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Abstract: The need to refine rodent models of human-related disease is now being recognized,
in particular the rearing environment that can profoundly modulate metabolic regulation. Most
studies on pregnancy and fetal development purchase and transport young females into the research
facility, which after a short period of acclimation are investigated (Gen0). We demonstrate that female
offspring (Gen1) show an exaggerated hyperinsulinemic response to pregnancy when fed a standard
diet and with high fructose intake, which continues throughout pregnancy. Markers of maternal
hepatic metabolism were differentially influenced, as the gene expression of acetyl-CoA-carboxylase
was raised in Gen1 given fructose and controls, whereas glucose transporter 5 and fatty acid synthase
expression were only raised with fructose. Gen1 rats weighed more than Gen0 throughout the study,
although fructose feeding raised the percent body fat but not body weight. We show that long-term
habituation to the living environment has a profound impact on the animal’s metabolic responses
to nutritional intervention and pregnancy. This has important implications for interpreting many
studies investigating the influence of maternal consumption of fructose on pregnancy outcomes and
offspring to date.
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1. Introduction

Diabetes and metabolic syndrome are normally considered to result from exposure to an
obesogenic environment together with an individual’s genotype [1]. It is also recognized that in
populations that migrate to more affluent countries, it is the next generation that is at greater risk of
becoming diabetic, in part due to early life exposures [2,3]. These factors are seldom considered in
animal models of diabetes, especially those examining the impact of exposure to an adverse maternal
nutritional environment on the offspring. Although there is increasing awareness of the role of
high intakes of fructose in metabolic syndrome–associated diseases, such as non-alcoholic fatty liver
disease [4], coronary artery disease [5] and type II diabetes [6], and a growing body of literature
covering high intakes of fructose during pregnancy [7–10], there is still a lack of longer-term rodent
studies following the offspring into adulthood and pregnancy. Rodent studies have demonstrated
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that fructose in pregnancy can significantly reduce the weight of the placenta [11], and increase the
expression of genes related to lipogenesis in the offspring liver [12].

Rodent models of nutritional programming usually use young females that are shipped into
a research facility and, after a brief period of acclimation, are exposed to a dietary intervention.
This experimental approach seldom accounts for the fact that the mothers experienced a significant
change in environment while offspring were not moved from their home environment. Failure to
account for these differences could mask important adverse consequences that are expressed only in
subsequent generations that are fully habituated to their living environment. This could account for
how diet-induced maternal obesity can result in glucose intolerance in the offspring in some [13,14] but
not all studies [15,16]. We therefore examined whether offspring born and reared in a single research
facility (Gen1) exhibit a more pronounced diabetes-related phenotype than their mothers (Gen0). Half
of the animals were given fructose (F) in drinking water as a 10% solution (vs. distilled water) prior to
and during pregnancy to establish whether fructose would amplify these effects. Fructose was chosen
since it produces a gestational diabetes mellitus (GDM)-type phenotype of metabolic dysfunction in the
adult offspring [8,11,17]. A 10% solution was chosen to more closely mimic fructose consumption in
humans (i.e., as an added sweetener), and previous work has shown this concentration has significant
metabolic effects in rodents [18]. The extent to which metabolic outcomes differ between generations
has not been previously examined.

2. Materials and Methods

2.1. Animals and Diets

Seven-week-old female Wistar rats (Charles River Canada, Montreal, Quebec, Canada) were
pair-housed in shoebox cages in a temperature-controlled room (21–23 ◦C; 40%–70% humidity) with
a 12 h light:dark cycle. All rats were allowed access to food ad libitum (Purina 5001; Purina Mills,
St. Louis, MO, USA) throughout the study and distilled water was available to all rats during the
standard one week acclimation period. At eight weeks of age, rats were randomly assigned to receive
either a 10% fructose solution (w/v in distilled water, Amresco, Solon, OH, USA; Gen0-F, n = 15) or
distilled water (Gen0-C, n = 15). At 11 weeks of age, they were co-housed with males which had been
maintained on distilled water. Pregnancy was confirmed by vaginal lavage and a positive sperm test
was considered gestational day (GD) 0. Animals remained on this intervention for three weeks prior
to mating and during mating and pregnancy. Ten Gen0-C and 10 Gen0-F were euthanized at GD 21
(details described below). The remaining pregnant dams were left to litter out and all litters were
culled to 10–12 pups/litter at birth. Dams continued their assigned diet during lactation (until 21 days
after delivery), at which point two female pups were randomly selected to remain in the study as
offspring. Eight-week-old female offspring were placed on the same diet as their dams (either 10%
fructose solution (Gen1-F, n = 10) or distilled water (Gen1-C, n = 10). These diets continued through
mating and pregnancy. Pregnant offspring were euthanized at GD 21. The study was approved by the
Research Ethics Office of the University of Alberta.

2.2. Regular Monitoring of Body Weight and Plasma Metabolites

Body weights were recorded weekly during the study, beginning at eight weeks of age and
in early (GD4-7), mid (GD14-17) and late pregnancy (GD19-20). Morning blood samples were also
collected, mixed with anti-coagulant (K2 EDTA, BD, Franklin Lakes, NJ, USA) and remained on ice
until centrifugation (Eppendorf Centrifuge 5415C, Germany, 16,000× g, 5 min). Plasma was stored at
−20 ◦C until being analyzed for glucose (Trinder assay kit, Genzyme Diagnostics, Charlottetown, PEI,
Canada), insulin (Rat Ultrasensitive ELISA Immunoassay kit, ALPCO Diagnostics, Salem, NH, USA),
and triglycerides (Triglyceride-SL assay kit, Genzyme Diagnostics, Cambridge, MA, USA).
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2.3. Oral Glucose Tolerance Tests (OGTT)

OGTT were carried out on GD19 after a 4 h fast, this was chosen both to avoid inducing a
starvation state overnight [19,20] and to avoid the stress fasting places on pregnant rodents due to
their increased glucose utilization [21]. Following collection of a baseline blood sample a 3 g·kg–1

glucose solution was administered by gavage. Blood samples were collected at 15, 30, 45, 60 and
90 min after glucose administration. Plasma was separated and stored as above before assaying for
glucose and insulin. The incremental area under the curve (IAUC) for glucose and insulin from 0 to
90 min was calculated.

2.4. Determination of Body Composition and Tissue Collection

On GD 21 the proportions of fat and lean tissue of each animal were measured using quantitative
magnetic resonance imaging (EchoMRI LLC 4-in-1 whole-body composition analyzer; Echo Medical
Systems, Houston, TX, USA). Following euthanasia, the liver was excised from each rat, snap-frozen
in liquid nitrogen and stored at −80 ◦C until analysis. Placentae and fetuses were dissected from the
uterus, counted, individually weighed, and the placental:fetal weight ratio calculated.

2.5. RNA Extraction and Determination of Hepatic Gene Expression

Total RNA was extracted from frozen liver that had been homogenized in TRI Reagent
(Ambion Diagnostics, Austin, TX, USA), using the RNeasy Mini Kit (Qiagen N.V., Hilden, Germany).
RNA concentration and purity were confirmed using a Nanodrop spectrophotometer (Thermo
Scientific, Waltham, MA, USA), and reverse transcription PCR was carried out using the High Capacity
cDNA reverse transcription kit (Applied Biosystems, Waltham, MA, USA). Quantitative polymerase
chain reaction (qPCR) was carried out using SYBR Green dye and the StepOne Plus PCR machine
(Applied Biosystems). Primers were designed using Primer3 [22] to the rat genome; primer sequences
and GenBank references are included in Supplementary Table S1. Primers were designed to be
intron-spanning to avoid amplification of genomic DNA. Product sizes and primer specificity were
confirmed using classical PCR and gel electrophoresis before qPCR and melt-curves following qPCR.
All qPCR results were adjusted to two reference genes (RPLP0 and GAPDH) using GeNorm for
Microsoft Excel [23] and are presented as fold change in arbitrary units relative to the Gen0-C group,
according to the 2−∆∆CT method [24].

2.6. Statistical Analysis

Following a Shapiro Wilk test for normality all data were compared using unpaired t-tests, with a
Bonferroni correction applied where necessary for multiple comparisons. Analyses were carried out
using SPSS (version 23, IMB Corp., Armonk, NY, USA).

3. Results and Discussion

Fructose feeding caused hyperinsulinemia to a greater extent in Gen1 than in Gen0 (Figure 1A).
Hyperinsulinemia began prior to pregnancy, was exacerbated during pregnancy, and was also observed
during the OGTT at the end of pregnancy (Figure 1B). This suggests increased insulin resistance in
Gen1 that is exacerbated by a high intake of fructose and was corroborated by the fact that the insulin
IAUC was greater in Gen1 than in Gen0 and exaggerated in Gen1-F. Consistent with evidence in
humans and rats [25,26], circulating triglycerides were higher in Gen0-F and Gen1-F prior to and
during pregnancy, and more so in Gen1.

Body weight was raised in Gen1, but composition did not differ between generations. Fructose
enhanced the proportion of fat in Gen0 and Gen1 (Table 1). Litter size was not different between
generations or diet groups but fetal weight was reduced in Gen0-F and Gen1-F, and placentae were
smaller in Gen1-F (Table 1). Reductions in placental but not fetal weight following fructose intake have
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been previously demonstrated [11]. Further investigation into the generational effects of fructose on
placental blood flow and nutrient transport would be worthwhile.
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Figure 1. (A) Plasma glucose, insulin and triglyceride concentrations measured regularly throughout
the study. Gen0-C n = 15, Gen0-F n = 15, Gen1-C n = 10, Gen1-F n = 10. Time points were
as follows: PD/pre-diet treatment = eight weeks of age, PM/pre-mating = 11 weeks, EP/early
pregnancy = 12 weeks/gestational day (GD) 4–7, MP/mid pregnancy = 13 weeks/GD14–17. Whole
blood was collected from non-fasted rats and plasma was separated and stored at −20 ◦C before
analysis. (B) Oral glucose tolerance tests (OGTT) were conducted on GD19. Rats were fasted for 4 h.
Following collection of a baseline blood sample 3 g·kg–1 body weight of glucose was administered
by gavage. Blood samples were collected at 15, 30, 45, 60 and 90 min post glucose bolus. * p < 0.05,
Gen0-C vs. Gen0-F, or Gen1-C vs. Gen1-F (effect of diet) and † p < 0.05, Gen0-C vs. Gen1-C and
Gen0-F vs. Gen1-F (effect of generation), unpaired t-test with a Bonferroni correction applied for
multiple comparisons.

Given the importance of the liver in responding to high fructose intake [27], we examined the
mRNA abundance of genes involved in liver glucose and fructose transport [28,29]. Though GLUT2
expression was raised by fructose in Gen0 and GLUT5 was raised in Gen0 and Gen1, neither was
affected by generation (Figure 2). Generational effects were observed in FAS and ACC1 expression,
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and FAS expression also displayed a fructose effect. This suggests an upregulation in lipid metabolism
in Gen1 that is more pronounced with fructose intake.

Table 1. Body weights (g) before and throughout pregnancy, and body composition and feto-placental
unit near to term.

Age/Pregnancy Stage Gen0-C Gen0-F Gen1-C Gen1-F

Body Weight (g)
Week 8/Pre-diet 200.6 ± 3.3 204.1 ± 3.1 225.1 ± 6.3 † 226.4 ± 5.7 †

Week 9 227.0 ± 2.0 238.3 ± 2.9 254.5 ± 6.6 † 252.3 ± 6.5 †

Week 10 247.3 ± 2.3 257.2 ± 3.1 280.7 ± 6.8 † 285.9 ± 7.7 †

Week 11/Pre-mating 261.5 ± 3.0 277.7 ± 4.7 305.5 ± 7.4 † 316.3 ± 9.3 †

Week 12/ Early pregnancy 290.5 ± 2.3 304.9 ± 5.3 332.2 ± 6.8 † 352.3 ± 12.9 †

Week 13/ Mid pregnancy 329.4 ± 5.1 337.6 ± 5.9 383.8 ± 7.6 † 393.3 ± 14.3 †

Week 14/ Late pregnancy 386.5 ± 5.4 403.1 ± 6.7 428.7 ± 12.3 † 444.4 ± 15.6 †

Body Composition (%)
Fat mass at GD21 11.2 ± 0.7 15.2 ± 1.0 * 11.4 ± 0.5 16.7 ± 1.3 *

Feto-placental unit
Number of pups 15.5 ± 1.7 16.0 ± 3.2 16.3 ± 2.3 17.0 ± 3.3

Placental weight (g) 0.53 ± 0.02 0.48 ± 0.02 0.57 ± 0.02 0.47 ± 0.01 *
Fetal weight (g) 3.88 ± 0.19 3.36 ± 0.14 * 4.07 ± 0.05 3.57 ± 0.09 *

The ratio of placental:fetal weight 0.14 ± 0.01 0.15 ± 0.01 0.14 ± 0.00 0.13 ± 0.01

All values are means ± SEM. Gen0-C n = 10, Gen0-F n = 10, Gen1-C n = 10, Gen1-F n = 10. * p < 0.05, Gen0-C vs.
Gen0-F, or Gen1-C vs. Gen1-F (effect of diet) and † p < 0.05, Gen0-C vs. Gen1-C and Gen0-F vs. Gen1-F (effect of
generation), unpaired t-test with a Bonferroni correction applied for multiple comparisons.Nutrients 2017, 9, 327  5 of 8 
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Figure 2. Hepatic gene expression. Gen0-C n = 10, Gen0-F n = 10, Gen1-C n = 10, Gen1-F n = 10. Livers
were excised on gestational day 21 and snap frozen before RNA extraction and cDNA production
by reverse transcription PCR. Expression of glucose transporter 2 (GLUT2) (A), fructose transporter
GLUT5 (B), fatty acid synthase (FAS) (C) and acetyl-CoA-carboxylase (ACC1) (D) were measured by
real-time PCR, relative to the reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
and 60 s acidic ribosomal protein P0 (RPLP0) using GeNorm [15] and the 2−∆∆CT method [16]. * p < 0.05,
Gen0-C vs. Gen0-F, or Gen1-C vs. Gen1-F (effect of diet) and † p < 0.05, Gen0-C vs. Gen1-C and
Gen0-F vs. Gen1-F (effect of generation), unpaired t-test with a Bonferroni correction applied for
multiple comparisons.
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The substantial difference in insulin resistance and hypertriglyceridemia through pregnancy
between Gen0 dams that were recently transported to the facility and Gen1 dams that were born and
maintained in the same environment for their life has not been previously demonstrated. Moreover, the
nutritional intervention negatively impacted insulin resistance and triglyceride concentrations before
and through pregnancy, and these responses were enhanced in Gen1. This is consistent with previous
work, which suggests that intake of fructose inversely correlates with insulin receptor expression in a
number of organs [30]. To our knowledge, no previous studies have compared the insulin response to
fructose in pregnancy between dams and their offspring. The fact that insulin responses were higher
in both groups of offspring, who were heavier and fatter than their mothers, suggests that body weight
and adiposity could play a role. Previous reports on fructose consumption leading to hyperleptinemia
support this [27,31]. The amplified insulin response to glucose in Gen1 has clear implications for the
interpretation of studies previously conducted examining the impact of maternal diet on long-term
outcomes in offspring. It also highlights the importance of thoroughly characterizing both the mother
and her offspring so that true programming effects can be identified. It is likely that in studies in which
young rodents were shipped to a research facility and studied a few weeks later, animals were still
adapting to this transition. Based on our findings, we suggest that the negative impact of nutritional
programming on offspring glucose and lipid homeostasis mediated by fructose feeding [11,12,32] has
been significantly underestimated.

A primary factor in enabling us to identify the profound effect on insulin and lipid profiles was
our focus on pregnancy as a major physiological challenge. As expected, plasma insulin became raised
during pregnancy, but this adaptation was greatly amplified by fructose exposure. At the start of the
study (i.e., when the animals were eight weeks old), age-matched offspring were heavier than their
dams, and interestingly, the increased Gen1 body weight was not accompanied with greater adiposity,
although it was raised in both groups by fructose (Table 1). The impact of adding purified fructose to the
diet in human beings remains controversial due in part to the inconsistency in metabolic outcomes [33].
Studying animals which have recently been subjected to the combined stress of transportation and a
new living environment may mask many of the metabolic consequences of fructose.

4. Conclusions

In conclusion, substantial adaptations in metabolic profiles through pregnancy are seen between
generations that are greatly amplified when offspring are maintained in the research environment as
opposed to being transported into the facility and then studied. The magnitude of this adaptation is
most apparent in the regulation of plasma insulin and lipids and is exacerbated when the animals are
allowed ad libitum access to a fructose solution. It is therefore likely that many studies examining the
impact of dietary modulation through pregnancy underestimate the magnitude of the effect on both
the mother and her offspring.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/9/04/327/s1,
Table S1: Primer sequences.
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