized compounds were evaluated for antileishmanial activity against L. (V) panamensis amastigotes. Cytotoxic activity was also evaluated against mammalian U-937 cells. Compounds 79 and 17, were active against Leishmania parasites (EC50 = 9.4; 10.2; 13.5 and 27.5 µg/mL, respectively) and showed no toxicity toward mammalian cells (>200 µg/mL). They are potential candidates for antileishmanial drug development. Compounds 2527, were active and cytotoxic. Further studies using other cell types are needed in order to discriminate whether the toxicity shown by these compounds is against tumor or non-tumor cells. The results indicate that compounds containing small alkyl chains show better selectivity indices. Moreover, Michael acceptor moieties may modify both the leishmanicidal activity and cytotoxicity. Further studies are required to evaluate if the in vitro activity against Leishmania panamensis demonstrated here is also observed in vivo. Full article
(This article belongs to the Special Issue Prodrugs)
Figures

Graphical abstract

Open AccessArticle Neuronal Nitric Oxide Synthase Induction in the Antitumorigenic and Neurotoxic Effects of 2-Methoxyestradiol
Molecules 2014, 19(9), 13267-13281; https://doi.org/10.3390/molecules190913267
Received: 3 June 2014 / Revised: 8 August 2014 / Accepted: 18 August 2014 / Published: 28 August 2014
Cited by 9 | PDF Full-text (1439 KB) | HTML Full-text | XML Full-text
Abstract
Objective: 2-Methoxyestradiol, one of the natural 17β-estradiol derivatives, is a novel, potent anticancer agent currently being evaluated in advanced phases of clinical trials. The main goal of the study was to investigate the anticancer activity of 2-methoxy-estradiol towards osteosarcoma cells and its
[...] Read more.
Objective: 2-Methoxyestradiol, one of the natural 17β-estradiol derivatives, is a novel, potent anticancer agent currently being evaluated in advanced phases of clinical trials. The main goal of the study was to investigate the anticancer activity of 2-methoxy-estradiol towards osteosarcoma cells and its possible neurodegenerative effects. We used an experimental model of neurotoxicity and anticancer activity of the physiological agent, 2-methoxyestradiol. Thus, we used highly metastatic osteosarcoma 143B and mouse immortalized hippocampal HT22 cell lines. The cells were treated with pharmacological (1 μM, 10 μM) concentrations of 2-methoxyestradiol. Experimental: Neuronal nitric oxide synthase and 3-nitrotyrosine protein levels were determined by western blotting. Cell viability and induction of cell death were measured by MTT and PI/Annexin V staining and a DNA fragmentation ELISA kit, respectively. Intracellular levels of nitric oxide were determined by flow cytometry. Results: Here we demonstrated that the signaling pathways of neurodegenerative diseases and cancer may overlap. We presented evidence that 2-methoxyestradiol, in contrast to 17β-estradiol, specifically affects neuronal nitric oxide synthase and augments 3-nitrotyrosine level leading to osteosarcoma and immortalized hippocampal cell death. Conclusions: We report the dual facets of 2-methoxyestradiol, that causes cancer cell death, but on the other hand may play a key role as a neurotoxin. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone
Molecules 2014, 19(9), 13282-13304; https://doi.org/10.3390/molecules190913282
Received: 7 July 2014 / Revised: 8 August 2014 / Accepted: 20 August 2014 / Published: 28 August 2014
Cited by 7 | PDF Full-text (2177 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should
[...] Read more.
Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding)
Figures

Figure 1

Open AccessArticle Self-Assembled Nanoparticles of Glycyrrhetic Acid-Modified Pullulan as a Novel Carrier of Curcumin
Molecules 2014, 19(9), 13305-13318; https://doi.org/10.3390/molecules190913305
Received: 18 June 2014 / Revised: 22 August 2014 / Accepted: 25 August 2014 / Published: 28 August 2014
Cited by 17 | PDF Full-text (2104 KB) | HTML Full-text | XML Full-text
Abstract
Glycyrrhetic acid (GA)-modified pullulan nanoparticles (GAP NPs) were synthesized as a novel carrier of curcumin (CUR) with a degree of substitution (DS) of GA moieties within the range of 1.2–6.2 groups per hundred glucose units. In the present study, we investigated the physicochemical
[...] Read more.
Glycyrrhetic acid (GA)-modified pullulan nanoparticles (GAP NPs) were synthesized as a novel carrier of curcumin (CUR) with a degree of substitution (DS) of GA moieties within the range of 1.2–6.2 groups per hundred glucose units. In the present study, we investigated the physicochemical characteristics, release behavior, in vitro cytotoxicity and cellular uptake of the particles. Self-assembled GAP NPs with spherical shapes could readily improve the water solubility and stability of CUR. The CUR release was sustained and pH-dependent. The cellular uptake of CUR-GAP NPs was confirmed by green fluorescence in the cells. An MTT study showed CUR-GAP NPs with higher cytotoxicity in HepG2 cells than free CUR, but GAP NPs had no significant cytotoxicity. GAP is thus an excellent carrier for the solubilization, stabilization, and controlled delivery of CUR. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Cyclic Peptide-Capped Gold Nanoparticles for Enhanced siRNA Delivery
Molecules 2014, 19(9), 13319-13331; https://doi.org/10.3390/molecules190913319
Received: 9 June 2014 / Revised: 22 August 2014 / Accepted: 22 August 2014 / Published: 28 August 2014
Cited by 11 | PDF Full-text (1061 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Previously, we have reported the synthesis of a homochiral l-cyclic peptide [WR]5 and its use for delivery of anti-HIV drugs and biomolecules. A physical mixture of HAuCl4 and the peptide generated peptide-capped gold nanoparticles. Here, [WR]5 and [WR]5-AuNPs
[...] Read more.
Previously, we have reported the synthesis of a homochiral l-cyclic peptide [WR]5 and its use for delivery of anti-HIV drugs and biomolecules. A physical mixture of HAuCl4 and the peptide generated peptide-capped gold nanoparticles. Here, [WR]5 and [WR]5-AuNPs were tested for their efficiency to deliver a small interfering RNA molecule (siRNA) in human cervix adenocarcinoma (HeLa) cells. Flow cytometry investigation revealed that the intracellular uptake of a fluorescence-labeled non-targeting siRNA (200 nM) was enhanced in the presence of [WR]5 and [WR]5-AuNPs by 2- and 3.8-fold when compared with that of siRNA alone after 24 h incubation. Comparative toxicity results showed that [WR]5 and [WR]5-AuNPs were less toxic in cells compared to other available carrier systems, such as Lipofectamine. Full article
(This article belongs to the Special Issue Delivery Systems of Anticancer Agents)
Figures

Graphical abstract

Open AccessArticle Protoberberine Isoquinoline Alkaloids from Arcangelisia gusanlung
Molecules 2014, 19(9), 13332-13341; https://doi.org/10.3390/molecules190913332
Received: 25 July 2014 / Revised: 20 August 2014 / Accepted: 21 August 2014 / Published: 29 August 2014
Cited by 2 | PDF Full-text (730 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
HPLC-DAD-directed isolation and purification of the methanol extract of stems of Arcangelisia gusanlung H. S. Lo. led to the isolation of a new protoberberine alkaloid, gusanlung E (1), along with fourteen known derivatives 215, seven
[...] Read more.
HPLC-DAD-directed isolation and purification of the methanol extract of stems of Arcangelisia gusanlung H. S. Lo. led to the isolation of a new protoberberine alkaloid, gusanlung E (1), along with fourteen known derivatives 215, seven of which were obtained from the genus Arcangelisia for the first time. The structures and absolute stereochemistry of these compounds were elucidated on the basis of spectroscopic analyses, including 1D and 2D NMR, mass spectrometry, and CD analyses. Gusanlung E (1) expressed weak cytotoxic activity against the SGC 7901 cell line with an IC50 value of 85.1 µM. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Synthesis of the New Ring System Bispyrido[4',3':4,5]pyrrolo [1,2-a:1',2'-d]pyrazine and Its Deaza Analogue
Molecules 2014, 19(9), 13342-13357; https://doi.org/10.3390/molecules190913342
Received: 24 July 2014 / Revised: 18 August 2014 / Accepted: 20 August 2014 / Published: 29 August 2014
Cited by 8 | PDF Full-text (2350 KB) | HTML Full-text | XML Full-text
Abstract
Derivatives of the new ring systems bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d] pyrazine-6,13-dione and its deaza analogue pyrido[4'',3'':4',5']pyrrolo-[1',2':4,5]pyrazino [1,2-a]indole-6,13-dione were conveniently synthesized through a four-step sequence. Symmetrical derivatives of the former ring system were obtained through self condensation. On the other hand, condensation of
[...] Read more.
Derivatives of the new ring systems bispyrido[4',3':4,5]pyrrolo[1,2-a:1',2'-d] pyrazine-6,13-dione and its deaza analogue pyrido[4'',3'':4',5']pyrrolo-[1',2':4,5]pyrazino [1,2-a]indole-6,13-dione were conveniently synthesized through a four-step sequence. Symmetrical derivatives of the former ring system were obtained through self condensation. On the other hand, condensation of 6-azaindole carboxylic acid with indole 2-carboxylic acid afforded the deaza analogue ring system. Derivatives of the title ring system were tested by the National Cancer Institute (Bethesda, MD, USA) and four of them exhibited modest activity against MCF7 (a breast cancer cell line) and/or UO-31 (a renal cancer cell line). Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Theoretical Investigation on Nearsightedness of Finite Model and Molecular Systems Based on Linear Response Function Analysis
Molecules 2014, 19(9), 13358-13373; https://doi.org/10.3390/molecules190913358
Received: 16 June 2014 / Revised: 31 July 2014 / Accepted: 14 August 2014 / Published: 29 August 2014
Cited by 3 | PDF Full-text (3807 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We examined nearsightedness of electronic matter (NEM) of finite systems on the basis of linear response function (LRF). From the computational results of a square-well model system, the behavior of responses obviously depends on the number of electrons (N): as N increases, LRF,
[...] Read more.
We examined nearsightedness of electronic matter (NEM) of finite systems on the basis of linear response function (LRF). From the computational results of a square-well model system, the behavior of responses obviously depends on the number of electrons (N): as N increases, LRF, δρ(r)/δv(r′), decays rapidly for the distance, |r−r′|. This exemplifies that the principle suggested by Kohn and Prodan holds even for finite systems: the cause of NEM is destructive interference among electron density amplitudes. In addition, we examined double-well model systems, which have low-lying degenerate levels. In this case, there are two types of LRF: the cases of the half-filled and of full-filled in low-lying degenerate levels. The response for the former is delocalized, while that of the later is localized. These behaviors of model systems are discussed in relation to the molecular systems’ counterparts, H2, He22+, and He2 systems. We also see that NEM holds for the dissociated limit of H2, of which the mechanism is similar to that of the insulating state of solids as suggested by Kohn. We also examined LRF of alanine tripeptide system as well as butane and butadiene molecules, showing that NEM of the polypeptide system is caused by sp3 junctions at Cα atoms that prevent propagation of amplitudes of LRF, which is critically different from that of NEM for finite and infinite homogeneous systems. Full article
(This article belongs to the Special Issue Quantum Information in Molecular Structures and Nanosystems)
Figures

Figure 1

Open AccessArticle Effect of Apitherapy Formulations against Carbon Tetrachloride-Induced Toxicity in Wistar Rats after Three Weeks of Treatment
Molecules 2014, 19(9), 13374-13391; https://doi.org/10.3390/molecules190913374
Received: 24 March 2014 / Revised: 19 August 2014 / Accepted: 21 August 2014 / Published: 29 August 2014
Cited by 4 | PDF Full-text (3304 KB) | HTML Full-text | XML Full-text
Abstract
The human body is exposed nowadays to increasing attacks by toxic compounds in polluted air, industrially processed foods, alcohol and drug consumption that increase liver toxicity, leading to more and more severe cases of hepatic disorders. The present paper aims to evaluate the
[...] Read more.
The human body is exposed nowadays to increasing attacks by toxic compounds in polluted air, industrially processed foods, alcohol and drug consumption that increase liver toxicity, leading to more and more severe cases of hepatic disorders. The present paper aims to evaluate the influence of the apitherapy diet in Wistar rats with carbon tetrachloride-induced hepatotoxicity, by analyzing the biochemical determinations (enzymatic, lipid and protein profiles, coagulation parameters, minerals, blood count parameters, bilirubin levels) and histopathological changes at the level of liver, spleen and pancreas. The experiment was carried out on six groups of male Wistar rats. Hepatic lesions were induced by intraperitoneal injection of carbon tetrachloride (dissolved in paraffin oil, 10% solution). Two mL per 100 g were administered, every 2 days, for 2 weeks. Hepatoprotection was achieved with two apitherapy diet formulations containing honey, pollen, propolis, Apilarnil, with/without royal jelly. Biochemical results reveal that the two apitherapy diet formulations have a positive effect on improving the enzymatic, lipid, and protein profiles, coagulation, mineral and blood count parameters and bilirubin levels. The histopathological results demonstrate the benefits of the two apitherapy diet formulations on reducing toxicity at the level of liver, spleen and pancreas in laboratory animals. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Effects of Endogenous Signals and Fusarium oxysporum on the Mechanism Regulating Genistein Synthesis and Accumulation in Yellow Lupine and Their Impact on Plant Cell Cytoskeleton
Molecules 2014, 19(9), 13392-13421; https://doi.org/10.3390/molecules190913392
Received: 26 April 2014 / Revised: 7 August 2014 / Accepted: 18 August 2014 / Published: 29 August 2014
Cited by 9 | PDF Full-text (5565 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The aim of the study was to examine cross-talk interactions of soluble sugars (sucrose, glucose and fructose) and infection caused by Fusarium oxysporum f.sp. lupini on the synthesis of genistein in embryo axes of Lupinus luteus L.cv. Juno. Genistein is a free aglycone,
[...] Read more.
The aim of the study was to examine cross-talk interactions of soluble sugars (sucrose, glucose and fructose) and infection caused by Fusarium oxysporum f.sp. lupini on the synthesis of genistein in embryo axes of Lupinus luteus L.cv. Juno. Genistein is a free aglycone, highly reactive and with the potential to inhibit fungal infection and development of plant diseases. As signal molecules, sugars strongly stimulated accumulation of isoflavones, including genistein, and the expression of the isoflavonoid biosynthetic genes. Infection significantly enhanced the synthesis of genistein and other isoflavone aglycones in cells of embryo axes of yellow lupine with high endogenous sugar levels. The activity of β-glucosidase, the enzyme that releases free aglycones from their glucoside bindings, was higher in the infected tissues than in the control ones. At the same time, a very strong generation of the superoxide anion radical was observed in tissues with high sugar contents already in the initial stage of infection. During later stages after inoculation, a strong generation of semiquinone radicals was observed, which level was relatively higher in tissues deficient in sugars than in those with high sugar levels. Observations of actin and tubulin cytoskeletons in cells of infected embryo axes cultured on the medium with sucrose, as well as the medium without sugar, showed significant differences in their organization. Full article
Figures

Figure 1

Open AccessCommunication A New Cycloartane-Type Triterpenoid Saponin Xanthine Oxidase Inhibitor from Homonoia riparia Lour
Molecules 2014, 19(9), 13422-13431; https://doi.org/10.3390/molecules190913422
Received: 30 June 2014 / Revised: 6 August 2014 / Accepted: 7 August 2014 / Published: 29 August 2014
Cited by 7 | PDF Full-text (733 KB) | HTML Full-text | XML Full-text
Abstract
A new cycloartane-type triterpenoid saponin named riparsaponin (1) was isolated from the stem of Homonoia riparia Lour together with six known compounds. The structure of riparsaponin was determined by using NMR and mass spectroscopy and X-ray crystallography techniques. Additionally, riparsaponin has
[...] Read more.
A new cycloartane-type triterpenoid saponin named riparsaponin (1) was isolated from the stem of Homonoia riparia Lour together with six known compounds. The structure of riparsaponin was determined by using NMR and mass spectroscopy and X-ray crystallography techniques. Additionally, riparsaponin has a significant inhibitory effect on xanthine oxidase in vitro, and the IC50 was 11.16 nmol/mL. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Immunomodulatory Activity and Partial Characterisation of Polysaccharides from Momordica charantia
Molecules 2014, 19(9), 13432-13447; https://doi.org/10.3390/molecules190913432
Received: 23 July 2014 / Revised: 27 August 2014 / Accepted: 27 August 2014 / Published: 29 August 2014
Cited by 12 | PDF Full-text (730 KB) | HTML Full-text | XML Full-text
Abstract
Momordica charantia Linn. is used as an edible and medicinal vegetable in sub-tropical areas. Until now, studies on its composition and related activities have been confined to compounds of low molecular mass, and no data have been reported concerning the plant’s polysaccharides. In
[...] Read more.
Momordica charantia Linn. is used as an edible and medicinal vegetable in sub-tropical areas. Until now, studies on its composition and related activities have been confined to compounds of low molecular mass, and no data have been reported concerning the plant’s polysaccharides. In this work, a crude polysaccharide of M. charantia (MCP) fruit was isolated by hot water extraction and then purified using DEAE-52 cellulose anion-exchange chromatography to produce two main fractions MCP1 and MCP2. The immunomodulatory effects and physicochemical characteristics of these fractions were investigated in vitro and in vivo. The results showed that intragastric administration of 150 or 300 mg·kg·d−1 of MCP significantly increased the carbolic particle clearance index, serum haemolysin production, spleen index, thymus index and NK cell cytotoxicity to normal control levels in cyclophosphamide (Cy)-induced immunosuppressed mice. Both MCP1 and MCP2 effectively stimulated normal and concanavalin A-induced splenic lymphocyte proliferation in vitro at various doses. The average molecular weights of MCP1 and MCP2, which were measured using high-performance gel permeation chromatography, were 8.55 × 104 Da and 4.41 × 105 Da, respectively. Both fractions exhibited characteristic polysaccharide bands in their Fourier transform infrared spectrum. MCP1 is mainly composed of glucose and galactose, and MCP2 is mainly composed of glucose, mannose and galactose. The results indicate that MCP and its fractions have good potential as immunotherapeutic adjuvants. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessCommunication Copper/N,N-Dimethylglycine Catalyzed Goldberg Reactions Between Aryl Bromides and Amides, Aryl Iodides and Secondary Acyclic Amides
Molecules 2014, 19(9), 13448-13460; https://doi.org/10.3390/molecules190913448
Received: 26 June 2014 / Revised: 14 July 2014 / Accepted: 4 August 2014 / Published: 29 August 2014
Cited by 11 | PDF Full-text (735 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
An efficient and general copper-catalyzed Goldberg reaction at 90–110 °C between aryl bromides and amides providing the desired products in good to excellent yields has been developed using N,N-dimethylglycine as the ligand. The reaction is tolerant toward a wide range of amides
[...] Read more.
An efficient and general copper-catalyzed Goldberg reaction at 90–110 °C between aryl bromides and amides providing the desired products in good to excellent yields has been developed using N,N-dimethylglycine as the ligand. The reaction is tolerant toward a wide range of amides and a variety of functional group substituted aryl bromides. In addition, hindered, unreactive aromatic and aliphatic secondary acyclic amides, known to be poor nucleophiles, are efficiently coupled with aryl iodides through this simple and cheap copper/N,N-dimethylglycine catalytic system. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Graphical abstract

Open AccessArticle Bagging Treatment Influences Production of C6 Aldehydes and Biosynthesis-Related Gene Expression in Peach Fruit Skin
Molecules 2014, 19(9), 13461-13472; https://doi.org/10.3390/molecules190913461
Received: 27 June 2014 / Revised: 20 August 2014 / Accepted: 25 August 2014 / Published: 29 August 2014
Cited by 3 | PDF Full-text (733 KB) | HTML Full-text | XML Full-text
Abstract
Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were
[...] Read more.
Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effects of bagging treatment on the formation of C6 aldehydes in peach fruit (Prunus persica L. Batsch, cv. Yulu) over two succeeding seasons. Higher concentrations of n-hexanal and (E)-2-hexenal, which are characteristic aroma volatiles of peach fruit, were induced by bagging treatment. After bagging treatment, peach fruit had significantly higher LOX and HPL enzyme activities, accompanying increased contents of C6 aldehydes. The gene expression data obtained through real-time PCR showed that no consistent significant differences in transcript levels of LOX genes were observed over the two seasons, but significantly up-regulated expression was found for PpHPL1 after bagging treatment In addition, bagging-treated fruit produced more (E)-2-hexenal and had higher expression levels of PpHPL1 during postharvest ripening at room temperature. The regulatory role of the LOX-HPL pathway on the biosynthesis of n-hexanal and (E)-2-hexenal in response to bagging treatment during peach fruit development is discussed in the text. Full article
(This article belongs to the Special Issue Aromas and Volatiles of Fruits)
Figures

Figure 1

Open AccessArticle Hypotensive Effects and Angiotensin-Converting Enzyme Inhibitory Peptides of Reishi (Ganoderma lingzhi) Auto-Digested Extract
Molecules 2014, 19(9), 13473-13485; https://doi.org/10.3390/molecules190913473
Received: 19 June 2014 / Revised: 14 July 2014 / Accepted: 25 August 2014 / Published: 29 August 2014
Cited by 11 | PDF Full-text (767 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Reishi (Ganoderma lingzhi) has been used as a traditional medicine for millennia. However, relatively little is known about this mushroom’s proteins and their bioactivities. In this study, we used reishi’s own proteases to hydrolyze its protein and obtained auto-digested reishi (ADR)
[...] Read more.
Reishi (Ganoderma lingzhi) has been used as a traditional medicine for millennia. However, relatively little is known about this mushroom’s proteins and their bioactivities. In this study, we used reishi’s own proteases to hydrolyze its protein and obtained auto-digested reishi (ADR) extract. The extract was subjected to in vitro assays and administered to spontaneous hypertensive rats (SHRs) to determine its potential for use as a hypotensive medication. Bioassay-guided fractionation and de novo sequencing were used for identifying the active compounds. After 4 h administration of ADR, the systolic pressure of SHRs significantly decreased to 34.3 mmHg (19.5% change) and the effect was maintained up to 8 h of administration, with the decrease reaching as low as 26.8 mmHg (15% reduction–compare to base line a decrease of 26.8 mmHg is less than a decrease of 34.3 mmHg so it should give a smaller % reduction). Eleven peptides were identified and four of them showed potent inhibition against ACE with IC50 values ranging from 73.1 μM to 162.7 μM. The results showed that ADR could be a good source of hypotensive peptides that could be used for antihypertensive medication or incorporation into functional foods. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction
Molecules 2014, 19(9), 13486-13497; https://doi.org/10.3390/molecules190913486
Received: 24 July 2014 / Revised: 22 August 2014 / Accepted: 25 August 2014 / Published: 1 September 2014
Cited by 6 | PDF Full-text (1656 KB) | HTML Full-text | XML Full-text
Abstract
Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of
[...] Read more.
Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO•-CH2-COOCH3) in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•)OH-CH2-COOCH3. The ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•)OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C(•)OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. Full article
(This article belongs to the Special Issue Free Radicals and Radical Ions)
Figures

Graphical abstract

Open AccessArticle Anti-Angiogenesis Effect of Biogenic Silver Nanoparticles Synthesized Using Saliva officinalis on Chick Chorioalantoic Membrane (CAM)
Molecules 2014, 19(9), 13498-13508; https://doi.org/10.3390/molecules190913498
Received: 1 June 2014 / Revised: 18 July 2014 / Accepted: 26 July 2014 / Published: 1 September 2014
Cited by 19 | PDF Full-text (2372 KB) | HTML Full-text | XML Full-text
Abstract
Angiogenesis, which is required for physiological events, plays a crucial role in several pathological conditions, such as tumor growth and metastasis. The use of plant extracts is a cost effective and eco-friendly way to synthesize nanoparticles. In the present study, we investigated the
[...] Read more.
Angiogenesis, which is required for physiological events, plays a crucial role in several pathological conditions, such as tumor growth and metastasis. The use of plant extracts is a cost effective and eco-friendly way to synthesize nanoparticles. In the present study, we investigated the anti-angiogenesis properties of silver nanoparticles synthesized using Saliva officinalis extract on chick chorioalantoic membrane. The production of nanoparticles was confirmed by the color change from yellow to brown observed after approximately 3 h at 37 °C. Then, the nanoparticles were characterized by UV-visible spectroscopy, FTIR, and TEM. The UV-visible spectroscopy results showed that the surface plasmon resonance band for AgNPs was around 430 nm. The intensity of the AgNP-specific absorption peak improved with an increase of 0.5 mL of extract into 10 mL of AgNO3 (2.5 mM). The FTIR results showed good interaction between the plant extracts and AgNPs. The TEM images of the samples revealed that the NPs varied in morphology and size from 1 to 40 nm; the average was recorded at 16.5 ± 1.2 nm. Forty Ross fertilized eggs were divided into four groups; the control and three experimental groups. On the 8th day, gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of NPs. On the 12th day, all the cases were photographed using a photostereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. Then the hemoglobin content was measured using Drabkin’s reagent kit for quantification of the blood vessel formation. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation. The hemoglobin content in the treated samples with AgNPs decreased, which showed its inhibitory effect on angiogenesis. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Novel Schiff Bases Based on the Quinolinone Skeleton: Syntheses, X-ray Structures and Fluorescent Properties
Molecules 2014, 19(9), 13509-13525; https://doi.org/10.3390/molecules190913509
Received: 1 July 2014 / Revised: 12 August 2014 / Accepted: 25 August 2014 / Published: 1 September 2014
PDF Full-text (1579 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of a new type of Schiff bases 17, derived from 2-phenyl-3-amino-4(1H)-quinolinone and R-salicyladehyde derivatives wherein R = 3-hydroxy (1), 3,4-dihydroxy (2), 3-methoxy (3), 3-carboxy (4), 3-allyl (5
[...] Read more.
A series of a new type of Schiff bases 17, derived from 2-phenyl-3-amino-4(1H)-quinolinone and R-salicyladehyde derivatives wherein R = 3-hydroxy (1), 3,4-dihydroxy (2), 3-methoxy (3), 3-carboxy (4), 3-allyl (5), 5-chloro (6), and 5-nitro (7), was synthesized and structurally characterized. Each of the molecules 1, 3 and 7 consists of three planar moieties (i.e., a quinolinone and two phenyl rings), which are mutually oriented differently depending on the appropriate substituent R and the extent of non-covalent contacts stabilizing the crystal structures. The compounds were studied for their fluorescence properties, where compound 6 yielded the strongest intensity both in the solid phase and in 100 μM ethanol solution with a quantum yield of φ = 3.6% as compared to quinine sulfate used as a standard. The in vitro cytotoxicity of these compounds was tested against the human osteosarcoma (HOS) and breast adenocarcinoma (MCF7) cell lines, revealing no activity up to the concentration of 50 µM. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Figure 1

Open AccessArticle Synthesis of [13C4]-labeled ∆9-Tetrahydrocannabinol and 11-nor-9-Carboxy-∆9-tetrahydrocannabinol as Internal Standards for Reducing Ion Suppressing/Alteration Effects in LC/MS-MS Quantification
Molecules 2014, 19(9), 13526-13540; https://doi.org/10.3390/molecules190913526
Received: 30 July 2014 / Revised: 22 August 2014 / Accepted: 26 August 2014 / Published: 1 September 2014
PDF Full-text (1064 KB) | HTML Full-text | XML Full-text
Abstract
(−)-∆9-Tetrahydrocannabinol is the principal psychoactive component of the cannabis plant and also the active ingredient in some prescribed drugs. To detect and control misuse and monitor administration in clinical settings, reference samples of the native drugs and their metabolites are needed. The accuracy
[...] Read more.
(−)-∆9-Tetrahydrocannabinol is the principal psychoactive component of the cannabis plant and also the active ingredient in some prescribed drugs. To detect and control misuse and monitor administration in clinical settings, reference samples of the native drugs and their metabolites are needed. The accuracy of liquid chromatography/mass spectrometric quantification of drugs in biological samples depends among others on ion suppressing/alteration effects. Especially, 13C-labeled drug analogues are useful for minimzing such interferences. Thus, to provide internal standards for more accurate quantification and for identification purpose, synthesis of [13C4]-∆9-tetrahydro-cannabinol and [13C4]-11-nor-9-carboxy-∆9-tetrahydrocannabinol was developed via [13C4]-olivetol. Starting from [13C4]-olivetol the synthesis of [13C4]-11-nor-9-carboxy-∆9-tetrahydrocannabinol was shortened from three to two steps by employing nitromethane as a co-solvent in condensation with (+)-apoverbenone. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Graphical abstract

Open AccessArticle Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress
Molecules 2014, 19(9), 13564-13576; https://doi.org/10.3390/molecules190913564
Received: 12 July 2014 / Revised: 22 August 2014 / Accepted: 22 August 2014 / Published: 1 September 2014
Cited by 9 | PDF Full-text (3063 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L.).The stomatal conductance (Gs), net photosynthetic rate (Pn), and transpiration rates (Tr) of both heat-acclimated
[...] Read more.
The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L.).The stomatal conductance (Gs), net photosynthetic rate (Pn), and transpiration rates (Tr) of both heat-acclimated (HA) and non-acclimated (NA) plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night) followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night), in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times) versus the NA (1.8 times) plants, and the intercellular CO2 concentration decreased gently in NA (10.9%) and HA (25.3%) plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Figure 1

Open AccessArticle Synthesis and Antibacterial Activity of Analogs of 5-Arylidene-3-(4-methylcoumarin-7-yloxyacetylamino)-2-thioxo-1,3-thiazoli-din-4-one
Molecules 2014, 19(9), 13577-13586; https://doi.org/10.3390/molecules190913577
Received: 30 June 2014 / Revised: 26 August 2014 / Accepted: 27 August 2014 / Published: 1 September 2014
Cited by 5 | PDF Full-text (708 KB) | HTML Full-text | XML Full-text
Abstract
In an effort to develop new antimicrobial agents, 3-(4-methylcoumarin-7-yloxyacetylamino)-2-thioxo-1,3-thiazolidin-4-one (4) was synthesized by reaction of thiocarbonylbisthioglycolic acid with ethyl (4-methyl-2-oxo-2H-chromen-7-yloxy)aceto- hydrazide (3), which was prepared in turn from 7-hydroxy-4-methylcoumarin (1). The condensation of compound 4
[...] Read more.
In an effort to develop new antimicrobial agents, 3-(4-methylcoumarin-7-yloxyacetylamino)-2-thioxo-1,3-thiazolidin-4-one (4) was synthesized by reaction of thiocarbonylbisthioglycolic acid with ethyl (4-methyl-2-oxo-2H-chromen-7-yloxy)aceto- hydrazide (3), which was prepared in turn from 7-hydroxy-4-methylcoumarin (1). The condensation of compound 4 with different aromatic aldehydes afforded a series of 5-(arylidene)-3-(4-methylcoumarin-7-yloxyacetyl-amino)-2-thioxo-1,3-thiozolidin-4-one analogs 5ah. The structures of these synthetic compounds were elucidated on the basis of IR, 1H-NMR and 13C-NMR spectral data and ESI-MS spectrometric analysis. Compounds 5ah were examined for their antibacterial activity against several strains of Gram-positive and Gram-negative bacteria. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Peptides Derived from Rhopilema esculentum Hydrolysate Exhibit Angiotensin Converting Enzyme (ACE) Inhibitory and Antioxidant Abilities
Molecules 2014, 19(9), 13587-13602; https://doi.org/10.3390/molecules190913587
Received: 8 July 2014 / Revised: 22 August 2014 / Accepted: 26 August 2014 / Published: 2 September 2014
Cited by 8 | PDF Full-text (4099 KB) | HTML Full-text | XML Full-text
Abstract
Jellyfish (Rhopilema esculentum) was hydrolyzed using alcalase, and two peptides with angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities were purified by ultrafiltration and consecutive chromatographic methods. The amino acid sequences of the two peptides were identified as VKP (342 Da) and
[...] Read more.
Jellyfish (Rhopilema esculentum) was hydrolyzed using alcalase, and two peptides with angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities were purified by ultrafiltration and consecutive chromatographic methods. The amino acid sequences of the two peptides were identified as VKP (342 Da) and VKCFR (651 Da) by electrospray ionization tandem mass spectrometry. The IC50 values of ACE inhibitory activities of the two peptides were 1.3 μM and 34.5 μM, respectively. Molecular docking results suggested that VKP and VKCFR bind to ACE through coordinating with the active site Zn(II) atom. Free radical scavenging activity and protection against hydrogen peroxide (H2O2)-induced rat cerebral microvascular endothelial cell (RCMEC) injury were used to evaluate the antioxidant activities of the two peptides. As the results clearly showed that the peptides increased the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-px) activities in RCMEC cells), it is proposed that the R. esculentum peptides exert significant antioxidant effects. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Figures

Figure 1

Open AccessArticle Synthesis and Reactivity of New Aminophenolate Complexes of Nickel
Molecules 2014, 19(9), 13603-13613; https://doi.org/10.3390/molecules190913603
Received: 8 July 2014 / Revised: 27 August 2014 / Accepted: 28 August 2014 / Published: 2 September 2014
Cited by 1 | PDF Full-text (1099 KB) | HTML Full-text | XML Full-text
Abstract
New well-defined, paramagnetic nickel complexes have been prepared and characterized by X-ray crystallography. The complexes were found to be active for the cross-coupling of alkyl electrophiles (especially ethyl 2-bromobutyrate) with alkyl Grignard reagents. The ligand architecture in these new complexes could potentially be
[...] Read more.
New well-defined, paramagnetic nickel complexes have been prepared and characterized by X-ray crystallography. The complexes were found to be active for the cross-coupling of alkyl electrophiles (especially ethyl 2-bromobutyrate) with alkyl Grignard reagents. The ligand architecture in these new complexes could potentially be rendered chiral, opening up future possibilities for performing asymmetric cross-coupling reactions. Full article
(This article belongs to the Special Issue Practical Applications of Metal Complexes)
Figures

Graphical abstract

Open AccessArticle A One-Pot Approach to Pyridyl Isothiocyanates from Amines
Molecules 2014, 19(9), 13631-13642; https://doi.org/10.3390/molecules190913631
Received: 9 August 2014 / Revised: 27 August 2014 / Accepted: 28 August 2014 / Published: 2 September 2014
Cited by 4 | PDF Full-text (742 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A one-pot preparation of pyridyl isothiocyanates (ITCs) from their corresponding amines has been developed. This method involves aqueous iron(III) chloride-mediated desulfurization of a dithiocarbamate salt that is generated in situ by treatment of an amine with carbon disulfide in the present of DABCO
[...] Read more.
A one-pot preparation of pyridyl isothiocyanates (ITCs) from their corresponding amines has been developed. This method involves aqueous iron(III) chloride-mediated desulfurization of a dithiocarbamate salt that is generated in situ by treatment of an amine with carbon disulfide in the present of DABCO or sodium hydride. The choice of base is of decisive importance for the formation of the dithiocarbamate salts. This one-pot process works well for a wide range of pyridyl ITCs. Utilizing this protocol, some highly electron-deficient pyridyl and aryl ITCs are obtained in moderate to good yields. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Graphical abstract

Open AccessArticle Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles
Molecules 2014, 19(9), 13683-13703; https://doi.org/10.3390/molecules190913683
Received: 26 June 2014 / Revised: 28 August 2014 / Accepted: 29 August 2014 / Published: 2 September 2014
Cited by 20 | PDF Full-text (2048 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V)” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012).
[...] Read more.
Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V)” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes in different regions. Full article
(This article belongs to the Special Issue Anthocyanins) Printed Edition available
Figures

Figure 1

Open AccessArticle Synthesis and Anti-Yeast Evaluation of Novel 2-Alkylthio-4-chloro-5-methyl-N-[imino-(1-oxo-(1H)-phthalazin-2-yl)methyl]benzenesulfonamide Derivatives
Molecules 2014, 19(9), 13704-13723; https://doi.org/10.3390/molecules190913704
Received: 11 July 2014 / Revised: 13 August 2014 / Accepted: 25 August 2014 / Published: 2 September 2014
Cited by 5 | PDF Full-text (487 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pathogenic fungi are one of the main causes of hospital-related infections. Since conventional antifungals have become less effective because of the increasing fungal resistance to the standard drugs, the need for new agents is becoming urgent. Herein we report a synthesis of a
[...] Read more.
Pathogenic fungi are one of the main causes of hospital-related infections. Since conventional antifungals have become less effective because of the increasing fungal resistance to the standard drugs, the need for new agents is becoming urgent. Herein we report a synthesis of a series of novel N-[imino-(1-oxo-(1H)-phthalazin-2-yl)methyl]-benzenesulfonamide derivatives with in vitro activity against yeast-like fungi isolated from the oral cavity and respiratory tract of patients with candidiasis. These compounds were synthesized by the one-step or two-step reactions of 1-(2-alkylthiobenzensulfonyl)-2-aminoguanidines with the appropriate ortho-carbonyl benzoic acids. The biological study revealed that new derivatives have shown significant growth-inhibitory activity, superior or comparable, than those of the reference drug fluconazole. The most promising activities were observed against Candida albicans, with inhibition at least 1–3 (12.5%–37.5%) of the eight tested strains at the low MIC level of ≤6.2–25 µg/mL. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle Anti-Stress Action of an Orally-Given Combination of Resveratrol, β-Glucan, and Vitamin C
Molecules 2014, 19(9), 13724-13734; https://doi.org/10.3390/molecules190913724
Received: 17 July 2014 / Revised: 30 August 2014 / Accepted: 1 September 2014 / Published: 3 September 2014
Cited by 7 | PDF Full-text (858 KB) | HTML Full-text | XML Full-text
Abstract
Stress has repeatedly been found to reduce the abilities of the immune system to fight against individual attacks. The current dissatisfaction with classical medications has led to more attention being focused on natural molecules. As recent studies have suggested that some bioactive molecules
[...] Read more.
Stress has repeatedly been found to reduce the abilities of the immune system to fight against individual attacks. The current dissatisfaction with classical medications has led to more attention being focused on natural molecules. As recent studies have suggested that some bioactive molecules can have synergistic effects in stimulation of immune system and reduction of stress, we have evaluated the stress-reducing effects of the resveratrol-β-glucan-vitamin C combination. We found that compared to its individual components, this combination was the strongest reducer of stress-related symptoms, including corticosterone levels and IL-6, IL-12 and IFN-γ production. Full article
(This article belongs to the Special Issue Resveratrol)
Figures

Figure 1

Open AccessArticle Different Fluorophore Labeling Strategies and Designs Affect Millisecond Kinetics of DNA Hairpins
Molecules 2014, 19(9), 13735-13754; https://doi.org/10.3390/molecules190913735
Received: 18 July 2014 / Revised: 21 August 2014 / Accepted: 26 August 2014 / Published: 3 September 2014
Cited by 11 | PDF Full-text (1621 KB) | HTML Full-text | XML Full-text
Abstract
Changes in molecular conformations are one of the major driving forces of complex biological processes. Many studies based on single-molecule techniques have shed light on conformational dynamics and contributed to a better understanding of living matter. In particular, single-molecule FRET experiments have revealed
[...] Read more.
Changes in molecular conformations are one of the major driving forces of complex biological processes. Many studies based on single-molecule techniques have shed light on conformational dynamics and contributed to a better understanding of living matter. In particular, single-molecule FRET experiments have revealed unprecedented information at various time scales varying from milliseconds to seconds. The choice and the attachment of fluorophores is a pivotal requirement for single-molecule FRET experiments. One particularly well-studied millisecond conformational change is the opening and closing of DNA hairpin structures. In this study, we addressed the influence of base- and terminal-labeled fluorophores as well as the fluorophore DNA interactions on the extracted kinetic information of the DNA hairpin. Gibbs free energies varied from ∆G0 = −3.6 kJ/mol to ∆G0 = −0.2 kJ/mol for the identical DNA hairpin modifying only the labeling scheme and design of the DNA sample. In general, the base-labeled DNA hairpin is significantly destabilized compared to the terminal-labeled DNA hairpin and fluorophore DNA interactions additionally stabilize the closed state of the DNA hairpin. Careful controls and variations of fluorophore attachment chemistry are essential for a mostly undisturbed measurement of the underlying energy landscape of biomolecules. Full article
(This article belongs to the Special Issue Single Molecule Techniques)
Figures

Graphical abstract

Open AccessArticle Structure and Absolute Configuration of 20β-Hydroxyprednisolone, a Biotransformed Product of Predinisolone by the Marine Endophytic Fungus Penicilium lapidosum
Molecules 2014, 19(9), 13775-13787; https://doi.org/10.3390/molecules190913775
Received: 4 April 2014 / Revised: 22 July 2014 / Accepted: 11 August 2014 / Published: 3 September 2014
Cited by 6 | PDF Full-text (801 KB) | HTML Full-text | XML Full-text
Abstract
The anti-inflammatory drug predinisolone (1) was reduced to 20β-hydroxyprednisolone (2) by the marine endophytic fungus Penicilium lapidosum isolated from an alga. The structural elucidation of 2 was achieved by 1D- and 2D-NMR, MS, IR data. Although, 2 is a
[...] Read more.
The anti-inflammatory drug predinisolone (1) was reduced to 20β-hydroxyprednisolone (2) by the marine endophytic fungus Penicilium lapidosum isolated from an alga. The structural elucidation of 2 was achieved by 1D- and 2D-NMR, MS, IR data. Although, 2 is a known compound previously obtained through microbial transformation, the data provided failed to prove the C20 stereochemistry. To solve this issue, DFT and TD-DFT calculations have been carried out at the B3LYP/6–31+G (d,p) level of theory in gas and solvent phase. The absolute configuration of C20 was eventually assigned by combining experimental and calculated electronic circular dichroism spectra and 3JHH chemical coupling constants. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Design, Synthesis and the Biological Evaluation of New 1,3-Thiazolidine-4-ones Based on the 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one Scaffold
Molecules 2014, 19(9), 13824-13847; https://doi.org/10.3390/molecules190913824
Received: 5 August 2014 / Revised: 28 August 2014 / Accepted: 29 August 2014 / Published: 4 September 2014
Cited by 8 | PDF Full-text (1012 KB) | HTML Full-text | XML Full-text
Abstract
New thiazolidine-4-one derivatives based on the 4-aminophenazone (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) scaffold have been synthesized as potential anti-inflammatory drugs. The pyrazoline derivatives are known especially for their antipyretic, analgesic and anti-inflammatory effects, but recently there were synthesized new compounds with important antioxidant, antiproliferative, anticancer and antidiabetic
[...] Read more.
New thiazolidine-4-one derivatives based on the 4-aminophenazone (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) scaffold have been synthesized as potential anti-inflammatory drugs. The pyrazoline derivatives are known especially for their antipyretic, analgesic and anti-inflammatory effects, but recently there were synthesized new compounds with important antioxidant, antiproliferative, anticancer and antidiabetic activities. The beneficial effects of these compounds are explained by nonselective inhibition of cyclooxygenase izoenzymes, but also by their potential scavenging ability for reactive oxygen and nitrogen species. The structure of the new compounds was proved using spectroscopic methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the ferric reducing antioxidant power, phosphomolydenum reducing antioxidant power, DPPH and ABTS radical scavenging assays. The chemical modulation of 4-aminophenazone (6) through linkage to thiazolidine-propanoic acid derivatives 5al led to improved antioxidant potential, all derivatives 7al being more active than phenazone. The most active compounds are the derivatives 7e, and 7k, which showed the higher antioxidant effect depending on the antioxidant assay considered. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Synthesis and Structure of Sulfur Derivatives from 2-Aminobenzimidazole
Molecules 2014, 19(9), 13878-13893; https://doi.org/10.3390/molecules190913878
Received: 11 June 2014 / Revised: 14 August 2014 / Accepted: 14 August 2014 / Published: 4 September 2014
Cited by 1 | PDF Full-text (1273 KB) | HTML Full-text | XML Full-text
Abstract
The reactions of the benzimidazole nitrogen atoms and the exocyclic amino group of 2-aminobenzimidazole with CS2 in NaOH basic medium followed by methylation with methyl iodide was explored. With careful control of the stoichiometric quantities and addition sequences, this set of reactions
[...] Read more.
The reactions of the benzimidazole nitrogen atoms and the exocyclic amino group of 2-aminobenzimidazole with CS2 in NaOH basic medium followed by methylation with methyl iodide was explored. With careful control of the stoichiometric quantities and addition sequences, this set of reactions allows the selective functionalization of the benzimidazole ring with N-dithiocarbamate, S-methyldithiocarbamate or dimethyl- dithiocarboimidate groups. The products were characterized by 1H-, 13C-NMR spectroscopy and three of them by X-ray diffraction analysis. The preferred isomers, tautomers and conformers were established. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Graphical abstract

Open AccessArticle Second Order Kinetic Modeling of Headspace Solid Phase Microextraction of Flavors Released from Selected Food Model Systems
Molecules 2014, 19(9), 13894-13908; https://doi.org/10.3390/molecules190913894
Received: 16 April 2014 / Revised: 29 July 2014 / Accepted: 11 August 2014 / Published: 4 September 2014
Cited by 2 | PDF Full-text (1214 KB) | HTML Full-text | XML Full-text
Abstract
The application of headspace-solid phase microextraction (HS-SPME) has been widely used in various fields as a simple and versatile method, yet challenging in quantification. In order to improve the reproducibility in quantification, a mathematical model with its root in psychological modeling and chemical
[...] Read more.
The application of headspace-solid phase microextraction (HS-SPME) has been widely used in various fields as a simple and versatile method, yet challenging in quantification. In order to improve the reproducibility in quantification, a mathematical model with its root in psychological modeling and chemical reactor modeling was developed, describing the kinetic behavior of aroma active compounds extracted by SPME from two different food model systems, i.e., a semi-solid food and a liquid food. The model accounted for both adsorption and release of the analytes from SPME fiber, which occurred simultaneously but were counter-directed. The model had four parameters and their estimated values were found to be more reproducible than the direct measurement of the compounds themselves by instrumental analysis. With the relative standard deviations (RSD) of each parameter less than 5% and root mean square error (RMSE) less than 0.15, the model was proved to be a robust one in estimating the release of a wide range of low molecular weight acetates at three environmental temperatures i.e., 30, 40 and 60 °C. More insights of SPME behavior regarding the small molecule analytes were also obtained through the kinetic parameters and the model itself. Full article
(This article belongs to the Special Issue Microextraction)
Figures

Figure 1

Open AccessArticle Hydrogel Polysaccharides of Tamarind and Xanthan to Formulate Hydrodynamically Balanced Matrix Tablets of Famotidine
Molecules 2014, 19(9), 13909-13931; https://doi.org/10.3390/molecules190913909
Received: 13 July 2014 / Revised: 25 August 2014 / Accepted: 28 August 2014 / Published: 5 September 2014
Cited by 7 | PDF Full-text (5288 KB) | HTML Full-text | XML Full-text
Abstract
The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP
[...] Read more.
The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP 6) and TSP (TSP1 to TSP 6) series were prepared using tamarind powder:xanthan in the ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5, respectively. The matrix tablets were prepared by the wet granulation method and evaluated for pharmacopoeial requirements. TKP2 was the optimum formulation as it had a short floating lag time (FLT < 30 s) and more than 98.5% drug release in 12 h. The dissolution data were fitted to popular mathematical models to assess the mechanism of drug release, and the optimum formulation showed a predominant first order release and diffusion mechanism. It was concluded that the TKP2 prepared using tamarind kernel powder:xanthan (4:1) was the optimum formulation with shortest floating lag time and more than 90% release in the determined period of time. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria
Molecules 2014, 19(9), 13948-13964; https://doi.org/10.3390/molecules190913948
Received: 30 April 2014 / Revised: 30 June 2014 / Accepted: 2 July 2014 / Published: 5 September 2014
Cited by 2 | PDF Full-text (1026 KB) | HTML Full-text | XML Full-text
Abstract
Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a
[...] Read more.
Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1) with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-β-d-glucuronide (MUG). The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60–90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Graphical abstract

Open AccessArticle Total Aglycones from Marsdenia tenacissima Increases Antitumor Efficacy of Paclitaxel in Nude Mice
Molecules 2014, 19(9), 13965-13975; https://doi.org/10.3390/molecules190913965
Received: 6 August 2014 / Revised: 23 August 2014 / Accepted: 1 September 2014 / Published: 5 September 2014
Cited by 10 | PDF Full-text (1195 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Marsdeniae tenacissimae Caulis (MTC) is a Chinese herbal medicine used mainly for treatment of cancer, whose pharmacologically active constituents responsible for its in vivo activity and clinical efficacy have not been clearly elucidated. In this study, total aglycones of MTC (ETA) showed the
[...] Read more.
Marsdeniae tenacissimae Caulis (MTC) is a Chinese herbal medicine used mainly for treatment of cancer, whose pharmacologically active constituents responsible for its in vivo activity and clinical efficacy have not been clearly elucidated. In this study, total aglycones of MTC (ETA) showed the ability to sensitize KB-3-1, HeLa, HepG2 and K562 cells to paclitaxel treatment. More inspiringly, ETA markedly enhanced the antitumor activity of paclitaxel in nude mice bearing HeLa or KB-3-1 xenografts. Compared to treatment with paclitaxel alone, treatment with combination of paclitaxel and ETA achieved significant reduction in volume and weight of HeLa tumors (p < 0.05), and remarkable inhibition to the growth of KB-3-1 tumors (p < 10−6). ETA was characterized by the presence of a group of tenacigenin B ester derivatives, among which four reference compounds, 11α-O-tigloyl-12β-O-acetyltenacigenin B, 11α,12β-di-O-tigloyltenacigenin B, 11α-O-2-methylbutanoyl-12β-O-tigloyltenacigenin B, and 11α-O-(2-methylbutanoyl)-12β-O-benzoyltenacigenin B, accounted for 42.14% of the total peak area of 19 detectable components assayed by HPLC. Our study has identified ETA as a promising sensitizer for cancer chemotherapy. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle A Galactose-Binding Lectin Isolated from Aplysia kurodai (Sea Hare) Eggs Inhibits Streptolysin-Induced Hemolysis
Molecules 2014, 19(9), 13990-14003; https://doi.org/10.3390/molecules190913990
Received: 13 July 2014 / Revised: 21 August 2014 / Accepted: 2 September 2014 / Published: 5 September 2014
Cited by 4 | PDF Full-text (1082 KB) | HTML Full-text | XML Full-text | Correction
Abstract
A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on
[...] Read more.
A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth. Full article
(This article belongs to the Special Issue Lectins)
Figures

Figure 1

Open AccessArticle Study of Leaf Metabolome Modifications Induced by UV-C Radiations in Representative Vitis, Cissus and Cannabis Species by LC-MS Based Metabolomics and Antioxidant Assays
Molecules 2014, 19(9), 14004-14021; https://doi.org/10.3390/molecules190914004
Received: 10 June 2014 / Revised: 14 August 2014 / Accepted: 27 August 2014 / Published: 5 September 2014
Cited by 14 | PDF Full-text (1304 KB) | HTML Full-text | XML Full-text
Abstract
UV-C radiation is known to induce metabolic modifications in plants, particularly to secondary metabolite biosynthesis. To assess these modifications from a global and untargeted perspective, the effects of the UV-C radiation of the leaves of three different model plant species, Cissus antarctica Vent
[...] Read more.
UV-C radiation is known to induce metabolic modifications in plants, particularly to secondary metabolite biosynthesis. To assess these modifications from a global and untargeted perspective, the effects of the UV-C radiation of the leaves of three different model plant species, Cissus antarctica Vent. (Vitaceae), Vitis vinifera L. (Vitaceae) and Cannabis sativa L. (Cannabaceae), were evaluated by an LC-HRMS-based metabolomic approach. The approach enabled the detection of significant metabolite modifications in the three species studied. For all species, clear modifications of phenylpropanoid metabolism were detected that led to an increased level of stilbene derivatives. Interestingly, resveratrol and piceid levels were strongly induced by the UV-C treatment of C. antarctica leaves. In contrast, both flavonoids and stilbene polymers were upregulated in UV-C-treated Vitis leaves. In Cannabis, important changes in cinnamic acid amides and stilbene-related compounds were also detected. Overall, our results highlighted phytoalexin induction upon UV-C radiation. To evaluate whether UV-C stress radiation could enhance the biosynthesis of bioactive compounds, the antioxidant activity of extracts from control and UV-C-treated leaves was measured. The results showed increased antioxidant activity in UV-C-treated V. vinifera extracts. Full article
Figures

Graphical abstract

Open AccessArticle Synthesis with Perfect Atom Economy: Generation of Furan Derivatives by 1,3-Dipolar Cycloaddition of Acetylenedicarboxylates at Cyclooctynes
Molecules 2014, 19(9), 14022-14035; https://doi.org/10.3390/molecules190914022
Received: 1 August 2014 / Revised: 28 August 2014 / Accepted: 1 September 2014 / Published: 5 September 2014
PDF Full-text (1572 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cyclooctyne and cycloocten-5-yne undergo, at room temperature, a 1,3-dipolar cycloaddition with dialkyl acetylenedicarboxylates 1a,b to generate furan-derived short-lived intermediates 2, which can be trapped by two additional equivalents of 1a,b or alternatively by methanol, phenol, water or aldehydes
[...] Read more.
Cyclooctyne and cycloocten-5-yne undergo, at room temperature, a 1,3-dipolar cycloaddition with dialkyl acetylenedicarboxylates 1a,b to generate furan-derived short-lived intermediates 2, which can be trapped by two additional equivalents of 1a,b or alternatively by methanol, phenol, water or aldehydes to yield polycyclic products 3bd, orthoesters 4ac, ketones 5 or epoxides 6a,b, respectively. Treatment of bis(trimethylsilyl) acetylenedicarboxylate (1c) with cyclooctyne leads to the ketone 7 via retro-Brook rearrangement of the dipolar intermediate 2c. In all cases, the products are formed with perfect atom economy. Full article
(This article belongs to the Special Issue Cycloaddition Chemistry)
Figures

Graphical abstract

Open AccessArticle Design, Synthesis and Fungicidal Activities of Some Novel Pyrazole Derivatives
Molecules 2014, 19(9), 14036-14051; https://doi.org/10.3390/molecules190914036
Received: 7 August 2014 / Revised: 1 September 2014 / Accepted: 2 September 2014 / Published: 8 September 2014
Cited by 7 | PDF Full-text (736 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In order to discover new compounds with good fungicidal activities, 32 pyrazole derivatives were designed and synthesized. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and their fungicidal activities against Botrytis
[...] Read more.
In order to discover new compounds with good fungicidal activities, 32 pyrazole derivatives were designed and synthesized. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and their fungicidal activities against Botrytis cinerea, Rhizoctonia solani Kuhn, Valsa mali Miyabe et Yamada, Thanatephorus cucumeris (Frank) Donk, Fusarium oxysporum (S-chl) f.sp. cucumerinum Owen, and Fusarium graminearum Schw were tested. The bioassay results indicated that most of the derivatives exhibited considerable antifungal activities, especially compound 26 containing a p-trifluoromethyl- phenyl moiety showed the highest activity, with EC50 values of 2.432, 2.182, 1.787, 1.638, 6.986, and 6.043 μg/mL against B. cinerea, R. solani, V. mali, T. cucumeris, F. oxysporum, and F. graminearum, respectively. Moreover, the activities of compounds such as compounds 2732 were enhanced by introducing isothiocyanate and carboxamide moieties to the 5-position of the pyrazole ring. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Graphical abstract

Open AccessArticle The in Vitro Biological Activity of the Brazilian Brown Seaweed Dictyota mertensii against Leishmania amazonensis
Molecules 2014, 19(9), 14052-14065; https://doi.org/10.3390/molecules190914052
Received: 11 July 2014 / Revised: 30 August 2014 / Accepted: 30 August 2014 / Published: 9 September 2014
Cited by 10 | PDF Full-text (3503 KB) | HTML Full-text | XML Full-text
Abstract
Seaweeds present a wide variety of interesting bioactive molecules. In the present work we evaluated the biological activity of the dichloromethane/methanol (2:1) extract (DME) from the brown seaweed Dictyota mertensii against Leishmania amazonensis and its cytotoxic potential on mammalian cells. The extract showed
[...] Read more.
Seaweeds present a wide variety of interesting bioactive molecules. In the present work we evaluated the biological activity of the dichloromethane/methanol (2:1) extract (DME) from the brown seaweed Dictyota mertensii against Leishmania amazonensis and its cytotoxic potential on mammalian cells. The extract showed significant inhibitory effect on the growth of promastigote forms (IC50 = 71.60 μg/mL) and low toxicity against mammalian cells (CC50 = 233.10 μg/mL). The DME was also efficient in inhibiting the infection in macrophages, with CC50 of 81.4 μg/mL and significantly decreased the survival of amastigote forms within these cells. The selectivity index showed that DME was more toxic to both promastigote (SI = 3.25) and amastigote (SI = 2.86) forms than to macrophages. Increased NO production was observed in treated macrophages suggesting that besides acting directly on the parasites, the DME also shows an immunomodulatory effect on macrophages. Drastic ultrastructural alterations consistent with loss of viability and cell death were observed in treated parasites. Confocal microscopy and cytometry analyzes showed no significant impairment of plasma membrane integrity, whereas an intense depolarization of mitochondrial membrane could be observed by using propidium iodide and rhodamine 123 staining, respectively. The low toxicity to mammalian cells and the effective activity against promastigotes and amastigotes, point to the use of DME as a promising agent for the treatment of cutaneous leishmaniasis. Full article
Figures

Figure 1

Open AccessArticle Headspace Solid-Phase Microextraction Analysis of Volatile Components in Phalaenopsis Nobby’s Pacific Sunset
Molecules 2014, 19(9), 14080-14093; https://doi.org/10.3390/molecules190914080
Received: 30 May 2014 / Revised: 13 August 2014 / Accepted: 30 August 2014 / Published: 9 September 2014
Cited by 6 | PDF Full-text (699 KB) | HTML Full-text | XML Full-text
Abstract
Phalaenopsis is the most important economic crop in the Orchidaceae family. There are currently numerous beautiful and colorful Phalaenopsis flowers, but only a few species of Phalaenopsis have an aroma. This study reports the analysis volatile components present in P. Nobby’s Pacific Sunset
[...] Read more.
Phalaenopsis is the most important economic crop in the Orchidaceae family. There are currently numerous beautiful and colorful Phalaenopsis flowers, but only a few species of Phalaenopsis have an aroma. This study reports the analysis volatile components present in P. Nobby’s Pacific Sunset by solid-phase microextraction (SPME) coupled with gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS). The results show that the optimal extraction conditions were obtained by using a DVB/CAR/PDMS fiber. A total of 31 compounds were identified, with the major compounds being geraniol, linalool and α-farnesene. P. Nobby’s Pacific Sunset had the highest odor concentration from 09:00 to 13:00 on the eighth day of storage. It was also found that in P. Nobby’s Pacific Sunset orchids the dorsal sepals and petals had the highest odor concentrations, whereas the column had the lowest. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle RP-HPLC Characterization of Lupenone and β-Sitosterol in Rhizoma Musae and Evaluation of the Anti-Diabetic Activity of Lupenone in Diabetic Sprague-Dawley Rats
Molecules 2014, 19(9), 14114-14127; https://doi.org/10.3390/molecules190914114
Received: 23 June 2014 / Revised: 17 August 2014 / Accepted: 1 September 2014 / Published: 9 September 2014
Cited by 10 | PDF Full-text (1025 KB) | HTML Full-text | XML Full-text
Abstract
With the aim of characterizing the active ingredients lupenone and β-sitosterol in Rhizoma Musae samples a reversed-phase HPLC method for the separation of these two compounds in Rhizoma Musae samples was developed (regression coefficient > 0.9996). The method was further applied to quantify
[...] Read more.
With the aim of characterizing the active ingredients lupenone and β-sitosterol in Rhizoma Musae samples a reversed-phase HPLC method for the separation of these two compounds in Rhizoma Musae samples was developed (regression coefficient > 0.9996). The method was further applied to quantify lupenone and β-sitosterol content in Rhizoma Musae samples cultured in different growth environments. Different variables such as geographical location, growth stage, and harvest time, demonstrated differential effects on lupenone and β-sitosterol levels. Moreover, we determined the optimum conditions for cultivation and harvesting of Rhizoma Musae herbs. Lupenone administration caused a significant reduction in fasting blood glucose (FBG) levels in diabetic rats at doses of 1.78, 5.33, and 16.00 mg·kg−1·day−1 for 14 days, the glycated hemoglobin (HbA1c) levels of diabetic rats also significantly reduced at doses of 5.33, and 16.00 mg·kg−1·day−1, indicating a robust antidiabetic activity. To our knowledge, this is the first report of an optimized HPLC method successfully applied to quantify lupenone and β-sitosterol, and its applicability in optimizing Rhizoma Musae growth. Animal experiments also showed for the first time that lupenone from Rhizoma Musae has anti-diabetic activity. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle Simultaneous Quantification of Three Polymorphic Forms of Carbamazepine in the Presence of Excipients Using Raman Spectroscopy
Molecules 2014, 19(9), 14128-14138; https://doi.org/10.3390/molecules190914128
Received: 9 July 2014 / Revised: 29 August 2014 / Accepted: 1 September 2014 / Published: 9 September 2014
Cited by 7 | PDF Full-text (725 KB) | HTML Full-text | XML Full-text
Abstract
The occurrence of polymorphic transitions is a serious problem for pharmaceutical companies, because it can affect the bioavailability of the final product. With several known polymorphic forms carbamazepine is one of the most problematic drugs in this respect. Raman spectroscopy is a vibrational
[...] Read more.
The occurrence of polymorphic transitions is a serious problem for pharmaceutical companies, because it can affect the bioavailability of the final product. With several known polymorphic forms carbamazepine is one of the most problematic drugs in this respect. Raman spectroscopy is a vibrational technique that is becoming very important in the pharmaceutical field, mainly due to its highly specific molecular fingerprint capabilities and easy use as a process analytical tool. However, multivariate methods are necessary both for identification and quantification. In this work an analytical methodology using Raman spectroscopy and interval Partial Least Squares Regression (iPLS), was developed in order to quantify mixtures of carbamazepine polymorphs in the presence of the most common excipients. The three polymorphs CBZ I, CBZ III and CBZ DH (which is a dihydrate) were synthesized and characterized by PXRD and DSC. Subsequently, tablets were manufactured using excipients and 15 different mixtures of carbamazepine polymorphs. The iPLS model presented average prediction validation errors of 1.58%, 1.04% and 0.22% wt/wt, for CBZ I, CBZ III and CBZ DH, respectively, considering the whole mass of the tablet. The model presents a good prediction capacity and the proposed methodology could be used to perform quality control in final products. Full article
(This article belongs to the Special Issue Advances of Vibrational Spectroscopic Technologies in Life Sciences)
Figures

Graphical abstract

Open AccessArticle Cytotoxic Illudalane Sesquiterpenes from the Wood-Decay Fungus Granulobasidium vellereum (Ellis & Cragin) Jülich
Molecules 2014, 19(9), 14195-14203; https://doi.org/10.3390/molecules190914195
Received: 6 August 2014 / Revised: 28 August 2014 / Accepted: 4 September 2014 / Published: 9 September 2014
Cited by 8 | PDF Full-text (908 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Seven illudalane sesquiterpenes were obtained from the wood decomposing fungus Granulobasidium vellereum: granuloinden A, granuloinden B and dihydrogranuloinden, along with the previously known compounds radulactone, pterosin M, echinolactone A and D. Granuloinden B showed potent cytotoxic activity against the Huh7 and MT4
[...] Read more.
Seven illudalane sesquiterpenes were obtained from the wood decomposing fungus Granulobasidium vellereum: granuloinden A, granuloinden B and dihydrogranuloinden, along with the previously known compounds radulactone, pterosin M, echinolactone A and D. Granuloinden B showed potent cytotoxic activity against the Huh7 and MT4 tumor cell lines (CC50 values of 6.7 and 0.15 µM, respectively), whereas granuloinden A and dihydrogranuloinden had no or moderate activity. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle 1,2-Substituted 4-(1H)-Quinolones: Synthesis, Antimalarial and Antitrypanosomal Activities in Vitro
Molecules 2014, 19(9), 14204-14220; https://doi.org/10.3390/molecules190914204
Received: 7 July 2014 / Revised: 28 August 2014 / Accepted: 1 September 2014 / Published: 10 September 2014
Cited by 8 | PDF Full-text (802 KB) | HTML Full-text | XML Full-text
Abstract
A diverse array of 4-(1H)-quinolone derivatives bearing substituents at positions 1 and 2 were synthesized and evaluated for antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense, and cytotoxicity against L-6 cells in vitro. Furthermore, selectivity indices were also
[...] Read more.
A diverse array of 4-(1H)-quinolone derivatives bearing substituents at positions 1 and 2 were synthesized and evaluated for antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense, and cytotoxicity against L-6 cells in vitro. Furthermore, selectivity indices were also determined for both parasites. All compounds tested showed antimalarial activity at low micromolar concentrations, with varied degrees of selectivity against L-6 cells. Compound 5a was found to be the most active against P. falciparum, with an IC50 value of 90 nM and good selectivity for the malarial parasite compared to the L-6 cells. Compound 10a, on the other hand, showed a strong antitrypanosomal effect with an IC50 value of 1.25 µM. In this study side chain diversity was explored by varying the side chain length and substitution pattern on the aliphatic group at position-2 and a structure-antiprotozoal activity study revealed that the aromatic ring introduced at C-2 contributed significantly to the antiprotozoal activities. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle Enhanced Production of Botrallin and TMC-264 with in Situ Macroporous Resin Adsorption in Mycelial Liquid Culture of the Endophytic Fungus Hyalodendriella sp. Ponipodef12
Molecules 2014, 19(9), 14221-14234; https://doi.org/10.3390/molecules190914221
Received: 22 July 2014 / Accepted: 3 September 2014 / Published: 10 September 2014
Cited by 8 | PDF Full-text (702 KB) | HTML Full-text | XML Full-text
Abstract
Hyalodendriella sp. Ponipodef12, an endophytic fungus from the hybrid “Neva” of Populus deltoides × P. nigra, is a high producer of the bioactive dibenzo-α-pyrones botrallin and TMC-264. However, both the botrallin and TMC-264 produced by Hyalodendriella sp. Ponipodef12 were retained as both
[...] Read more.
Hyalodendriella sp. Ponipodef12, an endophytic fungus from the hybrid “Neva” of Populus deltoides × P. nigra, is a high producer of the bioactive dibenzo-α-pyrones botrallin and TMC-264. However, both the botrallin and TMC-264 produced by Hyalodendriella sp. Ponipodef12 were retained as both intracellular and extracellular products. The aim of this study was to evaluate an in situ macroporous resin adsorption for enhancement of botrallin and TMC-264 production in mycelial liquid culture of Hyalodendriella sp. Ponipodef12. Production of botrallin and TMC-264 was most effectively enhanced by macroporous resin DM-301 among the thirteen nonionic macroporous resins tested. The highest botrallin yield (51.47 mg/L, which was 2.29-fold higher than the control at 22.49 mg/L) was obtained by adding resin DM-301 at 4.38% (g/mL) to the culture broth on day 24 and allowing a period of 4 days for adsorption. The highest TMC-264 yield reached 47.74 mg/L, which was 11.76-fold higher than that of the control (4.06 mg/L), and was achieved by adding DM-301 resin at 4.38% (w/v) in the culture broth on day 24 and allowing a period of 6 days for adsorption. The results show that in situ resin adsorption is an effective strategy for enhancing production of botrallin and TMC-264, and also for facilitating their recovery from mycelial liquid culture of Hyalodendriella sp. Ponipodef12. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Constituents of the Roots and Leaves of Ekebergia capensis and Their Potential Antiplasmodial and Cytotoxic Activities
Molecules 2014, 19(9), 14235-14246; https://doi.org/10.3390/molecules190914235
Received: 18 July 2014 / Revised: 24 August 2014 / Accepted: 2 September 2014 / Published: 10 September 2014
Cited by 9 | PDF Full-text (1487 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new triterpenoid, 3-oxo-12β-hydroxy-oleanan-28,13β-olide (1), and six known triterpenoids 27 were isolated from the root bark of Ekebergia capensis, an African medicinal plant. A limonoid 8 and two glycoflavonoids 910 were found in its leaves. The
[...] Read more.
A new triterpenoid, 3-oxo-12β-hydroxy-oleanan-28,13β-olide (1), and six known triterpenoids 27 were isolated from the root bark of Ekebergia capensis, an African medicinal plant. A limonoid 8 and two glycoflavonoids 910 were found in its leaves. The metabolites were identified by NMR and MS analyses, and their cytotoxicity was evaluated against the mammalian African monkey kidney (vero), mouse breast cancer (4T1), human larynx carcinoma (HEp2) and human breast cancer (MDA-MB-231) cell lines. Out of the isolates, oleanonic acid (2) showed the highest cytotoxicity, i.e., IC50’s of 1.4 and 13.3 µM against the HEp2 and 4T1 cells, respectively. Motivated by the higher cytotoxicity of the crude bark extract as compared to the isolates, the interactions of oleanonic acid (2) with five triterpenoids 37 were evaluated on vero cells. In an antiplasmodial assay, seven of the metabolites were observed to possess moderate activity against the D6 and W2 strains of P. falciparum (IC50 27.1–97.1 µM), however with a low selectivity index (IC50(vero)/IC50(P. falciparum-D6) < 10). The observed moderate antiplasmodial activity may be due to general cytotoxicity of the isolated triterpenoids. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Graphical abstract

Open AccessArticle Novel Hole Transporting Materials Based on 4-(9H-Carbazol-9-yl)triphenylamine Derivatives for OLEDs
Molecules 2014, 19(9), 14247-14256; https://doi.org/10.3390/molecules190914247
Received: 3 July 2014 / Revised: 2 September 2014 / Accepted: 4 September 2014 / Published: 10 September 2014
Cited by 2 | PDF Full-text (1182 KB) | HTML Full-text | XML Full-text
Abstract
During the past few years, organic light emitting diodes (OLEDs) have been increasingly studied due to their emerging applicability. However, some of the properties of existing OLEDs could be improved, such as their overall efficiency and durability; these aspects have been addressed in
[...] Read more.
During the past few years, organic light emitting diodes (OLEDs) have been increasingly studied due to their emerging applicability. However, some of the properties of existing OLEDs could be improved, such as their overall efficiency and durability; these aspects have been addressed in the current study. A series of novel hole-transporting materials (HTMs) 3ac based on 4-(9H-carbazol-9-yl)triphenylamine conjugated with different carbazole or triphenylamine derivatives have been readily synthesized by Suzuki coupling reactions. The resulting compounds showed good thermal stabilities with high glass transition temperatures between 148 and 165 °C. The introduction of HTMs 3b and 3c into the standard devices ITO/HATCN/NPB/HTMs 3 (indium tin oxide/dipyrazino(2,3-f:2ꞌ,3ꞌ-h)quinoxaline 2,3,6,7,10,11-hexacarbonitrile/N,Nꞌ-bis(naphthalen-1-yl)-N,Nꞌ-bis(phenyl)-benzidine/HTMs)/CBP (4,4ꞌ-Bis(N-carbazolyl)-1,1ꞌ-biphenyl): 5% Ir(ppy)3/Bphen/LiF/Al (tris[2-phenylpyridinato-C2,N]iridium(III)/4,7-diphenyl-1,10-phenanthroline/LiF/Al) resulted in significantly enhanced current, power, and external quantum efficiencies (EQE) as compared to the reference device without any layers of HTMs 3. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Figure 1

Open AccessArticle Preparation of Astaxanthin Nanodispersions Using Gelatin-Based Stabilizer Systems
Molecules 2014, 19(9), 14257-14265; https://doi.org/10.3390/molecules190914257
Received: 6 July 2014 / Revised: 19 August 2014 / Accepted: 3 September 2014 / Published: 10 September 2014
Cited by 7 | PDF Full-text (857 KB) | HTML Full-text | XML Full-text
Abstract
The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid) in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose
[...] Read more.
The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid) in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC) as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4 ± 8.6 nm). It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI) and maximum zeta-potential). This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions. Full article
(This article belongs to the Section Molecular Diversity)
Figures

Figure 1

Open AccessArticle Two New Guaiane Sesquiterpenoids from Daphne holosericea (Diels) Hamaya
Molecules 2014, 19(9), 14266-14272; https://doi.org/10.3390/molecules190914266
Received: 12 August 2014 / Revised: 2 September 2014 / Accepted: 3 September 2014 / Published: 11 September 2014
Cited by 2 | PDF Full-text (960 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two new sesquiterpenoids with guaiane skeletons—holosericin A (1) and holosericin B (2)—were isolated from the medicinal plant Daphne holosericea (Diels) Hamawa (Thymelaeceae). Their structures were elucidated by 1D and 2D-NMR spectroscopy, as well as HR-ESI-MS data. Compounds 1 and
[...] Read more.
Two new sesquiterpenoids with guaiane skeletons—holosericin A (1) and holosericin B (2)—were isolated from the medicinal plant Daphne holosericea (Diels) Hamawa (Thymelaeceae). Their structures were elucidated by 1D and 2D-NMR spectroscopy, as well as HR-ESI-MS data. Compounds 1 and 2 were evaluated for inhibitory activities against acetylcholinesterase and compound 2 showed a moderate activity with 31% inhibition. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Access to Optically Pure β-Hydroxy Esters via Non-Enzymatic Kinetic Resolution by a Planar-Chiral DMAP Catalyst
Molecules 2014, 19(9), 14273-14291; https://doi.org/10.3390/molecules190914273
Received: 15 July 2014 / Revised: 26 August 2014 / Accepted: 27 August 2014 / Published: 11 September 2014
Cited by 6 | PDF Full-text (952 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The development of new approaches to obtain optically pure β-hydroxy esters is an important area in synthetic organic chemistry since they are precursors of other high value compounds. Herein, the kinetic resolution of racemic β-hydroxy esters using a planar-chiral DMAP derivative catalyst is
[...] Read more.
The development of new approaches to obtain optically pure β-hydroxy esters is an important area in synthetic organic chemistry since they are precursors of other high value compounds. Herein, the kinetic resolution of racemic β-hydroxy esters using a planar-chiral DMAP derivative catalyst is presented. Following this procedure, a range of aromatic β-hydroxy esters was obtained in excellent selectivities (up to s = 107) and high enantiomeric excess (up to 99% ee). Furthermore, the utility of the present method was demonstrated in the synthesis of (S)-3-hydroxy-N-methyl-3-phenylpropanamide, a key intermediate for bioactive molecules such as fluoxetine, tomoxetine or nisoxetine, in its enantiomerically pure form. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Graphical abstract

Open AccessArticle On the Nature of the Transition State Characterizing Gated Molecular Encapsulations
Molecules 2014, 19(9), 14292-14303; https://doi.org/10.3390/molecules190914292
Received: 17 July 2014 / Revised: 21 August 2014 / Accepted: 28 August 2014 / Published: 11 September 2014
Cited by 1 | PDF Full-text (1369 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Gated molecular encapsulations, with baskets of type 1, are postulated to occur by the mechanism in which solvent molecule penetrates the inner space of 1, through one of its apertures, while the residing guest simultaneously departs the cavity. In the transition
[...] Read more.
Gated molecular encapsulations, with baskets of type 1, are postulated to occur by the mechanism in which solvent molecule penetrates the inner space of 1, through one of its apertures, while the residing guest simultaneously departs the cavity. In the transition state of the exchange, three pyridine-based gates are proposed to assume an open position with both incoming solvent and departing guest molecules interacting with the concave surface of the host. The More O’Ferrall-Jencks diagram and linear free energy relationships (LFERs) suggest a more advanced departure of the guest when bigger solvents partake in the displacement. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding)
Figures

Graphical abstract

Open AccessArticle Understanding the Interaction Determinants of CAPN1 Inhibition by CAST4 from Bovines Using Molecular Modeling Techniques
Molecules 2014, 19(9), 14316-14351; https://doi.org/10.3390/molecules190914316
Received: 18 June 2014 / Revised: 21 August 2014 / Accepted: 1 September 2014 / Published: 11 September 2014
Cited by 2 | PDF Full-text (3992 KB) | HTML Full-text | XML Full-text
Abstract
HCV-induced CAPN activation and its effects on virus-infected cells in a host-immune system have been studied recently. It has been shown that the HCV-nonstructural 5A protein acts as both an inducer and a substrate for host CAPN protease; it participates in suppressing the
[...] Read more.
HCV-induced CAPN activation and its effects on virus-infected cells in a host-immune system have been studied recently. It has been shown that the HCV-nonstructural 5A protein acts as both an inducer and a substrate for host CAPN protease; it participates in suppressing the TNF-α-induced apoptosis response and downstream IFN-induced antiviral processes. However, little is known regarding the disturbance of antiviral responses generated by bovine CAPN activation by BVDV, which is a surrogate model of HCV and is one of the most destructive diseases leading to great economic losses in cattle herds worldwide. This is also thought to be associated with the effects of either small CAPN inhibitors or the natural inhibitor CAST. They mainly bind to the binding site of CAPN substrate proteins and competitively inhibit the binding of the enzyme substrates to possibly defend against the two viruses (HCV and BVDV) for anti-viral immunity. To devise a new stratagem to discover lead candidates for an anti-BVDV drug, we first attempted to understand the bovine CAPN-CAST interaction sites and the interaction constraints of local binding architectures, were well reflected in the geometry between the pharmacophore features and its shape constraints identified using our modeled bovine CAPN1/CAST4 complex structures. We propose a computer-aided molecular design of an anti-BVDV drug as a mimetic CAST inhibitor to develop a rule-based screening function for adjusting the puzzle of relationship between bovine CAPN1 and the BVDV nonstructural proteins from all of the data obtained in the study. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Graphical abstract

Open AccessArticle Three Novel Lanthanide Metal-Organic Frameworks (Ln-MOFs) Constructed by Unsymmetrical Aromatic Dicarboxylatic Tectonics: Synthesis, Crystal Structures and Luminescent Properties
Molecules 2014, 19(9), 14352-14365; https://doi.org/10.3390/molecules190914352
Received: 30 June 2014 / Revised: 4 August 2014 / Accepted: 12 August 2014 / Published: 11 September 2014
Cited by 4 | PDF Full-text (3322 KB) | HTML Full-text | XML Full-text
Abstract
Three novel Ln(III)-based coordination polymers, {[Ln2 (2,4-bpda)3 (H2O)xyH2O}n (Ln = La (III) (1), x = 2, y = 0, Ce (III) (2), Pr (III) (3), x
[...] Read more.
Three novel Ln(III)-based coordination polymers, {[Ln2 (2,4-bpda)3 (H2O)xyH2O}n (Ln = La (III) (1), x = 2, y = 0, Ce (III) (2), Pr (III) (3), x = 4, y = 1) (2,4-H2bpda = benzophenone-2,4-dicarboxylic acid) have been prepared via a solvothermal method and characterized by elemental analysis, IR, and single-crystal X-ray diffraction techniques. Complex 1 exhibits a 3D complicated framework with a new 2-nodal (3,7)-connected (42·5) (44·51·66·8) topology. Complexes 2 and 3 are isomorphous, and feature a 3D 4-connected (65·8)-CdSO4 network. Moreover, solid-state properties such as thermal stabilities and luminescent properties of 1 and 2 were also investigated. Complex 1 crystallized in a monoclinic space group P21/c with a = 14.800 (3), b = 14.500 (3), c = 18.800 (4) Å, β = 91.00 (3), V = 4033.9 (14) Å3 and Z = 4. Complex 2 crystallized in a monoclinic space group Cc with a = 13.5432 (4), b = 12.9981 (4), c = 25.7567 (11) Å, β = 104.028 (4), V = 1374.16 (7) Å3 and Z = 4. Full article
(This article belongs to the Special Issue Practical Applications of Metal Complexes)
Figures

Graphical abstract

Open AccessArticle CARI III Inhibits Tumor Growth in a Melanoma-Bearing Mouse Model through Induction of G0/G1 Cell Cycle Arrest
Molecules 2014, 19(9), 14383-14395; https://doi.org/10.3390/molecules190914383
Received: 23 June 2014 / Revised: 23 July 2014 / Accepted: 25 July 2014 / Published: 12 September 2014
Cited by 3 | PDF Full-text (1558 KB) | HTML Full-text | XML Full-text
Abstract
Mushroom-derived natural products have been used to prevent or treat cancer for millennia. In this study, we evaluated the anticancer effects of CARI (Cell Activation Research Institute) III, which consists of a blend of mushroom mycelia from Phellinus linteus grown on germinated brown
[...] Read more.
Mushroom-derived natural products have been used to prevent or treat cancer for millennia. In this study, we evaluated the anticancer effects of CARI (Cell Activation Research Institute) III, which consists of a blend of mushroom mycelia from Phellinus linteus grown on germinated brown rice, Inonotus obliquus grown on germinated brown rice, Antrodia camphorata grown on germinated brown rice and Ganoderma lucidum. Here, we showed that CARI III exerted anti-cancer activity, which is comparable to Dox against melanoma in vivo. B16F10 cells were intraperitoneally injected into C57BL6 mice to develop solid intra-abdominal tumors. Three hundred milligrams of the CARI III/kg/day p.o. regimen reduced tumor weight, comparable to the doxorubicin (Dox)-treated group. An increase in life span (ILS% = 50.88%) was observed in the CARI III-administered group, compared to the tumor control group. CARI III demonstrates anti-proliferative activity against B16F10 melanoma cells through inducing G0/G1 cell cycle arrest. CARI III inhibits the expression of cyclin D1, CDK4 and CDK2 and induces p21. Therefore, CARI III could be a potential chemopreventive supplement to melanoma patients. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessCommunication Identification, Characterization, and Immobilization of an Organic Solvent-Stable Alkaline Hydrolase (PA27) from Pseudomonas aeruginosa MH38
Molecules 2014, 19(9), 14396-14405; https://doi.org/10.3390/molecules190914396
Received: 19 May 2014 / Revised: 29 July 2014 / Accepted: 14 August 2014 / Published: 12 September 2014
Cited by 1 | PDF Full-text (2092 KB) | HTML Full-text | XML Full-text
Abstract
An organic solvent-stable alkaline hydrolase (PA27) from Pseudomonas aeruginosa MH38 was expressed, characterized, and immobilized for biotechnological applications. Recombinant PA27 was expressed in Escherichia coli as a 27 kDa soluble protein and was purified by standard procedures. PA27 was found to be stable
[...] Read more.
An organic solvent-stable alkaline hydrolase (PA27) from Pseudomonas aeruginosa MH38 was expressed, characterized, and immobilized for biotechnological applications. Recombinant PA27 was expressed in Escherichia coli as a 27 kDa soluble protein and was purified by standard procedures. PA27 was found to be stable at pH 8–11 and below 50 °C. It maintained more than 80% of its activity under alkaline conditions (pH 8.0–11.0). Furthermore, PA27 exhibited remarkable stability in benzene and n-hexane at concentrations of 30% and 50%. Based on these properties, immobilization of PA27 for biotechnological applications was explored. Scanning electron microscopy revealed a very smooth spherical structure with numerous large pores. Interestingly, immobilized PA27 displayed improved thermal/chemical stabilities and high reusability. Specifically, immobilized PA27 has improved thermal stability, maintaining over 90% of initial activity after 1 h of incubation at 80 °C, whereas free PA27 had only 35% residual activity. Furthermore, immobilized PA27 showed higher residual activity than the free enzyme biocatalysts against detergents, urea, and phenol. Immobilized PA27 could be recycled 20 times with retention of ~60% of its initial activity. Furthermore, macroscopic hydrogel formation of PA27 was also investigated. These characteristics make PA27 a great candidate for an industrial biocatalyst with potential applications. Full article
(This article belongs to the Section Organic Chemistry)
Figures

Figure 1

Open AccessArticle Enantiomerically Pure Phosphonated Carbocyclic 2'-Oxa-3'-Azanucleosides: Synthesis and Biological Evaluation
Molecules 2014, 19(9), 14406-14416; https://doi.org/10.3390/molecules190914406
Received: 30 July 2014 / Revised: 26 August 2014 / Accepted: 29 August 2014 / Published: 12 September 2014
Cited by 10 | PDF Full-text (781 KB) | HTML Full-text | XML Full-text
Abstract
Starting from enantiomeric pure 1-[(3S,5R)- and 1-[(3R,5S)-3-(hydroxymethyl)-2-methylisoxazolidin-5-yl]-5-methylpyrimidine-2,4(1H,3H)-diones (−)7a and (+)7b, obtained by lipase-catalyzed resolution, pure diethyl{[(3S,5R)-2-methyl-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)isoxazolidin-3-yl]methyl}phosphonate (−)12a and diethyl{[(3R,5
[...] Read more.
Starting from enantiomeric pure 1-[(3S,5R)- and 1-[(3R,5S)-3-(hydroxymethyl)-2-methylisoxazolidin-5-yl]-5-methylpyrimidine-2,4(1H,3H)-diones (−)7a and (+)7b, obtained by lipase-catalyzed resolution, pure diethyl{[(3S,5R)-2-methyl-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)isoxazolidin-3-yl]methyl}phosphonate (−)12a and diethyl{[(3R,5S)-2-methyl-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)isoxazolidin-3-yl]methyl}phosphonate (+)12b have been synthesized. The obtained compounds showed no cytotoxic activity versus the U937 cell line in comparison with AZT, and were poorly able to inhibit HIV infection in vitro. Full article
(This article belongs to the Special Issue Cycloaddition Chemistry)
Figures

Figure 1