E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Dietary Fructose and Glucose: The Multifacetted Aspects of their Metabolism and Implication for Human Health"

A special issue of Nutrients (ISSN 2072-6643).

Deadline for manuscript submissions: closed (28 February 2017)

Special Issue Editor

Guest Editor
Prof. Dr. Luc Tappy

Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
Website | E-Mail
Phone: +021-692-5541
Interests: metabolism of sugars at rest and during exercise; role of fructose in the pathogenesis of metabolic diseases

Special Issue Information

Dear Colleagues,

We welcome the submission of manuscripts, either describing original research, or reviewing scientific literature. Manuscripts should focus on well-defined topics not previously reported extensively in the literature, such as (but not limited to):

  • functional aspects of fructose and glucose metabolism
  • health effects of chronic fructose consumption
  • molecular and mechanistic insights of hexoses-induced adaptations
  • sugars, sweet taste receptors and brain responses
  • intervention studies in humans

Papers covering species comparisons of nutrition/metabolism or evolutionary perspectives, or effects of fructose and glucose in specific physiological conditions (physical activity, pregnancy, growth, etc.) or special tissues (testis, placenta) are welcome.

Prof. Luc Tappy
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs).

Keywords

  • fructose
  • added sugars
  • metabolic syndrome
  • glucose production
  • intrahepatic lipids
  • intramyocellular lipids
  • uric acid
  • food intake
  • satiety
  • exercise
  • energy efficiency

Published Papers (18 papers)

View options order results:
result details:
Displaying articles 1-18
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Metabolic Impact of Light Phase-Restricted Fructose Consumption Is Linked to Changes in Hypothalamic AMPK Phosphorylation and Melatonin Production in Rats
Nutrients 2017, 9(4), 332; doi:10.3390/nu9040332
Received: 15 February 2017 / Revised: 12 March 2017 / Accepted: 16 March 2017 / Published: 27 March 2017
PDF Full-text (2718 KB) | HTML Full-text | XML Full-text
Abstract
Recent studies show that the metabolic effects of fructose may vary depending on the phase of its consumption along with the light/dark cycle. Here, we investigated the metabolic outcomes of fructose consumption by rats during either the light (LPF) or the dark (DPF)
[...] Read more.
Recent studies show that the metabolic effects of fructose may vary depending on the phase of its consumption along with the light/dark cycle. Here, we investigated the metabolic outcomes of fructose consumption by rats during either the light (LPF) or the dark (DPF) phases of the light/dark cycle. This experimental approach was combined with other interventions, including restriction of chow availability to the dark phase, melatonin administration or intracerebroventricular inhibition of adenosine monophosphate-activated protein kinase (AMPK) with Compound C. LPF, but not DPF rats, exhibited increased hypothalamic AMPK phosphorylation, glucose intolerance, reduced urinary 6-sulfatoxymelatonin (6-S-Mel) (a metabolite of melatonin) and increased corticosterone levels. LPF, but not DPF rats, also exhibited increased chow ingestion during the light phase. The mentioned changes were blunted by Compound C. LPF rats subjected to dark phase-restricted feeding still exhibited increased hypothalamic AMPK phosphorylation but failed to develop the endocrine and metabolic changes. Moreover, melatonin administration to LPF rats reduced corticosterone and prevented glucose intolerance. Altogether, the present data suggests that consumption of fructose during the light phase results in out-of-phase feeding due to increased hypothalamic AMPK phosphorylation. This shift in spontaneous chow ingestion is responsible for the reduction of 6-S-Mel and glucose intolerance. Full article
Figures

Figure 1

Open AccessArticle Lifetime Exposure to a Constant Environment Amplifies the Impact of a Fructose-Rich Diet on Glucose Homeostasis during Pregnancy
Nutrients 2017, 9(4), 327; doi:10.3390/nu9040327
Received: 27 February 2017 / Revised: 15 March 2017 / Accepted: 21 March 2017 / Published: 25 March 2017
PDF Full-text (631 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The need to refine rodent models of human-related disease is now being recognized, in particular the rearing environment that can profoundly modulate metabolic regulation. Most studies on pregnancy and fetal development purchase and transport young females into the research facility, which after a
[...] Read more.
The need to refine rodent models of human-related disease is now being recognized, in particular the rearing environment that can profoundly modulate metabolic regulation. Most studies on pregnancy and fetal development purchase and transport young females into the research facility, which after a short period of acclimation are investigated (Gen0). We demonstrate that female offspring (Gen1) show an exaggerated hyperinsulinemic response to pregnancy when fed a standard diet and with high fructose intake, which continues throughout pregnancy. Markers of maternal hepatic metabolism were differentially influenced, as the gene expression of acetyl-CoA-carboxylase was raised in Gen1 given fructose and controls, whereas glucose transporter 5 and fatty acid synthase expression were only raised with fructose. Gen1 rats weighed more than Gen0 throughout the study, although fructose feeding raised the percent body fat but not body weight. We show that long-term habituation to the living environment has a profound impact on the animal’s metabolic responses to nutritional intervention and pregnancy. This has important implications for interpreting many studies investigating the influence of maternal consumption of fructose on pregnancy outcomes and offspring to date. Full article
Figures

Figure 1

Open AccessArticle Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats
Nutrients 2017, 9(4), 323; doi:10.3390/nu9040323
Received: 23 February 2017 / Revised: 17 March 2017 / Accepted: 23 March 2017 / Published: 24 March 2017
PDF Full-text (1816 KB) | HTML Full-text | XML Full-text
Abstract
Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in
[...] Read more.
Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases. Full article
Figures

Figure 1

Open AccessArticle The Addition of Liquid Fructose to a Western-Type Diet in LDL-R−/− Mice Induces Liver Inflammation and Fibrogenesis Markers without Disrupting Insulin Receptor Signalling after an Insulin Challenge
Nutrients 2017, 9(3), 278; doi:10.3390/nu9030278
Received: 2 February 2017 / Revised: 3 March 2017 / Accepted: 9 March 2017 / Published: 15 March 2017
PDF Full-text (2895 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A high consumption of fat and simple sugars, especially fructose, has been related to the development of insulin resistance, but the mechanisms involved in the effects of these nutrients are not fully understood. This study investigates the effects of a Western-type diet and
[...] Read more.
A high consumption of fat and simple sugars, especially fructose, has been related to the development of insulin resistance, but the mechanisms involved in the effects of these nutrients are not fully understood. This study investigates the effects of a Western-type diet and liquid fructose supplementation, alone and combined, on insulin signalling and inflammation in low-density lipoprotein (LDL) receptor-deficient mice (LDL-R−/−). LDL-R−/− mice were fed chow or Western diet ±15% fructose solution for 12 weeks. Plasma glucose and insulin, and the expression of genes related to inflammation in the liver and visceral white adipose tissue (vWAT), were analysed. V-akt murine thymoma viral oncogene homolog-2 (Akt) activation was measured in the liver of the mice after a single injection of saline or insulin. None of the dietary interventions caused inflammation in vWAT, whereas the Western diet induced hepatic inflammation, which was further enhanced by liquid fructose, leading also to a significant increase in fibrogenesis markers. However, there was no change in plasma glucose or insulin, or insulin-induced Akt phosphorylation. In conclusion, hepatic inflammation and fibrogenesis markers induced by a Western diet supplemented with liquid fructose in LDL-R−/− mice are not associated with a significant impairment of hepatic insulin signalling. Full article
Figures

Figure 1

Open AccessArticle The Effect of Short-Term Dietary Fructose Supplementation on Gastric Emptying Rate and Gastrointestinal Hormone Responses in Healthy Men
Nutrients 2017, 9(3), 258; doi:10.3390/nu9030258
Received: 7 February 2017 / Revised: 3 March 2017 / Accepted: 7 March 2017 / Published: 10 March 2017
PDF Full-text (2604 KB) | HTML Full-text | XML Full-text
Abstract
This study aimed to examine gastric emptying rate and gastrointestinal hormone responses to fructose and glucose ingestion following 3 days of dietary fructose supplementation. Using the 13C-breath test method, gastric emptying rates of equicaloric fructose and glucose solutions were measured in 10
[...] Read more.
This study aimed to examine gastric emptying rate and gastrointestinal hormone responses to fructose and glucose ingestion following 3 days of dietary fructose supplementation. Using the 13C-breath test method, gastric emptying rates of equicaloric fructose and glucose solutions were measured in 10 healthy men with prior fructose supplementation (fructose supplement, FS; glucose supplement, GS) and without prior fructose supplementation (fructose control, FC; glucose control, GC). In addition, circulating concentrations of acylated ghrelin (GHR), glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and insulin were determined, as well as leptin, lactate, and triglycerides. Increased dietary fructose ingestion resulted in accelerated gastric emptying rate of a fructose solution but not a glucose solution. No differences in GIP, GLP-1, or insulin incremental area under curve (iAUC) were found between control and supplement trials for either fructose or glucose ingestion. However, a trend for lower ghrelin iAUC was observed for FS compared to FC. In addition, a trend of lower GHR concentration was observed at 45 min for FS compared to FC and GHR concentration for GS was greater than GC at 10 min. The accelerated gastric emptying rate of fructose following short-term supplementation with fructose may be partially explained by subtle changes in delayed postprandial ghrelin suppression. Full article
Figures

Figure 1

Open AccessArticle Metabolic Effects of Replacing Sugar-Sweetened Beverages with Artificially-Sweetened Beverages in Overweight Subjects with or without Hepatic Steatosis: A Randomized Control Clinical Trial
Nutrients 2017, 9(3), 202; doi:10.3390/nu9030202
Received: 4 January 2017 / Revised: 27 January 2017 / Accepted: 22 February 2017 / Published: 27 February 2017
PDF Full-text (1641 KB) | HTML Full-text | XML Full-text
Abstract
Objective: Addition of fructose to the diet of normal weight and overweight subjects can increase postprandial plasma triglyceride and uric acid concentration. We, therefore, assessed whether replacing sugar-sweetened beverages (SSB) with artificially-sweetened beverages (ASB) in the diet of overweight and obese subjects would
[...] Read more.
Objective: Addition of fructose to the diet of normal weight and overweight subjects can increase postprandial plasma triglyceride and uric acid concentration. We, therefore, assessed whether replacing sugar-sweetened beverages (SSB) with artificially-sweetened beverages (ASB) in the diet of overweight and obese subjects would decrease these parameters. Methods: Twenty-six participants of the REDUCS study, which assessed the effects of replacing SSB by ASB over 12 weeks on intra-hepatocellular lipid concentration, were included in this sub-analysis. All were studied after a four-week run-in period during which they consumed their usual diet and SSBs, and after a 12-week intervention in which they were randomly assigned to replace their SSBs with ASBs (ASB arm) or to continue their usual diet and SSBs (control arm, CTRL). At the end of run-in (week 4) and again at the end of intervention (week 16), they took part in an 8.5 h metabolic investigation during which their plasma glucose, insulin, glucagon, lactate, triglyceride (TG), non-esterified fatty acids (NEFA), and uric acid concentrations were measured over a 30 min fasting period (−30–0 min), then every 2 h over 480 min. with ingestion of standard breakfast at time 0 min and a standard lunch at time 240 min. Breakfast and lunch were consumed together with a 3.3 dL SSB at week 4 and with either an ASB (ASB arm) or a SSB (CTRL arm) at week 16. After analyzing the whole group, a secondary analysis was performed on 14 subjects with hepatic steatosis (seven randomized to ASB, seven to CTRL) and 12 subjects without hepatic steatosis (six randomized to ASB and six to CTRL). Results: Ingestion of meals increased plasma glucose, insulin, glucagon, lactate, and TG concentrations and decreased NEFA concentrations, but with no significant difference of integrated postprandial responses between week 4 and week 16 in both ASB and CTRL, except for a slightly decreased glucagon response in ASB. There was, however, no significant postprandial increase in uric acid concentration in both arms. In the secondary analysis, replacing SSBs with ASBs did not significantly change postprandial TG and uric acid concentrations irrespective of the presence or not of hepatic steatosis, Conclusions: In overweight, high SSB consumers, replacing SSBs with ASBs during 12 weeks did not significantly alter post-prandial TG and uric acid concentration, in spite of the lower energy and fructose content of the meals. These effects were globally the same in subjects without and with hepatic steatosis. Full article
Figures

Figure 1

Open AccessArticle Metabolic Effects of Glucose-Fructose Co-Ingestion Compared to Glucose Alone during Exercise in Type 1 Diabetes
Nutrients 2017, 9(2), 164; doi:10.3390/nu9020164
Received: 19 January 2017 / Revised: 9 February 2017 / Accepted: 15 February 2017 / Published: 21 February 2017
PDF Full-text (2235 KB) | HTML Full-text | XML Full-text
Abstract
This paper aims to compare the metabolic effects of glucose-fructose co-ingestion (GLUFRU) with glucose alone (GLU) in exercising individuals with type 1 diabetes mellitus. Fifteen male individuals with type 1 diabetes (HbA1c 7.0% ± 0.6% (53 ± 7 mmol/mol)) underwent a 90 min
[...] Read more.
This paper aims to compare the metabolic effects of glucose-fructose co-ingestion (GLUFRU) with glucose alone (GLU) in exercising individuals with type 1 diabetes mellitus. Fifteen male individuals with type 1 diabetes (HbA1c 7.0% ± 0.6% (53 ± 7 mmol/mol)) underwent a 90 min iso-energetic continuous cycling session at 50% VO2max while ingesting combined glucose-fructose (GLUFRU) or glucose alone (GLU) to maintain stable glycaemia without insulin adjustment. GLUFRU and GLU were labelled with 13C-fructose and 13C-glucose, respectively. Metabolic assessments included measurements of hormones and metabolites, substrate oxidation, and stable isotopes. Exogenous carbohydrate requirements to maintain stable glycaemia were comparable between GLUFRU and GLU (p = 0.46). Fat oxidation was significantly higher (5.2 ± 0.2 vs. 2.6 ± 1.2 mg·kg−1·min−1, p < 0.001) and carbohydrate oxidation lower (18.1 ± 0.8 vs. 24.5 ± 0.8 mg·kg−1·min−1 p < 0.001) in GLUFRU compared to GLU, with decreased muscle glycogen oxidation in GLUFRU (10.2 ± 0.9 vs. 17.5 ± 1.0 mg·kg−1·min−1, p < 0.001). Lactate levels were higher (2.2 ± 0.2 vs. 1.8 ± 0.1 mmol/L, p = 0.012) in GLUFRU, with comparable counter-regulatory hormones between GLUFRU and GLU (p > 0.05 for all). Glucose and insulin levels, and total glucose appearance and disappearance were comparable between interventions. Glucose-fructose co-ingestion may have a beneficial impact on fuel metabolism in exercising individuals with type 1 diabetes without insulin adjustment, by increasing fat oxidation whilst sparing glycogen. Full article
Figures

Open AccessArticle Individual Diet Modeling Shows How to Balance the Diet of French Adults with or without Excessive Free Sugar Intakes
Nutrients 2017, 9(2), 162; doi:10.3390/nu9020162
Received: 22 November 2016 / Revised: 13 February 2017 / Accepted: 15 February 2017 / Published: 20 February 2017
PDF Full-text (948 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dietary changes needed to achieve nutritional adequacy for 33 nutrients were determined for 1719 adults from a representative French national dietary survey. For each individual, an iso-energy nutritionally adequate diet was generated using diet modeling, staying as close as possible to the observed
[...] Read more.
Dietary changes needed to achieve nutritional adequacy for 33 nutrients were determined for 1719 adults from a representative French national dietary survey. For each individual, an iso-energy nutritionally adequate diet was generated using diet modeling, staying as close as possible to the observed diet. The French food composition table was completed with free sugar (FS) content. Results were analyzed separately for individuals with FS intakes in their observed diets ≤10% or >10% of their energy intake (named below FS-ACCEPTABLE and FS-EXCESS, respectively). The FS-EXCESS group represented 41% of the total population (average energy intake of 14.2% from FS). Compared with FS-ACCEPTABLE individuals, FS-EXCESS individuals had diets of lower nutritional quality and consumed more energy (2192 vs. 2123 kcal/day), particularly during snacking occasions (258 vs. 131 kcal/day) (all p-values < 0.01). In order to meet nutritional targets, for both FS-ACCEPTABLE and FS-EXCESS individuals, the main dietary changes in optimized diets were significant increases in fresh fruits, starchy foods, water, hot beverages and plain yogurts; and significant decreases in mixed dishes/sandwiches, meat/eggs/fish and cheese. For FS-EXCESS individuals only, the optimization process significantly increased vegetables and significantly decreased sugar-sweetened beverages, sweet products and fruit juices. The diets of French adults with excessive intakes of FS are of lower nutritional quality, but can be optimized via specific dietary changes. Full article
Figures

Figure 1

Open AccessArticle Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise
Nutrients 2017, 9(2), 167; doi:10.3390/nu9020167
Received: 6 January 2017 / Accepted: 16 February 2017 / Published: 20 February 2017
PDF Full-text (1887 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min−1 during exercise when ample glucose or glucose polymers are ingested. Fructose co‐ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose
[...] Read more.
Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min−1 during exercise when ample glucose or glucose polymers are ingested. Fructose co‐ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co‐ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL∙kg−1∙min−1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g∙min−1 of glucose (GLU), 1.2 g∙min−1 glucose + 0.6 g∙min−1 fructose (GLU + FRU), 0.6 g∙min−1 glucose + 1.2 g∙min−1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g∙min−1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g∙min−1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g∙min−1, respectively, p < 0.05). We conclude that fructose co‐ingestion (0.6 g∙min−1) with glucose (1.2 g∙min−1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Full article
Figures

Figure 1

Open AccessArticle Fructose in Breast Milk Is Positively Associated with Infant Body Composition at 6 Months of Age
Nutrients 2017, 9(2), 146; doi:10.3390/nu9020146
Received: 11 November 2016 / Revised: 6 February 2017 / Accepted: 8 February 2017 / Published: 16 February 2017
PDF Full-text (839 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dietary sugars have been shown to promote excess adiposity among children and adults; however, no study has examined fructose in human milk and its effects on body composition during infancy. Twenty-five mother–infant dyads attended clinical visits to the Oklahoma Health Sciences Center at
[...] Read more.
Dietary sugars have been shown to promote excess adiposity among children and adults; however, no study has examined fructose in human milk and its effects on body composition during infancy. Twenty-five mother–infant dyads attended clinical visits to the Oklahoma Health Sciences Center at 1 and 6 months of infant age. Infants were exclusively breastfed for 6 months and sugars in breast milk (i.e., fructose, glucose, lactose) were measured by Liquid chromatography-mass spectrometry (LC-MS/MS) and glucose oxidase. Infant body composition was assessed using dual-energy X-ray absorptiometry at 1 and 6 months. Multiple linear regression was used to examine associations between breast milk sugars and infant body composition at 6 months of age. Fructose, glucose, and lactose were present in breast milk and stable across visits (means = 6.7 μg/mL, 255.2 μg/mL, and 7.6 g/dL, respectively). Despite its very low concentration, fructose was the only sugar significantly associated with infant body composition. A 1-μg/mL higher breast milk fructose was associated with a 257 g higher body weight (p = 0.02), 170 g higher lean mass (p = 0.01), 131 g higher fat mass (p = 0.05), and 5 g higher bone mineral content (p = 0.03). In conclusion, fructose is detectable in human breast milk and is positively associated with all components of body composition at 6 months of age. Full article
Figures

Figure 1

Open AccessArticle The Acute Effects of Simple Sugar Ingestion on Appetite, Gut-Derived Hormone Response, and Metabolic Markers in Men
Nutrients 2017, 9(2), 135; doi:10.3390/nu9020135
Received: 15 December 2016 / Revised: 7 February 2017 / Accepted: 8 February 2017 / Published: 14 February 2017
PDF Full-text (2880 KB) | HTML Full-text | XML Full-text
Abstract
This pilot study aimed to investigate the effect of simple sugar ingestion, in amounts typical of common ingestion, on appetite and the gut-derived hormone response. Seven healthy men ingested water (W) and equicaloric solutions containing 39.6 g glucose monohydrate (G), 36 g fructose
[...] Read more.
This pilot study aimed to investigate the effect of simple sugar ingestion, in amounts typical of common ingestion, on appetite and the gut-derived hormone response. Seven healthy men ingested water (W) and equicaloric solutions containing 39.6 g glucose monohydrate (G), 36 g fructose (F), 36 g sucrose (S), and 19.8 g glucose monohydrate + 18 g fructose (C), in a randomised order. Serum concentrations of ghrelin, glucose dependent insulinotropic polypeptide (GIP), glucagon like peptide-1 (GLP-1), insulin, lactate, triglycerides, non-esterified fatty acids (NEFA), and d-3 hydroxybutyrate, were measured for 60 min. Appetite was measured using visual analogue scales (VAS). The ingestion of F and S resulted in a lower GIP incremental area under the curve (iAUC) compared to the ingestion of G (p < 0.05). No differences in the iAUC for GLP-1 or ghrelin were present between the trials, nor for insulin between the sugars. No differences in appetite ratings or hepatic metabolism measures were found, except for lactate, which was greater following the ingestion of F, S, and C, when compared to W and G (p < 0.05). The acute ingestion of typical amounts of fructose, in a variety of forms, results in marked differences in circulating GIP and lactate concentration, but no differences in appetite ratings, triglyceride concentration, indicative lipolysis, or NEFA metabolism, when compared to glucose. Full article
Figures

Figure 1a

Open AccessArticle High Dietary Fructose Intake on Cardiovascular Disease Related Parameters in Growing Rats
Nutrients 2017, 9(1), 11; doi:10.3390/nu9010011
Received: 29 October 2016 / Revised: 7 December 2016 / Accepted: 15 December 2016 / Published: 26 December 2016
PDF Full-text (1028 KB) | HTML Full-text | XML Full-text
Abstract
The objective of this study was to determine the effects of a high-fructose diet on cardiovascular disease (CVD)-related parameters in growing rats. Three-week-old female Sprague Dawley rats were randomly assigned to four experimental groups; a regular diet group (RD: fed regular diet based
[...] Read more.
The objective of this study was to determine the effects of a high-fructose diet on cardiovascular disease (CVD)-related parameters in growing rats. Three-week-old female Sprague Dawley rats were randomly assigned to four experimental groups; a regular diet group (RD: fed regular diet based on AIN-93G, n = 8), a high-fructose diet group (30Frc: fed regular diet with 30% fructose, n = 8), a high-fat diet group (45Fat: fed regular diet with 45 kcal% fat, n = 8) or a high fructose with high-fat diet group (30Frc + 45Fat, fed diet 30% fructose with 45 kcal% fat, n = 8). After an eight-week treatment period, the body weight, total-fat weight, serum glucose, insulin, lipid profiles and pro-inflammatory cytokines, abdominal aortic wall thickness, and expressions of eNOS and ET-1 mRNA were analyzed. The result showed that total-fat weight was higher in the 30Frc, 45Fat, and 30Frc + 45Fat groups compared to the RD group (p < 0.05). Serum triglyceride (TG) levels were highest in the 30Frc group than the other groups (p < 0.05). The abdominal aorta of 30Frc, 45Fat, and 30Frc + 45Fat groups had higher wall thickness than the RD group (p < 0.05). Abdominal aortic eNOS mRNA level was decreased in 30Frc, 45Fat, and 30Frc + 45Fat groups compared to the RD group (p < 0.05), and also 45Fat and 30Frc + 45Fat groups had decreased mRNA expression of eNOS compared to the 30Frc group (p < 0.05). ET-1 mRNA level was higher in 30Frc, 45Fat, and 30Frc + 45Fat groups than the RD group (p < 0.05). Both high fructose consumption and high fat consumption in growing rats had similar negative effects on CVD-related parameters. Full article
Figures

Figure 1

Review

Jump to: Research

Open AccessReview Fructose and NAFLD: The Multifaceted Aspects of  Fructose Metabolism
Nutrients 2017, 9(3), 230; doi:10.3390/nu9030230
Received: 24 January 2017 / Accepted: 24 February 2017 / Published: 3 March 2017
PDF Full-text (804 KB) | HTML Full-text | XML Full-text
Abstract
Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some
[...] Read more.
Among various factors, such as an unhealthy diet or a sedentarity lifestyle, excessive fructose consumption is known to favor nonalcoholic fatty liver disease (NAFLD), as fructose is both a substrate and an inducer of hepatic de novo lipogenesis. The present review presents some well‐established mechanisms and new clues to better understand the pathophysiology of fructose‐induced NAFLD. Beyond its lipogenic effect, fructose intake is also at the onset of hepatic inflammation and cellular stress, such as oxidative and endoplasmic stress, that are key factors contributing to the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Beyond its hepatic effects, this carbohydrate may exert direct and indirect effects at the peripheral level. Excessive fructose consumption is associated, for example, with the release by the liver of several key mediators leading to alterations in the communication between the liver and the gut, muscles, and adipose tissue and to disease aggravation. These multifaceted aspects of fructose properties are in part specific to fructose, but are also shared in part with sucrose and glucose present in energy– dense beverages and foods. All these aspects must be taken into account in the development of new therapeutic strategies and thereby to better prevent NAFLD. Full article
Figures

Figure 1

Open AccessReview The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism
Nutrients 2017, 9(2), 181; doi:10.3390/nu9020181
Received: 17 January 2017 / Revised: 16 February 2017 / Accepted: 20 February 2017 / Published: 22 February 2017
PDF Full-text (1773 KB) | HTML Full-text | XML Full-text
Abstract
Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation,
[...] Read more.
Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome. Full article
Figures

Figure 1

Open AccessReview Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD)
Nutrients 2017, 9(2), 96; doi:10.3390/nu9020096
Received: 12 December 2016 / Accepted: 22 January 2017 / Published: 31 January 2017
PDF Full-text (550 KB) | HTML Full-text | XML Full-text
Abstract
As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD) is related to several
[...] Read more.
As a sugar additive, fructose is widely used in processed foods and beverages. Excessive fructose consumption can cause hepatic steatosis and dyslipidemia, leading to the development of metabolic syndrome. Recent research revealed that fructose-induced nonalcoholic fatty liver disease (NAFLD) is related to several pathological processes, including: (1) augmenting lipogenesis; (2) leading to mitochondrial dysfunction; (3) stimulating the activation of inflammatory pathways; and (4) causing insulin resistance. Cellular signaling research indicated that partial factors play significant roles in fructose-induced NAFLD, involving liver X receptor (LXR)α, sterol regulatory element binding protein (SREBP)-1/1c, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), peroxisome proliferator–activated receptor α (PPARα), leptin nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), c-Jun amino terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3K) and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK). Until now, a series of natural products have been reported as regulators of NAFLD in vivo and in vitro. This paper reviews the natural products (e.g., curcumin, resveratrol, and (−)-epicatechin) and their mechanisms of ameliorating fructose-induced NAFLD over the past years. Although, as lead compounds, natural products usually have fewer activities compared with synthesized compounds, it will shed light on studies aiming to discover new drugs for NAFLD. Full article
Figures

Figure 1

Open AccessReview Maternal Fructose Intake Affects Transcriptome Changes and Programmed Hypertension in Offspring in Later Life
Nutrients 2016, 8(12), 757; doi:10.3390/nu8120757
Received: 8 October 2016 / Revised: 1 November 2016 / Accepted: 21 November 2016 / Published: 25 November 2016
PDF Full-text (664 KB) | HTML Full-text | XML Full-text
Abstract
Hypertension originates from early-life insults by so-called “developmental origins of health and disease” (DOHaD). Studies performed in the previous few decades indicate that fructose consumption is associated with an increase in hypertension rate. It is emerging field that tends to unfold the nutrient–gene
[...] Read more.
Hypertension originates from early-life insults by so-called “developmental origins of health and disease” (DOHaD). Studies performed in the previous few decades indicate that fructose consumption is associated with an increase in hypertension rate. It is emerging field that tends to unfold the nutrient–gene interactions of maternal high-fructose (HF) intake on the offspring which links renal programming to programmed hypertension. Reprogramming interventions counteract disturbed nutrient–gene interactions induced by maternal HF intake and exert protective effects against developmentally programmed hypertension. Here, we review the key themes on the effect of maternal HF consumption on renal transcriptome changes and programmed hypertension. We have particularly focused on the following areas: metabolic effects of fructose on hypertension and kidney disease; effects of maternal HF consumption on hypertension development in adult offspring; effects of maternal HF consumption on renal transcriptome changes; and application of reprogramming interventions to prevent maternal HF consumption-induced programmed hypertension in animal models. Provision of personalized nutrition is still a faraway goal. Therefore, there is an urgent need to understand early-life nutrient–gene interactions and to develop effective reprogramming strategies for treating hypertension and other HF consumption-related diseases. Full article
Figures

Figure 1

Open AccessReview Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding
Nutrients 2016, 8(11), 697; doi:10.3390/nu8110697
Received: 17 August 2016 / Revised: 11 October 2016 / Accepted: 25 October 2016 / Published: 4 November 2016
PDF Full-text (519 KB) | HTML Full-text | XML Full-text
Abstract
Added sugars are a controversial and hotly debated topic. Consumption of added sugars has been implicated in increased risk of a variety of chronic diseases including obesity, cardiovascular disease, diabetes and non-alcoholic fatty liver disease (NAFLD) as well as cognitive decline and even
[...] Read more.
Added sugars are a controversial and hotly debated topic. Consumption of added sugars has been implicated in increased risk of a variety of chronic diseases including obesity, cardiovascular disease, diabetes and non-alcoholic fatty liver disease (NAFLD) as well as cognitive decline and even some cancers. Support for these putative associations has been challenged, however, on a variety of fronts. The purpose of the current review is to summarize high impact evidence including systematic reviews, meta-analyses, and randomized controlled trials (RCTs), in an attempt to provide an overview of current evidence related to added sugars and health considerations. This paper is an extension of a symposium held at the Experimental Biology 2015 conference entitled “Sweeteners and Health: Current Understandings, Controversies, Recent Research Findings and Directions for Future Research”. We conclude based on high quality evidence from randomized controlled trials (RCT), systematic reviews and meta-analyses of cohort studies that singling out added sugars as unique culprits for metabolically based diseases such as obesity, diabetes and cardiovascular disease appears inconsistent with modern, high quality evidence and is very unlikely to yield health benefits. While it is prudent to consume added sugars in moderation, the reduction of these components of the diet without other reductions of caloric sources seems unlikely to achieve any meaningful benefit. Full article
Figures

Figure 1

Open AccessReview Early Life Fructose Exposure and Its Implications for Long-Term Cardiometabolic Health in Offspring
Nutrients 2016, 8(11), 685; doi:10.3390/nu8110685
Received: 17 September 2016 / Revised: 8 October 2016 / Accepted: 24 October 2016 / Published: 1 November 2016
PDF Full-text (447 KB) | HTML Full-text | XML Full-text
Abstract
It has become increasingly clear that maternal nutrition can strongly influence the susceptibility of adult offspring to cardiometabolic disease. For decades, it has been thought that excessive intake of fructose, such as sugar-sweetened beverages and foods, has been linked to increased risk of
[...] Read more.
It has become increasingly clear that maternal nutrition can strongly influence the susceptibility of adult offspring to cardiometabolic disease. For decades, it has been thought that excessive intake of fructose, such as sugar-sweetened beverages and foods, has been linked to increased risk of obesity, type 2 diabetes, and cardiovascular disease in various populations. These deleterious effects of excess fructose consumption in adults are well researched, but limited data are available on the long-term effects of high fructose exposure during gestation, lactation, and infancy. This review aims to examine the evidence linking early life fructose exposure during critical periods of development and its implications for long-term cardiometabolic health in offspring. Full article
Figures

Figure 1

Journal Contact

MDPI AG
Nutrients Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Nutrients Edit a special issue Review for Nutrients
Back to Top